ФЕНОЛЬНЫЕ СОЕДИНЕНИЯ:
СВОЙСТВА, АКТИВНОСТЬ, ИННОВАЦИИ

Москва
2018
Фенольные соединения: свойства, активность, инновации:

В сборнике представлены результаты исследований по изучению структуры фенольных соединений, их физико-химических свойств, активности, распространения в растениях. Значительное внимание уделено инновационным направлениям их использования, в том числе в фармакологии и медицине.

Для широкого круга специалистов по физико-химической биологии, химии, физиологии и биохимии растений, биотехнологии, фармакогнозии, а также студентов и аспирантов высших учебных заведений.

Материалы публикуются в авторской редакции с согласия авторов.

Редакционная коллегия:

Н.В. Загоскина, Н.А. Тюкавкина, П.В. Лапшин, Т.Л. Нечаева

X Международный Симпозиум «Фенольные соединения: фундаментальные и прикладные аспекты» проведен при финансовой поддержке Российского фонда фундаментальных исследований (проект № 18-04-20016-г).

ISBN 978-5-6040654-4-0

@ Коллектив авторов, 2018
@ ФГБУН Институт физиологии растений им. К.А. Тимирязева РАН, 2018
@ Издательство "PRESS-BOOK.RU", 2018
Фенольные соединения: структура, реакционная способность, физико-химические свойства, активность
GROWING DUCKWEED TO RECOVER NUTRIENT FROM WASTEWATER IS ACCOMPANIED BY MODIFICATION OF POLYPHENOLS CONTENT

Mapelli S., Segato S.
Institute of Agricultural Biology and Biotechnology – CNR, Milan, Italy, mapelli@ibba.cnr.it

Abstract. Our society is generating an increasing quantity of urban organic wastes, and the opportunity of shifting the view of waste streams from pollutant to renewable resource exists. Waste treatments create a chance to generate fuels, chemicals and bio-products, while simultaneously recycling nutrients and water. *L. punctata* showed 15 substances in control and 3 more new substances after 60 days of growing on wastewater. In *L. minor* 10 substances were detected and 5 new substances on wastewater. *L. gibba* had 15 components plus 3 more on wastewater. *S. polyrhiza* showed the more complex chromatograms with 16 substances in control and 21 in fronds growing on wastewater.

Lemnaceae, commonly known as duckweeds, is a family of small aquatic monocotyledonous plants that comprise five genera and 37 species [1]. Duckweeds can rapidly assimilate nutrients such as nitrogen and phosphate and had shown great value in wastewater remediation [2]. The biomass of duckweeds, even the biomass accumulated on wastewaters, may have high starch and protein content [2]. So, the duckweed biomass may have increased interest to be used as raw material for many application [2]. Our society is generating an increasing quantity of urban organic wastes, and the opportunity of shifting the view of waste streams from pollutant to renewable resource exists. Waste treatments create a chance to generate fuels, chemicals and bio-products, while simultaneously recycling nutrients and water.

Nowadays in Italy, the separated urban solid waste reaches the 39%, and 4.8 million tons/years are represented by the organic fraction of municipal solid waste (OFMSW). The OFMSW can be reused to produce energy by means of anaerobic digestion (AD). The AD dedicated to OFMSW is currently increasing and consequently a large amount of digested residue will be produced. This residue can
be divided in solid and in liquid phases [3]. The first one can be used as a fertilizer, the second one is considered wastewater and, consequently, requires a purification that implies economic and energetic costs and the loss of macronutrients. Duckweed demonstrated the capacity to remediate different types of wastewater, duckweeds never have been tested on liquid phase, wastewater, from OFMSW digestors.

In this context the purpose of the research (Duck-Tech project) is, on one hand, to develop strategies in order to support the use of duckweeds in a way to purify AD wastewater recovering mineral elements and, moreover, the consequent production of added value biomass that can gain market demand from green chemical industry. If the content of starch for biofuel production and of protein as feedstuff value has been wide studied and developed [2] less is known on oil [4] and secondary metabolites in species of *Lemnaceae* family [4 - 6]. The Duck-Tech project over then test the *Lemnaceae* growth and AD wastewater phytodepuration capacity, the starch and protein accumulation was also focused to compare different *Lemnaceae* species in the secondary metabolites content and changes during growth on AD wastewater.

From the *Lemnaceae* collection available at CNR-IBBA, several genotypes were selected. The experiments were carried out from the spring 2016 to autumn 2017.

Lemnaceae stock was maintained and reproduced in aseptic condition in growth chamber. A pilot plant, consisting of independent purification tanks (0.7 x 1.0 x 0.35 m) was assembled and connected downstream to an OFMSW AD plant from which 5 l/day of wastewater phase diluted with water (1:5) were added to each tank, where *Lemnaceae* were let grow. The genotypes in growth chamber were the time zero. Every week duckweed biomass was harvested to evaluate the fresh weight increase. After the harvesting, 100 g of duckweed were put again in the treatment tank, whereas the remaining part was used for biochemical and physiological characterization. From freeze dried fronds, pigments and polyphenols were extracted with 90% acetone 10% HCl 2 N with 30 min ultrasound bath and shaking overnight. After centrifugation the extract was subjected to UV/Vis spectra recording and polyphenols had been analyzed by HPLC. The Trirotar VI pump with online degasser DG3510 and DAD MD910 (Jasco Co., Japan), were the HPLC components. Column Chromolith RP18e 4x100 mm was eluted with water:methanol:acetonitrile in 25 min gradient from 85:7:8 to 10:45:45
at 0.6 ml/min. The chromatograms at 280, 340 and 520 nm had been used for quantification of compounds and spectra used for tentative identification.

Fig. 1. UV/Vis spectra of polyphenol extract from 4 different different Lemnaceae.

Fig. 2. Comparison of HPLC polyphenols profile of four different Lemnaceae.
Data for one genotype of *Lemna minor*, *Lemna gibba*, *Spirodea polyrhiza* and *Landoltia puncata* are here considered. All genotypes grown well on wastewater, in the period from late spring to early autumn, with high yield of biomass and interesting values of phytodepuration with concentration of nitrogen and phosphorous reduced, respectively, near and below the authorization limit in channel and river. Furthermore, as expected higher content of starch was accumulated. The attention has been mainly focused on secondary metabolites and polyphenols, considering that already visible differences in colour between *Lemnaceae* genus and through the different growing media. Till now polyphenols were described in only two genus [5 - 6]. Just from UV/Vis spectra (Fig. 1) it was evident the possible differences between the *Lemnaceae* analysed.

Table 1.

Comparative quantities of polyphenols evaluated by peaks total area (μvolts) at 3 different wavelength (280, 340 and 520 nm) and at time zero (0 day) and after grown on wastewater and calculated % changes.

<table>
<thead>
<tr>
<th></th>
<th>L. minor</th>
<th>L. gibba</th>
<th>S. polyrhiza</th>
<th>L. punctata</th>
</tr>
</thead>
<tbody>
<tr>
<td>280 nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 day</td>
<td>179536</td>
<td>287153</td>
<td>314295</td>
<td>270894</td>
</tr>
<tr>
<td>60 days</td>
<td>227953</td>
<td>371048</td>
<td>962194</td>
<td>279976</td>
</tr>
<tr>
<td>%</td>
<td>127</td>
<td>128</td>
<td>306</td>
<td>103</td>
</tr>
<tr>
<td>340 nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 day</td>
<td>165730</td>
<td>307381</td>
<td>602161</td>
<td>302985</td>
</tr>
<tr>
<td>60 days</td>
<td>312354</td>
<td>353474</td>
<td>648958</td>
<td>387730</td>
</tr>
<tr>
<td>%</td>
<td>188</td>
<td>115</td>
<td>108</td>
<td>128</td>
</tr>
<tr>
<td>520 nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 day</td>
<td>13917</td>
<td>10485</td>
<td>30778</td>
<td>14486</td>
</tr>
<tr>
<td>60 days</td>
<td>8846</td>
<td>18757</td>
<td>54789</td>
<td>20497</td>
</tr>
<tr>
<td>%</td>
<td>135</td>
<td>179</td>
<td>178</td>
<td>141</td>
</tr>
</tbody>
</table>

Furthermore, when the polyphenol composition was investigated on HPLC the differences between genotypes became more evident (Fig. 2). Excluding the elution time between 19-24 minutes that included peaks of chlorophylles and carotenoids, identified by absorbing spectra, that is similar for all genotypes, all other part of chromatograms showed a peculiar elution and composition for each control genotypes, and changes occurred when plants were growing on AD wastewater. The number of substances present in chromatograms was different. *L. punctata* showed 15 substances in control and 3 more new substances after 60 days of growing on wastewater. In *L. minor* 10 substances were detected and 5 new
substances on wastewater. *L. gibba* had 15 components plus 3 more on wastewater. *S. polyrhiza* showed the more complex chromatograms with 16 substances in control and 21 in fronds growing on wastewater.

Only in *L. minor* and *L. gibba* the growth on wastewater caused the decrease or disappear of components, 1 and 4 respectively. Over than the changes in composition, increased quantities of polyphenols were evidenced in all genotypes by estimation of peak area at different wavelength (μvolts/g DW) (Table 1). Interesting was the different increase at different wavelength between the genotypes. *S. polyrhiza* showed 306% increase evaluated at 280 nm, *L. minor* showed an increase to 188% at 340 nm. Those observations can further indicate differences in the type of substances present in each genotypes and modified after growth on wastewater. Analysing the spectra of HPLC in comparison with published data for *S. polyrhiza* [5] two leteolin and two quercetin glycoside esters were identified. The same substances were identified in *L. gibba* extract. No one of those components were affected by treatment. II *L. punctata* a peak of putative kaempferol ester was identified and highly increased by on wastewater growth. In *L. minor* 3 peaks were putatively attributed to quertetin or luteolin esters and all were new or highly changed in quantity after wastewater treatment. More should be done for identification of polyphenols in different *Lemnaceae* genotypes and to search for possible applicative use of someone of them.

Acknowledgements. This work has been supported by Fondazione Cariplo, Milan, Italy, grant 2014-0564.

References

ИЗУЧЕНИЕ БИОЛОГИЧЕСКОЙ АКТИВНОСТИ ПРОИЗВОДНЫХ ФЕНОЗАНА НА МОДЕЛЯХ КЛЕТОК ЖИВОТНОГО ПРОИСХОЖДЕНИЯ

Алексеева О.М.¹, Голощапов А.Н.¹, Ким Ю.А.²
¹ФГБУН ИБХФ РАН им Н.М. Эмануэля, Москва, Россия, olgavek@yandex.ru
²ФГБУН ИБК РАН, Пущино, Моск. обл., Россия, yuk01@rambler.ru

Аннотация: Известно, что синтетический антиоксидант фенозан (-β-(4-гидрокси-3,5-ди-трет-бутилфенил) пропионовая кислота) метаболизируется в организме теплокровных животных с образованием 4-гидрокси-3,5-ди-трет-бутилкоричной кислоты. Методом ДСК проведено сравнение воздействия синтетического производного фенозана – фенозана калия, и метаболита фенозана - 4-гидрокси-3,5-ди-трет-бутилкоричной кислоты, на модель многослойной клеточной мембраны – мультиламеллярные фосфолипидные липосомы. Показано, что оба вещества в зависимости от концентрации полимодально изменяют микродоменную организацию липидного бислоя.

Синтезированный в ИХФ РАН для стабилизации полимеров антиоксидант широкого спектра действия – фенозан, пространственно затрудненный фенол, [1] обладает и свойствами биологически активного вещества. В эритроцитах он, как гидрофобное вещество, распределяется преимущественно во внешнем листке бислоя, меняя морфологию клетки [2]. В модельных системах (микросомах) влияет как на структуру, так и на липидный состав мембран. Это приводит к изменению
микровязкости мембран [3], что в свою очередь воздействует на свойства интегральных белковых молекул: ферментов, рецепторов, каналов. При исследовании действия фенозана на организменном уровне было обнаружено, что фенозан метаболизируется в организме теплокровных животных с образованием более сильных адаптогенов. В организме кролика происходит биотрансформация фенозан-кислоты [4, 5]. Окисляется бензольное кольцо и дегидрируется фрагмент пропионовой кислоты. Образуется 2,6-ди-трет-п-бензохинон и метиловый эфир 4-гидрокси-3,5-ди-трет-бутилкоричной кислоты. Второй метаболит является сильным гепатопротектором, т.к. обладает большей биодоступностью, чем фенозан, что связано с его гидрофильностью, повышающей скорость его транспорта.

В ИМБХФ РАН с целью получения вещества с большей биологической активностью, в силу его большей биодоступности, было синтезировано гидрофильное производное фенозана – калиевая соль фенозан-кислоты [β-4-окси-(3,5-дитретбутил-4-оксифенил) калий пропионат] (ФК). ФК значительно повышает адаптацию животных и растительных организмов к стрессовым воздействиям [6]. При исследовании механизма влияния фенозана и ФК обнаружено значительное воздействие на структуру модельной фосфолипидной мембраны: изменяется и толщина бислоя, и упорядоченность упаковки бислоев в мультислойных липосомах [7].

Рис.1. Зависимость температуры максимума термоиндуцированного эндотермического перехода ДМФХ от концентрации КК и ФК.

В настоящей работе мы применили методы формирования мультиламеллярных липосом из димиристоилфосфатидилхолина (ДМФХ) [8] и исследования
микродоменной организации ДМФХ в бислое таких липосом с помощью адиабатной дифференциальной микрокалориметрии - ДСК [9]. Сравнили влияние синтетического производного фенозана - фенозана калия (ФК), и метаболита фенозана - 4-гидрокси-3,5-ди-трет-бутилкоричной кислоты (КК), на термодинамические параметры ДМФХ в бислое.

Рис. 2. Зависимость энталпии термоиндуцированного эндотермического перехода ДМФХ от концентрации КК и ФК.

Рис. 3. Зависимость кооперативности термоиндуцированного эндотермического перехода ДМФХ от концентрации КК и ФК.
Изменение термодинамических характеристик в присутствии биологически активных веществ указывает на перестройки фосфолипидных микродоменов. При добавлении ФК или КК к взвеси мультиламеллярных ДМФХ липосом было обнаружено, что КК и ФК в зависимости от концентрации полимодально изменяют микродоменную организацию липидного бислоя (Рис.1-3). Малые и сверхмалые (ниже 10^{-17} М) концентрации (разведения) КК изменяли микродоменную структуру ДМФХ. Большие концентрации (разведения) ФК (10^{-5} – 10^{-3} М) практически разрушили микродоменную организацию в бислоях, что отражалось в исчезновении эндотермического пика перехода. Средние концентрации ФК (10^{-15} – 10^{-9} М) не вызывали флуктуаций.

Заключение. В последнее время помимо фенозана и фенозана калия используется также дегидрированный аналог фенозана – коричная кислота (4-гидрокси-3,5-ди-трет-бутилкоричная кислота). Окислы коричной кислоты образуются при метаболизме фенозана в организме, поэтому они также должны быть рассмотрены. Целью работы было определение концентраций (разведений) этих веществ, не повреждающих функции и структуру клетки и ее компонентов. Было показано, что воздействие фенозана калия и производного коричной кислоты на структуру фосфолипидного бислоя ДМФХ различно.

Список литературы
1. Ершов В.В., Никифоров Г.А., Володькин А.А. Пространственно-затруднённые фенолы // М. Химия, 1972, 352 с.
5. Кандалинцева Н.В., Дюбченко О. И., Терех Е.И., Просенко А.Е., Шварц Я.Ш., Душкин М.И. Антиокислительная и гепатопротекторная активность водорастворимых 4-
INVESTIGATION OF BIOLOGICAL ACTIVITY OF FENOZAN DERIVATIVES BY USING OF CELLULAR MODELS OF ANIMALS ORIGIN

Alekseeva O.M.¹, Golochshapov A.N.¹, Kim Yu.A.²
¹N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia, olgavek@yandex.ru
²Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Moscow region, Russia, yuk01@rambler.ru

It is known that synthetic antioxidant fenozan (β - (4-hydroxi-3, 5-di-tert-butylfenil) propionic acid) is metabolized in the body of warm-blooded animals, and forms of 4- hydroxi-3, 5-di-tert-butylcynnamic acid (CA). The comparison of effects of synthetic derivative fenozan - potassium fenozan (PF), and fenozan metabolite – (CA), on model of multilayer cell membranes - the multilamellar phospholipid liposomes was performed by DSC method. It was shown that both substances influenced in concentration dependence manner to membranes structure and changed the microdomains organization at lipid bilayer.
С-МОДИФИКАЦИЯ РЯДА ПРИРОДНЫХ И СИНТЕТИЧЕСКИХ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ, АНТИОКСИДАНТНАЯ АКТИВНОСТЬ

Багавиева Т.К.¹, Емельянова И.А.¹, Вологдина Е.В.¹, Просенко А.Е.¹,²

¹ФГБОУ ВО «Новосибирский государственный педагогический университет», Новосибирск, Россия, nspu@nspu.net
²Научно-исследовательский институт химии антиоксидантов, Новосибирск, Россия, chemistry@ngs.ru

Аннотация. Сообщается о модификации структуры природных и синтетических фенольных соединений путем введения серосодержащих фрагментов, в результате которой возможно получение новых соединений, представляющих интерес как высокоэффективные полифункциональные антиоксиданты. Введение алкилтиометильных групп в молекулы природных фенольных антиоксидантов приводит к резкому увеличению антиоксидантной активности.

В настоящее время одним из новых направлений поиска высокоэффективных антиоксидантов является разработка серосодержащих производных многоатомных фенолов, так как они проявляют значительно большую антиоксидантную активность по сравнению с серосодержащими аналогами на основе фенола. В данной работе НИИ химии антиоксидантов и кафедра химии НГПУ имеет многолетний опыт в области синтеза и исследований моно- и полифункциональных фенольных антиоксидантов. В последние годы на кафедре химии ведется интенсивное изучение алкилтиометилпроизводных одноатомных и многоатомных фенолов. Как было установлено, многие алкилтиометилфенолы проявляют аномально высокую антиоксидантную активность на липидных субстратах, на порядок превосходя не только монофункциональные антиоксиданты, но и свои аналоги с положением атома серы, отличным от бензильного.

Флавоноиды — это крупнейший класс растительных полифенолов. Интерес к этим соединениям постоянно растет, чему в немалой степени способствуют такие исключительно
ценные свойства flavоноидов, как антиоксидантная активность и связанная с ней способность многих метаболитов этого класса действовать в качестве агентов, предотвращающих или тормозящих образование опухолей, укрепляющих кровеносные сосуды, защищающих печень и желудочно-кишечный тракт, стимулирующих работу мозга и сердца, являющихся биологически активными добавками в лечебном и диетическом питании.

Из наиболее распространенных соединений, относящихся к flavоноидам, являются кверцетин и дигидрокверцетин. Они, фактически, как и одноатомные фенолы обладают антирадикальной активностью. Если рассматривать структуру данных соединений, то в них присутствует резорциновое и пирокатехиноновое кольцо, а ранее на кафедре химии было установлено, что введение алкилтиометильных фрагментов в кольца резорцина и пирокатехина приводит к аномально высокой антиоксидантной активности. Поэтому было бы интересно ввести в структуру кверцетина и дигидрокверцетина серосодержащий фрагмент, отвечающий не только за противопероксидную активность, но и придающий дополнительно внутримолекулярный синергизм, аналогично как на примере одноатомных и многоатомных фенолов, т.е проведение реакции алкилтиометилирования.

В ходе работы возник интерес проведения модификации некоторых биологически активных веществ, например, тирозола, гимекромона, парацетамола и галльевой кислоты. При этом возможно получение фармакологически активных соединений, обладающих дополнительно высокой антиоксидантной активностью.

Ранее на кафедре химии НГПУ был разработан удобный и эффективный способ прямого введения алкилтиометильных групп в молекулу фенола, основанный на новой реакции алкилтиометилсульфидов.

\[
\text{C}_{12}\text{H}_{25}\text{SH} + \text{CH}_2\text{O} + \text{HNEt}_2 \xrightarrow{\text{EtOH}} \text{C}_{12}\text{H}_{25}\text{SCH}_2\text{NEt}_2
\]

[1].
В настоящей работе с применением данного способа получены новые S-модифицированные природные фенольные соединения:

где $R= -\text{SC}_{12}\text{H}_{25}$

Рис. 1. Период индукции (т, мин.) автоокисления лярда (133 °C), ингибированного фенольными антиоксидантами.

Строение полученных соединений подтверждено современными физико-химическими методами. Проведенное тестирование антиоксидантной активности показало, что введение алкилтиометильных групп в молекулы природных фенольных антиоксидантов приводит к резкому увеличению...
Currently, one of the new directions in research on highly effective antioxidants is the development of sulfur-containing derivatives of polyhydric phenols. This kind of derivatives has significantly greater antioxidant activity compared to sulfur-based analogues based on phenol.

Bagavieva T.K.¹, Emelyanova I.A.¹, Vologdina E.V.¹, Prosenko A.E.¹,²
¹Novosibirsk State Pedagogical University, Novosibirsk, Russia, nspu@nspu.net
²Scientific Research Institute of Antioxidant Chemistry, Novosibirsk, Russia, chemistry@ngs.ru

Currently, one of the new directions in research on highly effective antioxidants is the development of sulfur-containing derivatives of polyhydric phenols. This kind of derivatives has significantly greater antioxidant activity compared to sulfur-based analogues based on phenol. The
way of modification of structure of natural and synthetic phenolic compounds through the introducing sulfur-containing fragments has been presented in this paper. It is a result of obtaining new compounds as highly effective polyfunctional antioxidants.

АНТИРАДИКАЛЬНАЯ АКТИВНОСТЬ ФЛАВОНОИДОВ В РЕАКЦИЯХ С ГЕТЕРОРАДИКАЛАМИ

Белая Н.И., Белый А.В.
ГОУ ВПО «Донецкий национальный университет», Донецк, Украина, nat.iv.belaya@gmail.com

Аннотация. Установлено, что по сравнению с выбранной в качестве эталона галловой кислотой большинство изученных flavonoids (Flav–OH) в водных средах при рН=7,35 в реакции с 2,2'-дифенил-1-пикрилгидразил (DPPH)
не проявили высокой антирадикальной активности (APA), а при взаимодействии с 2-амидинопропан-2-пероксилом (APOO)
эффективны как антиоксиданты (АО) фактички все Flav–OH. Это связано с наличием пространственных затруднений у реакционного центра DPPH, что при скрининге АО существенно занижает их реакционную способность. Повысить точность оценки APA flavonoids можно путем комбинирования двух изученных модельных реакций с DPPH и APOO.

Исследование природных фенольных соединений как антиоксидантов (АО) основана прежде всего на их способности дезактивировать свободные радикалы. При этом определяемая в реакциях in vitro антирадикальная активность во многом зависит от природы радикала, участвующего в модельной реакции. Часто соединения, реагирующие с одним радикалом, могут не проявить таковой активности с другими радикальными агентами. В связи с этим необходим специальный подбор гетерорадикалов, который позволил бы объективно оценить антиокислительную способность природных фенолов.

Целью данной работы является изучение влияния природы радикала на антирадикальную активность (APA) flavonoids (Flav–OH) в фосфатном буфере при физиологическом рН среды.
В качестве объектов исследования использовали природные антиоксиданты группы флаванов, флавонолов и их гликозидов, а также стабильный N-центрированный радикал 2,2'-дифенил-1-пикрилгидразил (DPPH’) и лабильный O-центрированный 2-амидинопропан-2-пероксил (APOO’).

Изучение реакции Flav–OH с DPPH’ в смеси диметилсульфоксид (dmso) – фосфатный буфер с pH=7,35 (buffer) проводили методом УФ-спектроскопии при T=293±2 К и λ_{max}=520 нм. В качестве генератора APOO’ использовали гидрофильное азосоединение 2,2’-азобис(2-амидинопропан)dигидрохлорид (ААРН), распад которого при свободном доступе O2 воздуха исследовали методом хемилюминесценции (ХЛ), активированной родамином Ж (RdG) при Т=323±2 К в фосфатном буфере с pH=7,35.

По величине констант скоростей реакции взаимодействия Flav–OH с DPPH’ (k_{dmso–buff}) установлено, что все исследуемые флавоноиды проявили активность по отношению к гидразильному радикалу. Основываясь на чувствительности скорости реакции к pH среды (добавка солянокислого буфера с pH=1,5 значительно замедляет реакцию (1)), можно сказать, что в водных растворах реакция AO с радикалом будет осуществляться по механизму переноса электрона от образующихся фенолят-ионов (Flav–O–), называемому SPLET (Sequential Proton Loss – Electron Transfer, последовательная потеря протона с переносом электрона):

\[
\text{Flav–} \text{OH} + \text{H}_2\text{O} \rightleftharpoons \text{Flav–} \text{O}^– + \text{H}_3\text{O}^+,
\]

\[
\text{Flav–} \text{O}^– + \text{DPPH}’ \rightarrow \text{Flav–} \text{O}^+ + \text{DPPH}’^–,
\]

\[
\text{DPPH}’^– + \text{H}_3\text{O}^+ \rightleftharpoons \text{DPPH}–\text{H} + \text{H}_2\text{O}.
\]

Чтобы обеспечить постоянный состав ионов флавоноидов в системе, величину константы исследуемой реакции определяли при постоянном pH среды. Для этого строили зависимость k_{dmso–buffer} от содержания буфера в смеси с диметилсульфоксидом, а затем по параметрам полученной линейной регрессии рассчитывали константу в чистом буферном растворе с pH=7,35 (k_{Flav–OH/DPPH’}).

Анализ активности флавоноидов по величине k_{DPPH’/Flav–OH} показал (таблица), что наиболее эффективными оказались всего два соединения группы флавонолов – морин и мирицетин с константой порядка 10^4 л·моль⁻¹·с⁻¹, что соизмеримо с АРА известного природного АО – галловой кислоты. Все остальные
Flav–OH проявили себя как АО либо с умеренной, либо со слабой APA.

Таблица 1. Значения констант скоростей реакции Flav–OH с DPPH• и АРОО• в фосфатном буферном растворе с pH=7,35

<table>
<thead>
<tr>
<th>Соединение</th>
<th>$k_{DPPH^{•}/Flav–OH}$, T=293±2К, л·моль⁻¹·с⁻¹</th>
<th>$k_{APPO^{•}/Flav–OH}$, T=323±2К, л·моль⁻¹·с⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Катехин</td>
<td>(4,04±0,21)·10²</td>
<td>(5,21±0,3)·10³</td>
</tr>
<tr>
<td>Галлокатехин</td>
<td>(7,8±0,4)·10²</td>
<td>(9,85±0,5)·10³</td>
</tr>
<tr>
<td>Кемпферол</td>
<td>(4,5±0,3)·10³</td>
<td>(3,21±0,21)·10⁴</td>
</tr>
<tr>
<td>Кверцетин</td>
<td>(5,2±0,3)·10³</td>
<td>(2,97±0,21)·10⁴</td>
</tr>
<tr>
<td>Изорамнетин</td>
<td>(7,7±0,4)·10³</td>
<td>(3,51±0,21)·10⁴</td>
</tr>
<tr>
<td>Морин</td>
<td>(5,0±0,3)·10⁴</td>
<td>(9,05±0,5)·10⁴</td>
</tr>
<tr>
<td>Мирицетин</td>
<td>(1,01±0,05)·10⁴</td>
<td>(5,4±0,3)·10⁴</td>
</tr>
<tr>
<td>Кверцитрин</td>
<td>(6,8±0,4)·10³</td>
<td>(5,3±0,3)·10⁴</td>
</tr>
<tr>
<td>Рутин</td>
<td>(6,5±0,4)·10³</td>
<td>(4,1±0,3)·10⁴</td>
</tr>
<tr>
<td>Галловая кислота</td>
<td>(3,31±0,15)·10⁴</td>
<td>(6,2±0,4)·10⁴</td>
</tr>
</tbody>
</table>

По-видимому, изученная модельная реакция дает заниженную оценку APA флавонидов, что связано прежде всего с природой N–центрированного радикала DPPH•. Для проверки этого предположения исследовали активность Flav–OH в реакции с другим О–центрированным пероксирадикалом амидинопропана ($k_{APPO^{•}/Flav–OH}$).

Как и в случае с DPPH•, скорость реакции Flav–OH с АРОО• чувствительна к изменению pH среды, что является характерным признаком механизма SPLET (реакция 2):

$$Flav–OH + H_2O \rightleftharpoons Flav–0^– + H_2O^+, \quad (1)$$

$$Flav–0^– + APPO^• \rightarrow Flav–0^– + APPO^•^–, \quad (2)$$

$$APPO^•^– + H_2O^+ \rightleftharpoons APPO–H + H_2O.$$

Сравнение активности Flav–OH с выбранный в качестве эталона галловой кислотой показало (таблица), что, в отличие от гидразильного радикала, в реакции с пероксиолом эффективны как АО фактически все изученные соединения группы флавонолов, за исключением катехинов. В чем причина таких отличий?

Поскольку природа растворителя не изменялась и предполагаемый механизм реакций (1), (2) одинаков, то различия обусловлены природой радикала, то есть его стабильностью, которая определяется прежде всего наличием спиновой
плотности на реакционном центре и пространственными затруднениями.

Методом DFT B3LYP/6-311++G (d,p) в программе Gaussian 09 было рассчитано, что для DPPH• характерны более высокие величины сродства к электрону и спиновой плотности на реакционном центре (РЦ) по сравнению с APOO•. Но при этом гидразильный радикал имеет существенные пространственные затруднения у РЦ, что в случае реакции с объемными частицами типа Flav–OH существенно снижает его активность и позволяет при скрининге выявлять только очень эффективные АО. В этом плане реакционная способность неэкранированного пероксирадикала амидинопропана выше, что дает возможность отбирать соединения с высокой и средней АРА. Но поскольку DPPH• очень близко имитирует механизм действия природных пероксирадикалов, а сам метод с его участием удобный, простой и экспрессный, то эта модельная реакция по-прежнему остается одной из самых востребованных при первичном тестировании АО.

Повысить точность оценки АРА флавоноидов можно путем комбинирования двух изученных модельных реакций с DPPH• и APOO•, что позволит проводить целенаправленный выбор АО как с высокой, так и с умеренной АРА в зависимости от области из практического применения.

RADICAL SCAVENGING ACTIVITY OF FLAVONOIDS IN REACTIONS WITH HETERORADICAL

Radepa N.I., Belyj A.V.
State Educational Institution of Higher Professional Education «Donetsk National University», Donetsk, Ukraine, nat.iv.belaya@gmail.com

It is shown that in comparison with gallic acid chosen as the standard, most of the flavonoids (Flav-OH) studied in aqueous media at pH = 7.35 in the reaction with 2,2'-diphenyl-1-picrylhydrazyl (DPPH•) showed relatively low antiradical activity (ARA), but in the reaction with 2-amidinopropane-2-peroxyl (APOO•) almost all Flav-OH are effective as antioxidants (AO). This occurs due to the presence of spatial difficulties in the DPPH• reaction center, which leads to significant underestimation of flavonoids reactivity. The flavonoids ARA assessment accuracy increasing can be achieved by combining the two model reactions - as with DPPH• so APOO•.
СПЕКТРОФОТОМЕТРИЧЕСКИЕ МЕТОДЫ ОЦЕНКИ ПОДГРУПП ФЕНОЛЬНЫХ СОЕДИНЕНИЙ В СЛОЖНОЙ МАТРИЦЕ. ВОЗМОЖНОСТИ И ОГРАНИЧЕНИЯ

Белобородов В.Л.1, Стручков П.А.1, Савватеев А.М.1, Воскобойникова И.В.2, Колхир В.К.2

1ФГАОУ ВО Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский университет), Москва, Россия, organicchem@1msmu.ru;
2ФГБНУ ВИЛАР, Москва, Россия, olkhir@pharmvilar.ru

Аннотация. Спектрофотометрические методы определения фенольных соединений в ЛРС и фитопрепаратах, основанные на дериватизации с ДНФГ, восстановлении фосфорномолибденовольфрамового комплекса и комплексообразовании с ионом алюминия с предварительным нитрозированием и без него, не позволяют однозначно подразделить семейства полиценолов на подгруппы в зависимости от структуры. Методики могут быть использованы для стандартизации ЛРС и препаратов, но, за исключением метода Фолина–Чокалтеу, не пригодны для сопоставления количественного содержания фенолов в различных видах ЛРС.

Успешное использование комбинаций нескольких видов лекарственного сырья в фитотерапии открывает новые возможности лечения, основанные на том, что патогенез многих заболеваний носит многофакторный характер. В ЗАО «ФПК ФармВИЛАР» разработан ряд комплексных препаратов, в частности Простанорм – экстракт, получаемый из смеси четырех видов ЛРС – травы зверобоя продырявленного, травы золотарника канадского, корня солодки, корневищ с корнями эхинацеи пурпурной в равных соотношениях, и Ангионорм– экстракт смеси семян конского каштана, корней солодки, плодов боярышника и шиповника в соотношении 30:15:20:35 соответственно.

В идентификации состава активных соединений сложных объектов решающее значение приобрел метод ВЭЖХ в различных вариантах, особенно ВЭЖХ-МС-МС [1].
Распространенными природными компонентами являются фенольные соединения, относящиеся к различным семействам. Так, компонентами препарата Простанорм являются flavonoиды (агликоны и гликозиды), гидроксикоричные кислоты и их эфиры [2].

Применение метода ВЭЖХ для количественного определения компонентов в сложной матрице требует большого количества стандартных образцов и, зачастую, имеет погрешности, связанные с плохим разделением пиков. Распространенным подходом к количественной оценке ЛРС и препаратов является спектрофотометрическое (СФ) определение подгрупп полифенольных соединений, характеризующееся экспрессностью, воспроизводимостью и низкой стоимостью. Целью работы являлось определение возможности применения ряда СФ методик для количественной характеристики содержания полифенольных соединений в комплексных препаратах, оценки специфичности таких анализов.

В качестве тестовых соединений анализировали представителей подгрупп flavonoидов – flavоны – лютеолин, апигенин; flavанолы – морин, кверцетин и рутин; flavанон нарингенин; flavанонол дигидрокверцетин; гидроксикоричных кислот – кофейную и феруловую, а также галловую и аскорбиновую кислоты, экстракты «Простанорм» и «Ангионорм».

Большинство СФ методик основано на получении производных, имеющих увеличенную хромофорную систему, что результируется в батохромном смещении полос поглощения в область, где компоненты исследуемой смеси не имеют собственного поглощения.

Flavonoиды способны вступать в реакцию с 2,4-динитрофенилгидразином (ДНФГ) Ряд авторов [3,4] указывает, что при определенных условиях (нагревание с раствором ДНФГ при 50°C 50 мин и добавление раствора КОН) взаимодействие происходит избирательно с flavанонами и flavанонолами. Среди исследованных нами flavаноидов нарингенин (flavанон) и дигидрокверцетин (flаванонол) реагировали с ДНФГ, о чем свидетельствовало батохромное смещение полос поглощения в область с максимумом при 490 нм, но небольшой вклад в поглощение вносил и flavанон кверцетин. Взаимодействие экстрактов Ангионорм и Простанорм с ДНФГ приводило к образованию осадков, нерастворимых в щелочи, и незначительному увеличению оптической плотности при 470-490
Для экстрактов сложной смеси ЛРС нет возможности контролировать полноту протекания реакции с ДНФГ и корректно оценить содержание подгрупп флавоноидов.

Распространенным способом количественной характеристики ЛРС является СФ определение суммы флавоноидов посредством комплексообразования с ионом алюминия в пересчете на референсный флавоноид. Применяют 2 подхода: непосредственное комплексообразование с ионом алюминия (методика 1) и предварительное нитрозирование с последующим комплексообразованием (методика 2).

Комплексы с ионом алюминия флавонов и флавоноидов характеризуются более длинноволновыми максимумами (400–430 нм). Максимум полосы поглощения флаванола дигидрокверцетина также попадает в этот интервал (413 нм), хотя он имеет другую хромоформную структуру (кольца В и С не сопряжены). Флаванон нарингенин и кофейная кислота имеют коротковолновые максимумы (360-380) нм. Выбор аналитической длины волны при совместном присутствии флавоноидов разной структуры представляется затруднительным, так как будет недооценен вклад тех или иных представителей семейства флавоноидов.

Увеличение сопряженной системы в хромоформной структуре нитрозопроизводных проявляется незначительным смещением максимумов и гиперхромным эффектом для всех соединений (от 1,4 кратного для морина, кофейной и феруловой кислот до четырехкратного для апигенина).

При комплексообразовании с ионом алюминия после нитрозирования среди флавонов и флавоноидов рутин и лютеолин продемонстрировали наибольшее смещение максимумов – до 531 и 517 нм соответственно, но флавонол кварцетин имеет значительно более коротковолновой максимум – 477 нм. В противоположность этому максимум полосы поглощения флаванола дигидрокверцетина проявляется в длинноволновой области (507 нм). Таким образом, при любом из этих способов, комплексообразование с ионом алюминия не приводит к специфическому взаимодействию, характерному для определенных подгрупп флавоноидов и гидроксикоричных кислот.

Оценка суммы флавоноидов в экстракте Ангионорм в значительной степени зависит от выбранного референсного соединения Рутин, дигидрокверцетин и лютеолин имеют близкое
совпадение максимумов полос поглощения со спектром экстракта Ангионорм при применении методики 1, при применении методики 2 ближе максимумы полос дигидрокверцетина, кверцетина и лютеолина. Сумма flavonoидов в пересчете на дигидрокверцетин, составляет по методике 1 – 7,97%, а по методике 2 – 4,14%, в пересчете на лютеолин 3,49 и 8,71% соответственно.

Одним из самых известных методов, позволяющих определять суммарное содержание любых фенольных соединений в ЛРС, препаратах, пищевых продуктах, биологических объектах, является метод Фолина–Чокалтеу [5]. Метод основан на восстановлении фосфорномолибденовольфрамового комплекса Mo(VI) + e\(^-\) → Mo(V), что отражается появлением полосы поглощения при 765 нм. Для количественной оценки, как правило, применяют пересчет результатов на массу эквивалента галловой кислоты в определенной массе образца, что позволяет сравнивать содержание полифенолов в разных объектах. Применение данного метода для оценки качества препарата Ангионорм показало, что таблетки серий с истекшим сроком годности содержат меньшее количество фенольных соединений [6]. Выявлена корреляция между содержанием полифенолов и антирадикальной активностью препаратов Ангионорм и Простанорм [6]. СФ методика определения суммы полифенолов в комплексных объектах с использованием реактива Фолина-Чокалтеу обладает специфичностью, правильностью, линейностью и сходимостью, и может быть использована в качестве способа количественной характеристики ЛРС и фитопрепаратов.

Список литературы

SPECTROPHOTOMETRIC METHODS OF PHENOLS SUBGROUPS ASSAY IN COMPLEX MATRIX SAMPLES. SCOPE AND LIMITATIONS

Beloborodov V.L.1, Struchkov P.A.1, Savvateev A.M.1, Voskoboynikova I.V.2, Kolkhir V.K.2
1I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia, organicchem@1msmu.ru
2National Institute of Therapeutic and Aromatic Plants (VILAR), Moscow, Russia, kolkhir@pharmvilar.ru

The widespread methods of spectrophotometric phenols content assay in herbal preparations and raw materials are based on DNPH derivatization, phosphomolybdotungstate reduction and aluminium ion complexation with or without nitrozation. Such methods do not allow to unambiguously subdivide polyphenols groups depending on their structure, but can be used for herbal medicinal products standardization. However they are not suitable for the phenols content comparison in different herbal materials, with the exception of Folin-Ciocalteu method.

СРАВНИТЕЛЬНЫЙ АНАЛИЗ МЕТОДОВ ВЫДЕЛЕНИЯ ВТОРИЧНЫХ ФЕНОЛЬНЫХ МЕТАБОЛИТОВ ИЗ СЛОЕВИЩ ЛИШАЙНИКОВ

Бровко О.С.1, Паламарчук И.А.1, Бойцова Т.А.1, Ивахнов А.Д.1,2, Боголицын К.Г.1,2, Вальчук Н.А.1, Слобода А.А.1
1ФГБУН Федеральный исследовательский центр комплексного изучения Арктики Российской академии наук, Архангельск, Россия, sloboda.iepn@yandex.ru
2Северный Арктический федеральный университет им. М.В. Ломоносова, Архангельск, Россия

Аннотация. Среди биологически активных веществ растительного происхождения особое место занимает
усиновая кислота, обладающая широким спектром антимикробного действия, а также высокими иммуностимулирующими и антиоксидантными свойствами. Однако использование усиновой кислоты в клинической медицине затруднено, так как ее получение не налажено. В данной статье проведен сравнительный анализ методов извлечения усиновой кислоты из лишайника Cladonia stellaris. Рассмотрены традиционные методы экстракции (мацерация, перколяция), их модификации (использование техники сверхвысокочастотного излучения) и современные (применение суб- и сверхкритических растворителей). Показано, что высокоэффективным методом является сверхкритическая флюидная экстракция диоксидом углерода, позволяющая с высоким выходом получить практически чистую усиновую кислоту (до 2,39 % от массы лишайника).

Классическими методами выделения биологически активных соединений из растительного сырья являются экстракционные с применением органических растворителей. К ним относятся мацерация (настаивание), перколяция (непрерывная фильтрация экстрагента сквозь слой сырья). Для выделения лишайниковых кислот используют различные органические растворители: бензол, ацетон, гексан, этанол, петролейный эфир, хлороформ или их смеси для увеличения выхода целевого продукта [1, 2]. Достоинством этих способов является простота исполнения и оборудования. К недостаткам относятся длительность процесса экстракции, повышенное содержание примесей в экстрактах, трудоемкость, использование значительных объемов растворителей, часто высокая токсичность и летучесть применяемых органических растворителей. Однако, несмотря на указанные недостатки, эти методы находят свое применение в настоящее время, но чаще в модифицированном виде. К таким способам можно отнести экстракцию с использованием техники сверхвысокочастотного излучения (СВЧ).

Наряду с вышеперечисленными традиционными методами экстракции в настоящее время используют современные способы экстрагирования, такие как сверхкритическая флюидная экстракция (СКФЭ), экстракция субкритическими растворителями, ускоренная экстракция жидкими растворителями (ASE), которые
позволяют выделять продукты экстракции из растительного сырья, не приводя к их деструкции и максимально сохраняя биологическую ценность всех компонентов. В связи с этим многочисленные исследования, проводимые в России и за рубежом, посвященные разработке новых способов извлечения биологически активных веществ из природных матриц и исследованию их свойств интенсивно расширяются.

Целью данной работы являлось сравнительное изучение возможности выделения усиновой кислоты из лишайникового сырья традиционными методами и методами с использованием современных технологий. Объектами настоящего исследования являлись слоевища лишайников рода Cladonia stellaris, произрастающие на территории Архангельской области.

Выделение лишайниковых кислот проводили различными методами [3]:
– экстракцией органическими растворителями методом настаивания;
– экстракцией органическими растворителями на аппарате Сокслета;
– экстракцией с использованием техники СВЧ;
– ускоренной экстракцией жидкими растворителями;
– сверхкритической флюидной экстракцией диоксидом углерода;
– экстракцией субкритическим диоксидом углерода.
Усиновую кислоту в полученных экстрактах идентифицировали методом ВЭЖХ. Хроматографическое разделение производили на приборе LC-30 Neexera (Shimadzu, Япония). Детектирование проводили с использованием спектрофотометрического детектора, диодная матрица при длине волны 280 нм. Образцы растворяли в ацетоне, фильтровали и вводили в хроматографическую систему [3].

В ходе проделанной работы результаты количественного извлечения усиновой кислоты различными методами показали (рис. 1), что традиционные методы (экстракция органическими растворителями в аппарате Сокслета) малоэффективны и трудоемки, а полученные экстракты содержат большое количество побочных продуктов.

Использование техники СВЧ для извлечения усиновой кислоты позволяет сократить продолжительность экстракции до 10 мин, в сравнении с традиционными методами извлечения БАВ, при этом выход и чистота целевого продукта значительно
увеличивается. При экстракции методом ASE сокращается продолжительность процесса до нескольких минут, значительно ускоряется пробоподготовка и для его выполнения требуются небольшие количества растворителя. Таким образом, ASE является перспективным методом выделения лишайниковых кислот, в частности УК, а варьирование параметров процесса позволяет значительно увеличить выход целевого компонента.

Использование в качестве экстрагента субкритического CO₂ позволяет получить экстракт содержащий до 85 % усиновой кислоты и характеризующиеся высоким выходом усиновой кислоты до 1,02 %. Кроме того, более мягкие условия (в сравнении с СКФЭ) исключают изомеризационные процессы в ходе экстракции, что способствует сохранению биологической активности выделяемых БАВ. Также преимуществом использования субкритического CO₂ в качестве экстрагента является снижение энергетических затрат на повышение давления и нагрев CO₂.

Экстракт, получаемый с использованием CO₂ в сверхкритическом состоянии, содержит 90-100 % усиновой кислоты и характеризуется ее высоким выходом до 2,39 %. Кроме того, получение экстрактов с помощью сверхкритического CO₂ выгодно экономически, так как этот способ дает возможность производить достаточно концентрированные (или в твёрдом виде) экстракты усиновой кислоты высокой чистоты.
Список литературы.

COMPARATIVE ANALYSIS OF TRADITIONAL AND MODERN EXTRACTION METHODS OF USNIC ACID FROM RAW LICHEN MATERIAL

Brovko O.S.¹, Palamarchuk I.A.¹, Boytsova T.A.¹, Ivakhnov A.D.¹, Bogolitsyn K.G.¹,², Valchuk N.A.¹, Sloboda A.A.¹
¹Federal Center for Integrated Arctic Research, Arkhangelsk, Russia, sloboda.iepn@yandex.ru
²Northern (Arctic) Federal University named after M.V. Lomonosov, Arkhangelsk, Russia

Significantly increased interest in biologically active substances of plant origin is explained by a wide range of pharmacological activity of bioactive substances. Among them is the usnic acid which has high antimicrobial, an immunostimulating and antioxidant properties. In the article comparative analysis of extraction methods of usnic acid from lichens genus Cladonia stellaris was performed. The traditional extraction methods (maceration, percolation), its modifications (using microwave radiation technique) and modern extraction methods (using of sub- and supercritical solvents) were considered, their advantages and disadvantages were noted. It was shown that the method of supercritical fluid extraction with carbon dioxide is a highly effective method. It allows obtaining a high yield of usnic acid (up to 2,39 % of absolutely dry weight of raw lichens material). The extract contains 90–100 % of usnic acid.
ИЗВЛЕЧЕНИЕ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ РАСТЕНИЙ-РЕГЕНЕРАНТОВ POTENTILLA LONGIFOLIA WILLD. В СУБКРИТИЧЕСКИХ УСЛОВИЯХ

Вдовина Н.С., Тихомирова Л.И., Базарнова Н.Г., Сысоева А.В.
ФГБОУ ВПО «Алтайский государственный университет», Барнаул, Россия, natalya.vdovina.95@mail.ru

Аннотация. Целью исследования являлось извлечение фенольных соединений из биотехнологического сырья лапчатки длиннолистной в субкритических условиях в сравнении с традиционной экстракцией. Показано, что растворитель в субкритических условиях позволяет извлечь большее количество фенолов, фенолокислот, полифенолов, дубильных веществ, халконов, ауронов, кумаринов и изокумаринов по сравнению с традиционным методом. Кроме преимуществ в доле извлечения, в субкритических условиях процесс экстракции идет в 3 раза быстрее.

Фенольные соединения — вещества ароматической природы, содержащие одну или несколько гидроксильных групп.

Антраценовые производные - это группа природных фенольных соединений, в основе которых лежит ядро антрацена различной степени окисленности по среднему кольцу. В ходе вегетативного развития растений происходит изменение в качественном и количественном отношении: осенью преимущественно накапливаются гликозиды антрахинонов, а летом и весной - свободные агликоны; в молодых растениях (в начале вегетации) преобладают восстановленные формы, а в старых (к концу вегетационного периода) — окисленные. При нагревании до 200 °C и выше производные антрацена способны возгоняться (сублимироваться) без разрушения основной структуры. При этом происходит разрыв гликозидной связи, окисление восстановленных форм агликонов и их последующая возгонка [1].

Флавоноиды – наиболее распространенная группа полифенолов, обладающих широким спектром биоактивности и являющихся действующими веществами около 70% лекарственных средств растительного происхождения. Их
многообразие связано с различной степенью окисленности гетерокольца, характером конденсации колец и их замещением. Под термином «дубильные» вещества понимают специфическое «дубящее» действие органических веществ, чаще полифенольной природы, способность осаждать белки и алкалоиды из разбавленных растворов. Ксантоны (от греческого слова xanthos - желтый) – это конденсированная система бензольных колец и гетерокольца (дибензо-γ-пирона). С другой стороны их можно рассматривать как производные хромона, общей формулы С₆-C₁-C₆. Наиболее выраженное биологическое действие кумаринов – рострегулирующее, антигрибковое. Разжижают кровь дикумарин и дикумарол. Некоторые производные кумарина обладают успокаивающим и снотворным действием, а фурокумарины способствуют распаду желчных камней, куместролы обладают эстрогенной активностью [2].

Для извлечения фенольных соединений из растительного сырья проводят традиционную экстракцию с использованием различных органических растворителей. В качестве альтернативы применению дорогостоящих и зачастую токсичных органических растворителей представляется переход к использованию среды суб- и сверхкритических флюидов [3].

Лапчатка длиннолистная - многолетнее растение. Согласно данным А. И. Шретера (1975), корневища использовали в русской народной медицине в качестве вяжущего, кровоостанавливающего и желудочного средства, при цинге, поносе, дисентерии. Отвар травы употребляли в качестве седативного средства, а также при опущении матки. Толченую траву прикладывали к ранам для их заживления. Цветки и корни в виде настоя и отвара применяют в тибетской медицине при желудочно-кишечных заболеваниях, туберкулезе легких и атеросклерозе. Настой травы употребляют в виде втираний при ревматизме и простудных заболеваниях [4].

Целью данного исследования явилось извлечение фенольных соединений из биотехнологического сырья лапчатки длиннолистной в субкритических условиях в сравнении с традиционной экстракцией.

Сырьём служили растения-регенеранты Potentilla longifolia Willd., полученные в Отделе биотехнологии Южно-Сибирского ботанического сада, Алтайского государственного университета [5].

Для получения спиртового извлечения использовали спирт
этоловый различной концентрации: 40, 70 и 96%. Кратность экстракции равна 3, время экстракции – по 60 минут, соотношение сырье – экстрагент – 1:10. Температура экстракции – 60-65 °C.

Процедура извлечения фенольных соединений в субкритических условиях (СКФ) состояла в следующем: навеску в 0,5 г сухого среднезернёленного исходного сырья помещали в экстрактор (цилиндрический толстостенный сосуд из нержавеющей стали внутренним объёмом 20 мл), в который добавляли 18 мл растворителя. Экстрактор герметично закрывали и устанавливали в сушильный шкаф с заданной температурой 250 °C (точность термостатирования ±1°C) на 1 час. Затем экстрактор охлаждали до комнатной температуры в ёмкости с холодной проточной водой. Пробу экстракта фильтровали через складчатый бумажный фильтр [3]. При проведении качественных реакций получены следующие результаты (табл.).

Таблица 1.

Результаты качественного анализа сырья растений-регенерантов *Potentilla longifolia* в соответствии с методическими рекомендациями Р.А. Музычкиной и коллег [2]

<table>
<thead>
<tr>
<th>Фенольные соединения</th>
<th>Реакция</th>
<th>Ожидаемый эффект</th>
<th>Результат Спиртовые извлечения</th>
<th>СКФ-экстракты (спиртовые)</th>
</tr>
</thead>
<tbody>
<tr>
<td>АНТРАЦЕНЫ</td>
<td>с раствором аммиака</td>
<td>карминово-красного (окисленные формы)</td>
<td>96%</td>
<td>70%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+яр.</td>
<td>+яр.</td>
</tr>
<tr>
<td></td>
<td>с концентрированной серной кислотой</td>
<td>интенсивно синее окрашивание (пара-расположенные ОН-группы)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ФЕНОЛЫ</td>
<td>с раствор</td>
<td>появляется осадок или</td>
<td>+</td>
<td>+сл.</td>
</tr>
<tr>
<td>Метиламмоний ацетата свинца основного</td>
<td>окрашивание: желтое или оранжевое (fenолы, фенолокислоты, полифенолы, дубильные вещества)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Реакция Либермана на</td>
<td>появляются различные окрашенные осадки и растворы соответствующих индофенолов</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+сл. +сл. +сл. + яр. +сл. +сл.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Флавоноиды</td>
<td>с конц. хлороводородной кислотой</td>
<td>появляется красное окрашивание (халконы, ауроны)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+сл.</td>
<td>+ яр.</td>
<td>+ яр.</td>
</tr>
<tr>
<td>с 3-5% водным раствором борной кислоты,</td>
<td>выпадает белый осадок (реакция на орто-диоксигруппы роеку)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+ яр.</td>
<td>+ яр.</td>
<td>+ яр.</td>
</tr>
<tr>
<td>Дубильные вещества</td>
<td>с бромной водой до появления запаха брома</td>
<td>выпадает осадок (конденсированные дубильные вещества, катехины)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>+яр.</td>
<td>+сл.</td>
<td>+яр.</td>
<td>+ яр.</td>
</tr>
<tr>
<td>с 2 мл 10% уксусной к-ты и 1 мл 10% водного р-ра соли</td>
<td>появляется осадок (гидролизуемые дубильные вещества)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>+яр.</td>
<td>+сл.</td>
<td>+</td>
<td>+ яр.</td>
</tr>
<tr>
<td></td>
<td>ацетата свинца, с 5% спиртовым р-ром хлорида алюминия, в УФ-свете имеет абрикосовый цвет</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Ксантоны</td>
<td>в УФ-свете появляется зелено-голубое окрашивание</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>яркое окрашивание</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>яркое окрашивание</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Кумарины</td>
<td>появляется красное окрашивание для фурокумаринов (фурокумаринов)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>яркое окрашивание</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Примечание: – нет эффекта, + ожидаемый эффект, яр. – яркое окрашивание, сл. – слабое окрашивание.

В процессе микроклонального размножения растения-регенеранты находятся постоянно в состоянии активного роста. В связи с этим можно предположить, что в растениях *Potentilla longifolia* преобладают восстановленные формы антраценовых производных. При извлечении в субкритических условиях происходит окисление восстановленных форм, и мы наблюдали яркое окрашивание в реакции с аммиаком.

При этом следует отметить, что растворитель в субкритических условиях позволяет извлечь большее количество фенолов, фенолокислот, полиfenолов, дубильные вещества, халконов, ауронов, кумари нов и изокумаринов (яркое окрашивание) по сравнению с традиционным методом. Кроме преимуществ в доле извлечения, в субкритических условиях процесс экстракции идет в 3 раза быстрее.
Список литературы
2. Музычина Р.А. Корулькин Д.Ю., Абилов Ж.А. Технология производства и анализ фитопрепаратов. Алматы, 2011. 360 с.
3. Ветрова Е.В., Максименко Е.В., Борисенко С.Н., Лекарь А.В., Борисенко Н.И., Минкин В.И. Экстракция антиоксидантов рутина и кверцетина из бутонов софры японской (Sophora japonica L.) в среде субкритической воды // Сверхкритические флюиды. Теория и практика. 2016. Том 11. № 4. С.73-79.

EXTRACTION OF PHENOLIC COMPOUNDS OF PLANT-REGENERANTS POTENTILLA LONGIFOLIA WILLD. IN SUBCRITICAL CONDITIONS

Vdovina N.S., Tikhomirova L.I., Bazarnova N.G., Sysoyeva A.V.
Altai State University, Barnaul, Russia, natalya.vdovina.95@mail.ru

The article is devoted to the extraction of phenolic compounds from the biotechnological raw material of long-leafed tuft in subcritical conditions in comparison with traditional extraction. The raw materials were Potentilla longifolia Willd. regenerant plants obtained in the Department of Biotechnology of the South Siberian Botanical Garden, Altai State University.

The study revealed that the solvent under subcritical conditions makes it possible to extract more phenols, phenolic acids, polyphenols, tannins, chalcones, aurons, coumarins and isocoumarins (bright coloration) as compared to the traditional method. In addition to the advantages in the extraction fraction, in subcritical conditions, the extraction process is 3 times faster.
Аннотация. 3,6-Ди-трет-бутилпирокатехин (3,6-ПК) совместно с редокс-сопряженными о-семихиноном и о-бензохиноном образует триаду, проявляющую свойства универсального антиоксиданта, способного к взаимодействию с различными активными кислородными формами, включая синглетный кислород. Особый интерес вызывает активность производных 3,6-ПК, не имеющих свободных гидроксильных групп – 3,6-ди-трет бутил-о-бензохинона (3,6-БХ) и бенздиоксоланов, образующихся при конденсации пирокатехина с карбонильными соединениями, способных к одноэлектронному окислению диоксоланового цикла с образованием катион-радикалов. Активность о-хинона связана с акцептированием синглетного кислорода в условиях фотооксигенолиза. Образование дипивалилэтилена и ди-трет-бутилмуконового ангидрида в фотопроцессе является новым химическим тестом на синглетный кислород. Исследованные превращения могут рассматриваться как аналоги к структурным трансформациям в растительном мире, строительными элементами которого являются гироксиароматические соединения и их производные.

3,6-ди-трет-бутилпирокатехин, впервые синтезированный в ИХФ РАН (позднее – ИБХФ), является единственным примером двухатомного фенола с симметрично экранированными гидроксильными группами. 3,6-ПК совместно с редокс-сопряженными производными орто-семихиноном и орто-хиноном образуют триаду, обладающую свойствами универсального антиоксиданта, способного к взаимодействию с различными активными кислородными формами, включая синглетный кислород, а также необычную реакционную способность,
связанную с легкостью электронных переходов в триаде, хелатирующим эффектом соседних гидроксилевых/карбонильных групп. Триада 3,6-ПК – семихинон – орто-хинон демонстрирует также пример экспериментально доказанного каскадного механизма антиоксидантной активности, при котором суммарную активность обеспечивает не только исходное соединение, но и продукты его окислительного и сольволитического превращений in situ. Такая активность обнаружена, например, при исследовании антибактериальной активности пространственно-затрудненных фенолов, выявлена корреляция между антибактериальной и антирадикальной активностью, определены структурные эффекторы активности [1].

Синтез 3,6-ПК имеет свою историю. Попытки его прямого синтеза алкилированием спиртами и олефинами с применением кислых катализаторов, а также катализаторов селективного орто-алкилирования фенолов (алкоголятов и фенолятов алюминия), приводили к образованию изомерного 3,5-ди-трет-бутилипирокатехина. Заявленный как 3,6-ди-трет-бутилипирокатехин продукт оказался результатом ошибочной идентификации. Селективное орто-алкилирование с образованием 3,6-ди-трет-бутилипирокатехина удалось осуществить в условиях катализа бис-пирокатехатом титана:

Продукт охарактеризован методом ПМР, однозначно устанавливающим положение трет-бутильных групп в ароматическом цикле. В спектре присутствуют синглеты при 6.59 м.д. (ArOH), 5.11 м.д. (OH) и 1.31 м.д. (t-Bu) в соотношении 1:1:9. Спектр ПМР изомерного 3,5-ди-трет-бутилипирокатехина содержит три пары синглетов – 6.75 и 6.58 м.д. (ArH); 5.34 и 4.93 м.д. (OH); 1.33 и 1.19 м.д. (t-Bu). Прекрасную возможность идентификации трет-бутилированных пирокатехинов дает также метод ТСХ на Silufol UV-254: соединения различаются не только по Rf, но и по окраске пятен на хроматограммах, развивающейся при экспонировании пластин на воздухе.

Как антиоксидант 3,6-ПК исследован в различных модельных системах. Показано, что значительную роль в его
активности играет промежуточный член редокс-триады, связанной обратимыми одноэлектронными переносами – соответствующий орто-семихион:

Однако, последующие исследования показали, что суммарную антиоксидантную активность 3,6-ПК определяют все члены редокс-триады, включая конечный продукт двухэлектронного окисления – 3,6-БХ. Об этом свидетельствуют результаты его фотооксигенолиза [2].

3,6-БХ при облучении видимым светом ($\lambda>380$ нм) в отсутствие кислорода в бензоле или гексане претерпевает декарбонилирование с образованием 2,5-ди-трет-бутилциклопентадиенона:

При проведении фотоолиза в присутствии кислорода наблюдается образование 1,2-дипивалилэтилена, предшественником которого является циклический пероксид – аддукт диенона с синглетным кислородом:

Такое превращение является полным аналогом реакции 2,5-дифенилциклопентадиенона с синглетным кислородом, использующейся в качестве одного из химических тестов на синглетный кислород:

При участии кислорода в фотопроцессе основным становится прямой фотооксигенолиз 3,6-БХ. Продуктами его являются дипивалилэтилен и преобладающий в реакционной
смеси ди-трет-бутилмуконовый ангидрид, образующийся при взаимодействии хиона с \(^1O_2 \):

Таким образом, хинон, индифферентный к \(^3O_2 \), но способный к акцептированию \(^1O_2 \), может использоваться в качестве химического индикатора \(^1O_2 \) наряду с циклопентадиенионами. Способность хиона к взаимодействию с \(^1O_2 \) в совокупности с высокой антиоксидантной активностью редокс-сопряженного 3,6-ди-трет-бутилпирокатехина позволяет отнести редокс-пару пирокатехин – хинон к разряду «универсальных» антиоксидантов:

Осуществление подобных приведенным выше фотоокислительных превращений возможно в растительном мире, строительными элементами которого являются природные гидроксиароматические соединения и их родственные производные, в том числе пирокатехины и хиноны.

Список литературы
1. Вольева В.Б., Овсянникова, М. Н., Белостоцкая, И. С., Комиссарова, Н. Л. & Малкова, А. В. Химико-фармацевтический журнал, 50(4), 96–100 (2016).

TRIAD 3,6-DI-TERT-BUTYLCATEHOL - O-SEMIQUINONE - O-QUINONE - UNIVERSAL ANTIOXIDANT.
Vol’eva V.B., Komissarova N.L., Malkova A.V., Gorbunov D.B., Ovsiannikova M.N.
N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia

3,6-Di-tert-butylcatechol (3,6-C) is the only example of symmetrically screened catechol. Together with redox-conjugated o-semiquinone and o-benzoquinone, it forms a triad that exhibits the properties of a universal
antioxidant, capable of interacting with various active oxygen forms, including singlet oxygen. Of particular interest is the activity of the 3,6-C derivatives that do not have free hydroxyl groups - 3,6-di-tert-butyl-o-benzoquinone and benzodioxolanes formed during the condensation of catechol with carbonyl compounds. They are capable of one-electron oxidation of the dioxolane ring to form a cation - radicals. The activity of o-quinone is associated with the acceptance of singlet oxygen under conditions of photooxygenolysis. The formation of dipivalylethylene and di-tert-butyl-succinic anhydride in the photoprocess is a new chemical test for singlet oxygen. The studied transformations can be considered as analogs to structural transformations in the plant world, the building elements of which are hydroxyaromatic compounds and their derivatives.

ИЗУЧЕНИЕ СОДЕРЖАНИЯ МОНОМЕРНЫХ АНТОЦИАНОВ В ВИНАХ РН-ДИФФЕРЕНЦИАЛЬНЫМ МЕТОДОМ

Гниломедова Н.В., Аникина Н.С., Червяк С.Н.
ФГБУН "Всероссийский национальный научно-исследовательский институт виноградарства и виноделия "Магарач" РАН", Ялта, Россия, hv26@mail.ru

Аннотация. Изучено содержание мономерных антоцианов в подлинных и фальсифицированных виноградных винах. Показано, что массовая концентрация фенольных веществ и мономерных антоцианов может быть использована в качестве критерия для определения подделки цвета виноматериалов и вин при внесении синтетических и натуральных красителей.

Цветовые особенности красных виноматериалов и вин обусловлены количественным и качественным содержанием фенольного комплекса, в первую очередь антоцианов — водорастворимых растительных пигментов, обусловливающих красную, синюю и фиолетовую окраску ягод и фруктов. Известно, что характеристики фенольного комплекса виноградных и невиноградных соков и вин в значительной мере зависят от особенностей сырья и способов получения продукции [1, 2]. В частности, содержание мономерных антоцианов и их профиль являются специфическими для соков и вин, выработанных из
различных ботанических видов [3]. Фальсификация вина путем модификации цвета (внедрение синтетических или натуральных красителей, а также веществ, обладающих вторичным подкрашивающим эффектом) приводит к трансформации компонентного состава и формированию фенольного комплекса, нехарактерного для подлинных вин, выработанных из винограда красных сортов [4].

Целью данной работы являлось исследование содержания мономерных антоцианов в подлинных и фальсифицированных образцах красных виноматериалов рН-дифференциальным методом.

Объектами исследования являлись подлинные столовые вина и их модельные образцы (фальсификаты). Цвет моделировали путем внесения в белый сухой виноматериал запрещенных добавок: натурального "Антоциан" (Е163) и синтетических (кармуазин Е122, тартразин Е102, индигокармин Е132) красителей; натуральных компонентов невиноградного происхождения (соки и экстракты черники, черной смородины, вишни, бузины, свеклы).

Содержание мономерных антоцианов (МА) определяли методом, основанном на их способности образовывать при рН 1,0 более окрашенные продукты реакции, чем при рН 4,5. Массовая концентрация суммы мономерных антоцианов пропорциональна разнице величины абсорбции растворов при длине световой волны 520 и 700 нм, которую устанавливали колориметрически [3]. Массовую концентрацию фенольных веществ определяли с реактивом Фолина-Чокальтеу [4].

Изучение качественного и количественного состава фенольных веществ подлинных виноматериалов и вин показало, что доля МА в общем содержании фенольных веществ составляет в столовых винах 4-30 %, ликерных – 1-6 %.

В фальсификате, полученном путем внесения в белый столовый виноматериал синтетических красителей (№ 1), наличие мономерных антоцианов не установлено. При добавке натурального пищевого красителя "Антоциан" (рис.) доля МА не превышает 2 % от общего содержания фенольных веществ (№ 2-5). Образцы с внесением натуральных продуктов невиноградного происхождения (№ 6-11), характеризуются массовой концентрацией фенольных веществ ниже уровня, установленного для подлинных вин. При этом в образцах № 5 и 10, цвет визуально оценивался как более интенсивный, чем в
контрольном образце. Высокая доля МА отмечена в образцах, подкрашенных соком бузины (№ 10); при добавке сока свеклы МА не обнаруживаются (№ 11), что обусловлено биохимическими особенностями данного растительного сырья.

Таким образом, содержание мономерных антоцианов может быть использовано в качестве критерия для определения подделки цвета виноматериалов и вин путем внесения натуральных и синтетических красителей невиноградного происхождения.

Рис. 1. Профиль фенольных веществ в подлинных образцах и фальсификатах: К – красный виноматериал (контроль), Б – белый виноматериал (исходный), № 1-11 фальсификаты.

Список литературы:
1. Пескова И.В., Остроухова Е.В., Вьюгина М.А. Исследование комплекса антоцианов в винограде красных сортов, произрастающих в западном предгорно-приморском районе предгорной зоны Крыма // Магарач. Виноградарство и виноделие, 2017. № 1. С. 31-33.
2. Aşkin B., Atik A. Color, phenolic composition, and antioxidant properties of hardaliye (fermented grape beverage) under different storage conditions // Turkish J. of Agricult. and Forestry, 2016. V. 40. pp. 803-812:
3. Исследование физико-химических показателей природных и синтетических красителей / Червяк С.Н., Погорелов Д.Ю., Ермихина М.В., Михеева Л.А. // Магарач. Виноградарство и виноделие, 2017. № 3. С. 31-33.
STUDYING THE CONTENT OF MONOMERIC ANTHOICIANIS IN WINES BY A PH-DIFFERENTIAL METHOD
Gnilomedova N.V., Anikina N.S., Chervyak S.N.
Federal State Budget Scientific Institution “All-Russian National Research Institute of Viticulture and Winemaking “Magarach”, Russian Academy of Science”, Yalta, Russia, hv26@mail.ru

The content of monomeric anthocyanins in authentic and adulterated grape wines has been examined. It was demonstrated that the mass concentration of phenolic substances and monomeric anthocyanins can be used as a criterion to determine colour falsification of wine materials and wines when synthetic and natural dyes had been applied.

РАСЧЕТ ПРОЧНОСТИ O–H-СВЯЗИ В АЛКИЛСЕЛЕНО- И АЛКИЛТЕЛЛУРОЗАМЕЩЕННЫХ ФЕНОЛАХ

Денисова Т.Г., Денисов Е.Т.
ФГБУН Институт проблем химической физики РАН, Черноголовка, Моск. обл., Россия, denisova@icp.ac.ru

В последнее время в области антиоксидантов проявляется большой интерес к фенолам с заместителями, содержащими атомы Se и Te. Такие антиоксиданты обладают комплексным антиокислительным действием. В работе определены энергии диссоциации O–H-связей (D_{O–H}) для девяти таких фенолов и одного пиридинола. Оценка D_{O–H} выполнена методом пересекающихся парабол по кинетическим данным с использованием пяти реперных фенолов. Получены следующие значения D_{O–H} (в кДж/моль): 335.9 в 2,5,7,8-тетраметил-2-фитил-6-гидрокси-3,4-дигидро-2Н-1-бензоселенопиране, 342.6 в 2-метил-5-гидрокси-2,3-дигидробензоселенофене, 333.5 в 2,4,6,7-тетраметил-5-гидрокси-2,3-дигидробензоселенофене, 339.4 2-трет-бутил-4-метокси-6-октилселенофеноле, 357.9 в додецил-(3-(4-гидроксифенил)пропил)селениде, 348.5 в додецил-(3-(3,5-диметил-4-гидроксифенил)пропил)селениде, 350.9 в додецил-(3-(2-трет-бутил-4-гидроксифенил)пропил)селениде, 338.0 в додецил-(3-(3,5-ди-трет-бутил-4-гидроксифенил)пропил)селениде, 343.0 в 2,6-ди-трет-бутил-4-
(теллуробутил-4′-фенокси)феноле, 338.8 в 6-октилтеллуро-3-пиридиноле. Проведено сравнение энергии стабилизации феноксильных радикалов.

Список литературы.

DISSOCIATION ENERGIES OF O–H BONDS IN ALKYLSELENO- AND ALKYLTELLEURO-SUBSTITUTED PHENOLS

Denisova T.G., Denisov E.T.
Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, Russia det@icp.ac.ru

The O–H bond dissociation energy (DO–H) has been determined for eight alkylseleno-substituted phenols, one alkyltelluro-substituted phenol, and one alkyltelluro-substituted pyridinol. DO–H has been estimated by the intersecting-parabolas method from kinetic data using five reference compounds: α-tocopherol (DO–H = 330.0 kJ/mol), 3,5-di-tert-butyl-4-methoxyphenol (DO–H = 347.6 kJ/mol), 4-methylphenol (DO–H = 361.6 kJ/mol), 2,6-di-tert-butyl-4-methylthiophenol (DO–H = 336.3 kJ/mol), and 2,6-di-tert-butyl-4-methylphenol (DO–H = 338.0 kJ/mol). The following DO–H values (kJ/mol) have been obtained: 335.9 for 2,5,7,8-tetramethyl-2-phytyl-6-hydroxy-3,4-dihydro-2H-1-benzoselenopyran, 342.6 for 2-methyl-5-hydroxy-2,3-dihydrobenzoselenophene, 333.5 for 2,4,6,7-tetramethyl-5-hydroxy-2,3-dihydrobenzoselenophene, 339.4 for 2-tert-butyl-4-methoxy-6-octylselenophenol, 357.9 for dodecyl 3-(4-hydroxyphenyl)propyl selenide, 348.5 for dodecyl 3-(3,5-dimethyl-4-hydroxyphenyl)propyl selenide, 350.9 for dodecyl3-(3-tert-butyl-4-hydroxyphenyl)propyl selenide, 338.0 for dodecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propyl selenide, 343.0 for 2,6-di-tert-butyl-4-(tellurobutyl-4′-phenoxy)phenol, and 338.8 for 6-octyltelluro-3-pyridinol. The stabilization energies of phenoxy radicals containing R substituents (X = O, S, Se, Te) have been compared.
ТРЕХКОМПОНЕНТНЫЙ СИНТЕЗ ПИРАНО[2,3-F]ХРОМЕНОВ

Диденко И.В.1, Доценко В.В.2
1ФГБОУ ВО КубГУ, Краснодар, Россия, air23.93@gmail.com
2ФГБОУ ВО КубГУ, Краснодар, Россия, victor_dotsenko_@mail.ru

Трехкомпонентные реакции малонитрил–альдегид (или кетон)–нафтол/активный фенол, катализируемые основаниями, являются достаточно известными и представляют один из самых эффективных способов получения производных 4Н-хромена [1,2]. Однако в литературе отсутствуют упоминания о синтезе 2,8-диамино-4Н-пирано[2,3-f]хромен-5-ол-3,9-дикarbonитрилов в условиях трехкомпонентной реакции.

Мы установили, что в условиях основного катализа малонитрил 1 реагирует с альдегидами 2 и флороглюцином 3 (в соотношении 2:2:1) с образованием вышеупомянутых пирано[2,3-f]хроменов 4, имеющих ангуллярное строение (Схема 1). Поскольку в ЯМР спектрах обнаруживается набор из четырех сигналов 4Н-пирановых фрагментов, это свидетельствует о незэквивалентности 4Н-пирановых протонов в молекуле и о наличии двух диастереомерных пар. Таким образом, продуктам не может быть приписана симметричная линейная структура 5.

Схема 1

Ar = Ph, 4-MeOC₆H₄, 3-Py, Isatine, 3-NO₂C₆H₄.

Строение соединений 4 подтверждено данными ИК-спектрофотометрии, ¹H и ¹³C ЯМР-спектрометрии, ВЭЖХ-МС.

Список литературы:
THREE COMPONENT SYNTHESIS OF PYRANO[2,3-f]CHROMENES

Didenko I.V., Dotsenko V.V.
Kuban State University, Krasnodar, Russia, air23.93@gmail.com

We found that phloroglucinol reacts with malononitrile and aldehydes in 1:2:2 ratio under basic conditions to give functionalized pyrano[2,3-f]chromenes as a mixture of diastereomers.

СИНТЕЗ АНАЛОГОВ АЛКАЛОИДОВ, СОДЕРЖАЩИХ ИЗОКСАЗОЛЬНЫЕ И ИЗОТИАЗОЛЬНЫЕ ФРАГМЕНТЫ

Дикусар Е.А., Петкевич С.К., Клецков А.В., Кадуцкий А.П., Козлов Н.Г., Поткин В.И.
Институт физико-органической химии НАН Беларуси, Минск, Беларусь, dikusar@ifoch.bas-net.by

Аннотация. Целью работы являлась разработка удобных подходов к синтезу аналогов алкалоидов оригинального строения с потенциальной биологической активностью и возможностью их последующей трансформации в производные более сложного строения.

Алкалоиды представляют собой обширный класс природных соединений, выполняющих разнообразные регуляторные функции живых организмов. Среди производных алкалоидов выявлены и успешно применяются препараты, проявляющие противоопухолевую, противотуберкулезную, антиаллергическую или фунгицидную активность, ингибиторы ферментов и др. Целью данной работы была разработка удобных подходов к синтезу аналогов алкалоидов оригинального строения 2-9 с потенциальной биологической активностью и возможностью их последующей трансформации в производные более сложного строения — формальные аналоги цитотоксических протобербериновых алкалоидов коралина (coralyne) и МДД-
коралина (MDD-coralyne), проявляющих высокую противоопухолевую активность, обусловленную интеркаляционными взаимодействиями плоского ароматического ядра с ДНК, а также наличием определенной активности в отношении ДНК-топоизомераз.

В качестве исходных компонентов были взяты 2-нафтиламин, димедон и гетероциклические производные природных альдегидофенолов – ванилина и ванилаля, а также их синтетических аналогов – изованилина и 4-гидроксибензальдегида 1 [1, 2]. Путем трехкомпонентной каскадной конденсации были синтезированы с выходом 46-60% 9,9-диметил-12-гетероарил-8,9,10,12-тетрагидробензо[а]акридин-11(7H)-оны 2-9, содержащие в своем составе 5-фенилизоксазол-3-ил- 2, 3, 5-п-толилизоксазол-3-ил- 4, 5 или 4,5-дихлоризотиазол-3-ильные 6-9 фрагменты, прикрепленные с помощью эфирных 2-5 или сложноэфирных 6–9 связей [2, 3].

Содержащие дополнительный гетероцикл акридин-11(7H)-оны 2–9 подготовлены для биотестирования на биологическую активность.

9,9-Диметил-12-гетероарил-8,9,10,12-тетрагидробензо[а]акридин-11(7H)-оны 2-9. Смесь 0.14 г (1 ммоль) 2-нафтиламина, 1 ммоль гетероциклического альдегида 1 и 0.14 г (1 ммоль) димедона в 10 мл бутанола кипятили в течение 1 ч. Затем смесь охлаждали до комнатной температуры и выпавший осадок отфильтровывали.

Список литературы.
1. Дикиус Е.А., Козлов Н.Г., Поткин В.И., Ювченко А.П., Тлегенов

SYNTHESIS OF ANALOGUES OF ALKALOIDS CONTAINING IZOXAZOLE AND ISOTHASOLE FRAGMENTS

Institute of Physical Organic Chemistry, NAS of Belarus, Minsk, Belarus, dikusar@ifoch.bas-net.by

Alkaloids are a broad class of natural compounds that perform a variety of regulatory functions of living organisms. Among the alkaloid derivatives, drugs demonstrating antitumor, antituberculosis, antiallergic or fungicidal activity, inhibitors of enzymes, etc. have been identified and successfully used. The purpose of this work was the development of convenient approaches to the synthesis of analogues of alkaloids of the original structure with potential biological activity and the possibility of their subsequent transformation.

ФИЗИКО-ХИМИЧЕСКИЕ И СОРБЦИОННЫЕ СВОЙСТВА ГИДРОКСИСТИЛЬБЕНОВ

Дмитриенкова А.Г., Полунина И.А., Полунин К.Е., Ларин А.В.
ФГБУН Институт физической химии и электрохимии им. А.Н. Фрумкина РАН, Москва, Россия, polunina@phyche.ac.ru

Аннотация. Методами тонкослойной и высокоэффективной жидкостной хроматографии на силикагеле исследованы сорбционные свойства гидроксистильбенов. На основе
полученных сведений о физико-химических и сорбционных свойствах гидроксистильбенов проведено моделирование процессов препаративного разделения их смесей. Рассчитаны оптимальные условия препарравтивного разделения природных и синтетических стильбеноидов на силикагеле.

Для оптимизации процессов разделения, выделения и концентрирования целевых компонентов необходимо знание кинетических и равновесных параметров, характеризующих процесс распределения вещества между подвижной и неподвижной фазами. Метод TCX позволяет при небольших затратах времени и реактивов быстро и эффективно проводить разделение сложных смесей на аналитическом и препаративном уровне. Интенсификация процесса разделения полифенолов возможна с использованием производительных методов радиальной хроматографии – центрифужной ПТСХ с применением хроматотрона.

Широкий ассортимент коммерческих продуктов, выпускаемых на основе природных полифенолов – фармацевтических, косметических, пищевых, конструкционных и других материалов – требует разработки простых, доступных и эффективных методов разделения смесей полифенолов, идентификации и количественного определения целевых соединений в сложных для анализа природных объектах. Одним из таких методов является хроматография. Протокол получения полифенолов из водно-органических экстрактов обязательно включает стадию их препарративного выделения и очистки адсорбционными методами, в том числе, методами тонкослойной и жидкостной хроматографии.

Адекватная математическая модель позволяет отказаться от проведения дорогостоящих и трудоемких экспериментов с микроколичествами малодоступных полифенолов. Моделирование множества вариантов выбора растворителей, параметров хроматографической системы осуществляется значительно быстрее, чем проведение натурного эксперимента. В связи с этим математическое описание и моделирование процессов, разделения и детектирования компонентов смесей является актуальной технологической и фундаментальной проблемой. В данной работе на примере смесей гидроксистильбенов математическое моделирование позволило
рассчитать оптимальные условия разделения методом ПТСХ на хроматотроне.

Процессы движения веществ в хроматографических системах описывает теория неравновесной динамики адсорбции, или адсорбционной хроматографии, на основе решения уравнения материального баланса для соответствующих изотерм адсорбции. Динамика процесса разделения смесей исследовалась путем выявления закономерностей движения концентрационных и адсорбционных фронтов гидроксицистильбенов, адсорбирующихся из потока подвижной фазы (этилацетат), которая протекает через неподвижный слой адсорбирующего материала (силикагель). Основными факторами, влияющими на разделение веществ в препаративной жидкостной хроматографии, являются химический состав и структура адсорбента, размер его частиц, геометрия пластинки с адсорбентом, а также состав, температура и скорость подачи растворителя, характер его взаимодействия с компонентами разделяемой смеси, количество этой смеси и способ ее ввода. Эти параметры определяют селективность, разрешающую способность и скорость разделения в хроматографических системах.

Теория движения элюатов в колонках относительно малой длины и с постоянным ее сечением в настоящее время разработана достаточно надежно, однако в условиях радиальной хроматографии развитие профиля проявительных кривых более сложное, т.к. оно сопровождается расширением сечения слоя адсорбента и, одновременно, изменением скорости движения подвижной фазы. Модель слоя равновесной адсорбции, предложенная в [1-2], позволяет получать математические выражения для выходных проявительных кривых в различных вариантах хроматографии в широком интервале изменения концентрации и длины слоя адсорбента, включая относительно малые длины слоев адсорбента.

Объектами исследования служили химически чистые гидроксилипроизводные транс-стильбена, приведенные в таблице. Эти соединения обладают высокой химической и биологической активностью, широко применяются в фармакологии и синтетической химии [3]. В качестве компонентов подвижной фазы использовали n-гексан и этилацетат. Моделирование процесса препаративного разделения смесей синтетических стиленоидов методом центрифужной ПТСХ проводили для
хроматотрона Harrison Research 8924 с адсорбентом Silica gel 60 PF₂₅₄, нанесенным на стеклянную пластинку, закрепленную на центрифуге.

Значения удельных удерживаемых объемов (V_{rm}) трансгидроксистильбенов при разном содержании этилацетата (X_m – мольная доля) в n-гексане

<table>
<thead>
<tr>
<th>Вещество</th>
<th>Структурная формула</th>
<th>V<sub>rm</sub>, мкл/мг</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>x<sub>m</sub> = 0.35</td>
</tr>
<tr>
<td>4'-гидроксистильбен</td>
<td>[Структурная формула]</td>
<td>1.6</td>
</tr>
<tr>
<td>4,4'-дигидроксистильбен</td>
<td>[Структурная формула]</td>
<td>3.2</td>
</tr>
<tr>
<td>α,α'-диэтил-4,4'-дигидроксистильбен (диэтилстильбэстрол)</td>
<td>[Структурная формула]</td>
<td>4.0</td>
</tr>
<tr>
<td>3,5,4'-тригидроксистильбен</td>
<td>[Структурная формула]</td>
<td>14.4</td>
</tr>
</tbody>
</table>

Численное моделирование для смесей гидроксистильбенов проведено с использованием значений их удельных удерживаемых объемов (V_{rm}), которые экспериментально определяли методом нормально-фазовой ВЭЖХ на силикагеле Силасорб-600 с элюентом n-гексан – этилацетат (1:1) в изократическом режиме элюирования. Поскольку величины констант Генри значительным образом изменяются в зависимости от мольной доли X_m полярного растворителя в жидкой фазе, в таблице приведены значения V_{rm}, измеренные при двух значениях мольной доли этилацетата в n-гексане.

На рисунке представлены результаты моделирования процесса разделения смеси гидроксистильбенов, выполненного при значениях X_m = 0.35 (мольная доля этилацетата в подвижной фазе) и n = 20 (эффективность слоя адсорбента). Теоретически рассчитанные модельные хроматограммы удовлетворительно согласуются с экспериментальными результатами, полученными при разделении смесей стильбеноидов методом центрифужной ПТСХ и жидкостной колоночной хроматографии. Это свидетельствует о справедливости предложенной модели.
Рис. 1. Модельные проявительные кривые транс-4'-гидроксистильбена (1), транс-4,4'-дигидроксистильбена (2), диэтилстильбэстрола (3) и резвератрола (4), рассчитанные для условий разделения на хроматotronе $X_m = 0.35$, $n = 20$.

Таким образом, на основе уравнения, используемого в теории слоя равновесной адсорбции для описания выходной проявительной кривой на колонке малой длины, получено рациональное приближение для моделирования процессов разделения гидроксистильбенов и других стильбеноидов стильбеноидов в условиях нормально-фазовой ПТСХ на хроматotronе.

Список литературы
2. Ларин А.В. // Физикохимия поверхности и защита материалов. 2011. Т. 47. № 6. С. 616.

PHYSICOCHEMICAL AND SORPTION PROPERTIES OF HYDROXYSTILBENES

Dmitrienkova A.G., Polunina I.A., Polunin K.E., Larin A.V.
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia, polunina@phyche.ac.ru

Sorption properties of hydroxystilbenes have been investigated by TLC and HPLC methods. These results were used for the modeling of preparative TLC separation processes on silica. The optimal conditions of
the PTCL separation of mixtures of natural and synthetic hydroxistilbenes were proposed.

ИНДУЦИРУЮЩАЯ АКТИВНОСТЬ ПОЛИМЕРНЫХ СИСТЕМ НА ОСНОВЕ ХИТОЗАНА И БЕНЗОЙНЫХ КИСЛОТ

Домнина Н.С. 1, Трифонова Г.В. 1, Попова Э.В. 2, Коваленко Н.А. 2

1 ФГБОУ ВПО «Санкт-Петербургский Государственный Университет», Институт химии, Санкт-Петербург, Россия, n.dommina@spbu.ru
2 ФГБНУ Всероссийский научно-исследовательский институт защиты растений, Санкт-Петербург, Пушкин, Россия. elzavpopova@mail.ru

Аннотация. Изучена иммунномодулирующая активность солей хитозана с бензойными кислотами в повышении устойчивости пшеницы к бурой ржавчине и темно-бурой пятнистости. Установлено, что наибольшей индуцирующей активностью обладает хитозан с салициловой кислотой. Хитозан с бензойной кислотой проявляет хорошую иммунномодулирующую активность только против бурой ржавчины. Наименее эффективна как индуктор устойчивости против изученных листовых болезней пшеницы - это соль хитозана с 4-оксибензойной кислотой.

Метод индуцированной устойчивости, основанный на активации фитоиммунных реакций самих растений и формировании устойчивости к возбудителям болезней, приобретает особую актуальность при создании экологически безопасных средств защиты. Важно отметить, что при этом интенсивность иммунных ответов организма можно регулировать экзогенными иммуномодуляторами, например, природным полисахаридом хитозаном [1-2]. Для усиления биологической активности хитозан модифицируют различными БАВ за счет ковалентного или ионного связывания.

Данное исследование посвящено изучению в качестве иммуномодуляторов солей хитозана с бензойными кислотами при их участии в регуляции иммунного ответа растений пшеницы на заражение как биотрофом Puccinia recondita Roberge ex Desmaz f. sp. tritici., так и гемибиотрофом Cochliobolus sativus
Дресchs.

В качестве компонентов иммуномодулятора использовали салициловую, бензойную и 4-оксибензойную кислоты. Можно предположить, что не только салициловая кислота, хорошо изученная и играющая центральную роль в защите растений от биотрофных патогенов, но и две другие кислоты могут участвовать в индукировании адаптивных реакций растений. Такое возможное их действие практически не изучено.

Для синтеза иммуномодуляторов использовали хитозан с молекулярной массой 6.5 кДа (Хит), полученный методом окислительной деструкции [3] из хитозана с молекулярной массой 150 кДа и степенью деацетилирования 85% («Биопрогресс», РФ). Хитозан, содержащий ионно-связанные бензойные кислоты: салициловую кислоту (Хитозан+СК); бензойную кислоту (Хитозан+БК); 4-гидроксибензойную кислоту (Хитозан+оБК) получали согласно [4]. Ионное взаимодействие групп -СОО− и -NH₃⁺ было подтверждено ИК-спектрами.

Хитозан+СК:

Обработку листьев пшеницы сорта Саратовская 29 проводили суспензией спор (4 000 спор/мл) гемибиотрофа C. sativus и суспензией пустул P. triticina (2000 пустул/мл). Для оценки индукцирующей активности исследуемых веществ 7-дневные проростки опрыскивали их 0.1%-ными (по хитозану) растворами за 24 ч до инокуляции патогеном. Оценку иммуномодулирующей активности композиций проводили методом отделенных листьев [5]. Эффективность исследуемых
образцов оценивали при инокуляции C. sativus на 4-е сутки после заражения, а при инокуляции P. triticina на 7-е сутки после заражения по интенсивности развития болезни.

Полученные результаты (таблица) показали, что хитозан проявляет хорошую индукцию активности у пшеницы к бурым ржавчинам, снижая пораженность растений на 50% по отношению к контролю. Эффективность хитозана, имеющего в составе СК, в 2,0 раза превышает действие самого хитозана. Также выявлена высокая иммуномодулирующая активность соли хитозана с БК, близкая к эффективности Хит+СК, что выразилось в снижении поражения листьев растений на 60% по отношению к контролю.

Таблица 1

<table>
<thead>
<tr>
<th>№</th>
<th>Вариант опыта</th>
<th>Концентрация вещества</th>
<th>Поражения листьев, %</th>
<th>Темно-бурая пятнистость НСР_{0.05}=4.5</th>
<th>Бурая ржавчина НСР_{0.05}=9.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Контроль</td>
<td>-</td>
<td>100</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Хитозан</td>
<td>0,1 %</td>
<td>25</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>СК</td>
<td>0,5мМ</td>
<td>40</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Хитозан + СК</td>
<td>0,1%+0,5 мМ</td>
<td>20</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>БК</td>
<td>2,5мМ</td>
<td>60</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Хитозан + БК</td>
<td>0,1%+2.5мМ</td>
<td>60</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>оБК</td>
<td>0,5мМ</td>
<td>90</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Хитозан + оБК</td>
<td>0,1%+0,5 мМ</td>
<td>50</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Включение в Хитозан СК повышало его индукционную активность против C. sativus, и площадь поражения листьев сокращалась до 20% . Оценка биологической активности солей Хитозан-БК и Хитозан+оБК показала, что как индукторы устойчивости против темно-бурых пятнистости пшеницы они оказались менее эффективны, чем исходный хитозан (25% поражения листьев) и Хитозан+СК. В этих вариантах опытов площадь поражения листьев аскомицетом C. sativus составила 60% и 50%, соответственно. Положительное влияние солей хитозана с БК на устойчивость пшеницы к буровой ржавчине можно
Связать со способностью этой кислоты, как в прочем и салициловой, ингибировать каталазу, и тем самым повышать содержание перекиси водорода в растительной клетке, что может приводить к активации защитных реакций.

Список литературы:
1. Тютюрев С.Л. Природные и синтетические индукторы устойчивости растений к болезням. СПб, 2014, 212 с.
4. Федосеева Е.Н., Федосеев В.Б. Взаимодействие хитозана и бензойной кислоты в растворах и пленках// Высокомолекулярные соединения, серия А. 2011, т. 53, 11, 1900-1907.

INDUCING ACTIVITY OF CHITOSAN POLYMER SYSTEMS WITH BENZOIC ACIDS

Domnina N.S.¹, Trifonova G.V.¹, Popova E.V.², Kovalenko N.A.²

¹St. Petersburg State University, St. Petersburg, Russia, n.domnina@spbu.ru
²All-Russia Institute for Plant Protection, Pushkin, St. Petersburg, Russia

A comparative assessment of the biological activity of chitosan salts with benzoic acids has shown that chitosan with salicylic acid against brown rust and spot blotch has the greatest inducing activity. High immunomodulating activity of chitosan with benzoic acid to relationship brown rust was revealed. The least effective as an inducer is the salt of chitosan with 4-hydroxybenzoic acid.
ГИДРОФОБНО-ГИДРОФИЛЬНЫЕ СВОЙСТВА ГИБРИДОВ ПРОСТРАНСТВЕННО-ЗАТРУДНЕННЫХ ФЕНОЛОВ С ОЛИГОМЕРНЫМИ ПОЛИЭТИЛЕНГЛИКОЛИЯМИ

Домнина Н.С., Вольева В.Б., Комиссарова Н.Л., Малкова А.В., Горбунов Д.Б., Овсянникова М.Н.
ФГБУ Институт биохимической физики им. Н.М. Эмануэля РАН, Москва, Россия, komissarova@polymer.chph.ras.ru

Аннотация. Конъюгаты пространственно-затрудненных фенолов (ПЗФ) с олигомерными полиэтиленгликолями (молекулярная масса M 3400–22000) в водных растворах обладают высокой антиоксидантной активностью и термочувствительностью, что характеризуется низшей критической температурой смещения (НКТС), по достижении которой полиmericный антиоксидант высылаивается из раствора. Этот процесс наблюдается визуально или методом фотонной корреляционной спектроскопии. Величина НКТС зависит от М полимера и гидрофобности ПЗФ, определяемой характером его замещенности. Изменение НКТС может служить индикатором происходящих в системе химических и структурных изменений, наличия и концентрации в ней электролитов.

Устойчивым трендом в развитии современных направлений в химии пространственно-затрудненных фенолов (ПЗФ) является создание гибридных антиоксидантов, сочетающих в одной молекуле разнофункциональные фрагменты – редокс-активное фенольное ядро и структурный элемент, обеспечивающий биосовместимость, транспортные свойства, возможность адресного взаимодействия с клеточными структурами, увеличение антиоксидантной активности. Наиболее представительной группой таких соединений являются гибриды ПЗФ с гидрофильными био- и синтетическими полимерами (декстраном, гидроксилэтоксилированным крахмалом, поливиниловым спиртом и т.п.). На их примере проведено комплексное исследование, включающее разработку методов синтеза, оценку антиоксидантной активности. Показана важная роль в активности приполимерных гидратных оболочек, ее зависимость от

В последние годы серия гибридных макромолекулярных антиоксидантов расширена за счет производных олигомерных полиэтиленгликолей (ПЭГ) с молекулярной массой (М) от 3400 до 22000. ПЭГ в качестве базового полимера для синтеза ГМАО представляет особый интерес. Полиэфирный каркас макромолекулы ПЭГ химически инертен, наличие концевых гидроксильных групп в нем позволяет осуществлять ковалентное связывание с введением в полимер новой функции. ПЭГ проявляет высокую биосовместимость, отсутствие токсичности и иммуногенности, превосходную растворимость как в воде, так и в органических растворителях, что позволяет его использование в качестве субстанции для создания лекарственных форм, косметических и парфюмерных средств, а также для структурных исследований.

К настоящему времени синтезирован ряд производных ПЭГ, модифицированных карбоксизамещенными фрагментами ПЗФ со скелетом С₆–С₃. Для них в водных растворах зарегистрирован рекордный уровень антирадикальной активности [1]. Кроме того, обнаружена зависимость водорастворимости от М и природы ПЗФ, а также от температуры.

Водные растворы ПЭГ-ПЗФ (М 3400–22000) в интервале 15–100°С, обнаруживает скачкообразную потерю фазовой стабильности с высыпанием полимера. Этому явлению соответствует нижняя критическая температура смещения (НКТС), растущая с ростом М полимера и зависящая от характера замещенности ПЗФ.

Для незамещенного ПЭГ с М 3400 величина НКТС выше 210°С. Однако его модифицированный β-(4-гидрокси-3,5-ди-трет-бутилфенил)пропионовой кислотой аналог, ПЭГ-КФ, растворимый при 20°С, при 25°С выпадает из раствора.
Установлено, что этот образец имеет НКТС 22°С. Процесс высыхивания полимера можно наблюдать визуально или методом фотонной корреляционной спектроскопии (ФКС) – при 22°С происходит резкий скачок интенсивности рассеянного света, соответствующий выделению полимера. Для образца с М 3900 определена НКТС 38°С (см.Табл.1):

Таблица 1. НКТС для ПЭГ – ПЗФ с различными ПЗФ.

<table>
<thead>
<tr>
<th>ПЗФ</th>
<th>М×10^{-3}</th>
<th>НКТС, °С</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-(4-гидрокси-3,5-ди-трет-бутилфенил)пропионовая кислота</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>3.9</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>6.8</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>21.6</td>
<td>>100</td>
<td></td>
</tr>
<tr>
<td>β-(4-гидрокси-2-метил,6-трет-бутилфенил)пропионовая кислота</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>3.9</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>6.8</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>21.6</td>
<td>>100</td>
<td></td>
</tr>
<tr>
<td>4-гидрокси-3,5-ди-трет-бутилкоричная кислота</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.9</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>6.8</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>21.6</td>
<td>>100</td>
<td></td>
</tr>
</tbody>
</table>

Таким образом, олигомерные ПЭГ-ПЗФ в водных растворах представляют собой термочувствительные системы, реагирующие на изменения структурных параметров ПЗФ изменением НКТС. Этот критерий может быть использован как индикатор происходящих изменений. Данные НКТС дают возможность сравнительной оценки гидрофобности присоединенных к ПЭГ модифицирующих фрагментов ПЗФ – чем сильнее гидрофобное взаимодействие в системе, тем ниже должна быть НКТС [2]. Согласно данным, полученным для конъюгатов ПЭГ с фиксированным значением М (3900) гидрофобность изменяется в ряду продуктов β-(4-гидрокси-3,5-ди-трет-бутилфенил)пропионовая кислота (фенозан-кислота)>4-гидрокси-3,5-ди-трет-бутилкоричная кислота>β-(4-гидрокси, 2-метил-6-трет-бутил)фенилпропионовая кислота.

Изменение НКТС для конъюгата ПЭГ с фенозан-кислотой (НКТС 38°С) при хранении в условиях доступа атмосферного кислорода и влаги позволило зарегистрировать его автоокисление с образованием пэгилированной 4-гидрокси-3,5-ди-трет-бутилкоричной кислоты (НКТС 49°С):
Параметр НКТС откликается на различные формирующие гидрофильно-гидрофобный баланс факторы, например, на присутствие в растворе электролита, его природу и концентрацию.

Список литературы
1. Вольева В.Б., Домнина Н.С., Сергеева О.Ю., Комарова Е.А., Белостоцкая И.С., Комиссарова Н.Л. ЖОрХ, 47, вп.4, 484–489 (2011).

HYDROPHOBIC-HYDROPHILIC PROPERTIES OF HYBRIDES OF HINDERED PHENOLS WITH OLIGOMERIC POLYETHYLENE GLYCOLS

Domnina N.S., Vol’eva V.B., Komissarova N.L., Malkova A.V., Gorbunov D.B., Ovsiannikova M.N.
N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia

Conjugates of hindered phenols (HP) with oligomeric polyethylene glycols (molecular weight M 3400–22000) in aqueous solutions have high antioxidant activity and thermosensitivity, which is characterized by the lowest critical mixing temperature (LCMT), upon which the polymeric antioxidant is released from the solution. This process is observed visually or by the method of photon correlation spectroscopy. The value of the LCMT depends on the M of polymer and the hydrophobicity of the HP, determined by the nature of the substitution. Changing LCMT can serve as an indicator of the chemical and structural changes that occur in the system, also the presence and concentration of electrolyte in it.
ФЕНОЛЬНЫЕ КУМАРИНОВЫЕ БИФУНКЦИОНАЛЬНЫЕ РЕАГЕНТЫ НА ТОКСИЧНЫЕ АНИОНЫ И КАТИОНЫ ТЯЖЕЛЫХ МЕТАЛЛОВ

Дубоносов А.Д.1, Николаева О.Г.2, Тихомирова К.С.2, Старикова А.А.2, Брень В.А.2

1ФГБУН «Федеральный исследовательский центр Южный научный центр РАН», Ростов-на-Дону, Россия, aled@ipoc.sfedu.ru
2ФГАО ВО «Южный федеральный университет», Научно-исследовательский институт физической и органической химии, Ростов-на-Дону, Россия

Аннотация. Синтезированы бис- и моно-N-ароилгидразоны гидроксизамещенных кумаринов и бензо[c]кумарина. Моногидразоны проявляют флуоресцентную активность по отношению к катионам цинка(II) и ртути(II). Бисгидразоны представляют собой бифункциональные хемосенсоры для эффективного детектирования фторид-анионов и катионов Zn2+, Cu2+ и Hg2+ в различных субстратах.

Хемосенсоры представляют собой органические молекулы, позволяющие осуществлять экскресс-мониторинг жизненно важных или, наоборот, токсичных для живых организмов катионов и анионов в биологических объектах, лекарственных препаратах и пищевых продуктах [1-5]. Они представляют собой реальную альтернативу традиционно используемым в этих целях дорогостоящим, не обладающим мобильностью атомно-абсорбционным, атомно-эмиссионным и рентгенофлуоресцентным спектрометрам. Флуоресцентные и хромогенные хемосенсоры обладают как низкой стоимостью, так и значительной скоростью, простотой и высокой чувствительностью анализа [6, 7]. Как правило, сенсоры содержат сигнальную и рецепторную составляющие. Мы выбрали в качестве сигнальных флуоро(хромо)форов кумариновые гетероциклы, характеризующиеся достаточно интенсивной эмиссией [8, 9] и содержащие гидроксильные группы в orto-положении к иминному фрагменту, что создает предпосылки для детектирования катионов металлов.

На основе различных гидрокси(дигидрокси)производных
альдегидов (диальдегидов) ряда кумарина и бензо[c]кумарина были синтезированы их бис- и моно-N-ароилгидразоны 1-4 (рисунок 1). Соединения 1-4 в CH₃CN обладают ESIPT-флуоресценцией (Excited-State Intramolecular Proton Transfer) в области 480-540 нм с большой величиной Стоксова сдвига. Исследование их взаимодействия с ионами Zn²⁺, Cd²⁺, Ni²⁺, Co²⁺, Cu²⁺, Pb²⁺, Hg²⁺ показало, что катионы цинка(II) вызывают разгорание флуоресценции моногидразонов 3, 4 в 20-60 раз, а катионы ртути(II) практически полностью тушат исходную эмиссию.

Рис. 1. Ароилгидразоны замещенных кумаринов 1-3 и бензо[c]кумарина 4.

Бисароилгидразоны 1, 2 образуют окрашенные комплексы in situ с катионами Zn²⁺, Cu²⁺ и Hg²⁺ (рисунок 2).

Рис. 2. Электронные спектры поглощения бисароилгидразона 2 (R = 3-Py) в ацетонитриле до (1) и после прибавления катионов Cd²⁺, Ni²⁺, Co²⁺, Pb²⁺ (2-5), Cu²⁺ (6), Zn²⁺ (7) и Hg²⁺ (8) (c 7·10⁻⁵ М).

Наибольший «naked-eye» эффект [1, 2] наблюдается в присутствии ионов ртути(II) (изменение окраски с бледно-желтой
на ярко-красную. Анионы AcO\(^-\), CN\(^-\) и, в особенности, F\(^-\) также приводят к значительному «naked-eye» эффекту (рисунок 3). В большинстве случаев этот эффект сопровождается значительным увеличением относительной интенсивности исходной флуоресценции \(I_0/I\) в 10-40 раз и батохромным сдвигом полосы эмиссии на 20-30 нм. Полученные данные были подтверждены квантово-химическими расчетами DFT B3LYP/6-31G(d, p) (схема 1).

Рис. 3. Электронные спектры поглощения бисароилгидразона 2 (\(R = 4\text{-PhC}_6\text{H}_4\)) в ацетонитриле до (1) и после прибавления анионов AcO\(^-\) (2), CN\(^-\) (3), и F\(^-\) (4) (с 5 \(10^{-5}\) М).

Схема 1. Предполагаемая схема механизма детектирования катионов Zn\(^{2+}\) и F\(^-\) на примере бифункционального хемосенсора 2 (\(R = 4\text{-MeOC}_6\text{H}_4\)).
Фенольные кумариновые реагенты 1-4 могут быть использованы для эффективного визуального и флуоресцентного анализа токсичных катионов и анионов в различных субстратах.

Работа выполнена в рамках в рамках Гранта РФФИ (№ 16-03-00102) и ГЗ ЮНЦ РАН на 2018 г. (№ госпр. проекта 01201354239).

Список литературы

PHENOLIC COUMARIN BIFUNCTIONAL REAGENTS FOR TOXIC ANIONS AND HEAVY METAL CATIONS

Dubonosov A.D., Nikolaeva O.G., Tikhomirova K.S., Starikova A.A., Bren V.A.

1 FSBIS «Federal Scientific Center Southern Scientific Center of Russian Academy of Sciences», Rostov-on-Don, Russia, aled@ipoc.sfedu.ru
2 FSAI HE «Southern Federal University», Institute of Physical and Organic Chemistry, Rostov-on-Don, Russia
Bis- and mono-N-aryloaryl hydrazones of hydroxy substituted coumarins and benzo[c]coumarin were synthesized. Monohydrazone display fluorescent activity towards zinc (II) and mercury (II) cations. Bishydrazone represent bifunctional chemosensors for effective detection of fluoride anions and Zn$^{2+}$, Cu$^{2+}$ and Hg$^{2+}$ cations in various substrates.

ИЗУЧЕНИЕ СПОСОБНОСТИ АКТИНОБАКТЕРИЙ УТИЛИЗИРОВАТЬ ЮГЛОН

Емельянова Е.В., Соляникова И.П.
ФГБУН Институт биохимии и физиологии микроорганизмов им. Г.К. Скрябина РАН, Пущино, Россия; elenvem@ibpm.pushchino.ru

Аннотация. Исследовали способность актинобактерий утилизировать юглон (5-окси-1,4-нафтохинон) на примере двух культур Rhodococcus sp. 1 и Gordonia polyisoprenivorans 135. Показали отличия их способности в метаболизации этого соединения.

Хиноны структурно тесно связаны с фенолами: они образуются окислением последних и восстанавливаются до фенолов. Природные нафтохиноны представляют собой большую группу биологически активных веществ. Одно из природных соединений группы нафтохинонов – юглон (5-окси-1,4-нафтохинон). Впервые он был получен из свежей кожи плодов грецкого ореха, в наши дни источником юглона служат плоды ореха чёрного Juglans nigra L. В ФГУП "ГНЦ "НИОПИК" разработана и освоена в опытно-промышленном масштабе технология получения препарата Юглон (http://www.niopik.ru/products/chemical/yuglone/).

Юглон применяют в медицине для борьбы с бактериальными и грибковыми инфекциями, лейкемией. Используют юглон и в пищевой, косметической и парфюмерной промышленности как консервант, в качестве антимикробного агента - при обработке кожи, текстиля, строительных материалов, применяют его и в сельском хозяйстве.

Оперативный метод определения содержания юглона основан на использовании сенсорных анализаторов, в том числе микробного сенсора на основе микроорганизмов, способных
утилизировать юглон. Юглон 3-монооксигеназа — фермент, инициирующий разложение юглона в аэробных условиях (5-гидрокси-1,4-нафтохинон + AH₂ + O₂ = 3,5-диgidрокси-1,4-нафтохинон + A + H₂O), относится к классу оксидоредуктаз. Реакция происходит с потреблением кислорода [1]. В ИБФМ РАН начаты работы по изучению процессов метаболизма юглона у актинобактерий с использованием интактных и иммобилизованных бактериальных клеток.

Иммобилизованные живые клетки использовали в качестве рецептора биосенсора. Их фиксировали на поверхности кислородного электрода типа Кларка, являющегося преобразователем. Кроме того применяли суспензию интактных клеток в буферном калий-натрий фосфатном буфере. Реакцию тех и других клеток на юглон определяли по изменению их дыхания в ответ на внесение юглона. Источником юглона служил раствор 5-гидрокси-1,4-нафтохинона в ацетоне. Дыхание актинобактерий оценивали по максимальной скорости изменения силы тока (скорость реакции на юглон, рА/с) в буферном растворе с интактными или иммобилизованными клетками после внесения юглона. Этот показатель был пропорционален изменению потребления кислорода бактериальными клетками и характеризовал ответ клеток на юглон. В работе использовали актинобактерии, выделенные из содержащих бензоат сред.

Для части исследованных актинобактерий (иммобилизованные клетки) была зафиксирована значительная скорость отклика на юглон. *Rhodococcus sp.* 1 — представитель этой группы. У остальных культур, в том числе у *Gordonia polyisoprenivorans* 135, скорость реакции на внесённый юглон была незначительной или равной нулю. Обнаруженные отличия можно объяснить, в числе прочего, различными свойствами ферментов, принимающих участие в метаболизме юглона. Две культуры (*Rhodococcus sp.* 1 и *G. polyisoprenivorans* 135) были выбраны для дальнейших исследований.

Реакция на юглон интактных клеток *Rhodococcus sp.* 1 и *G. polyisoprenivorans* 135 приведена на рис. 1. При концентрации юглона выше 1×10⁻⁶ М наблюдали активацию дыхания интактных клеток родококк. Для клеток гордонии только при высоких концентрациях юглона фиксировали реакцию клеток, однако наблюдали не активацию, а ингибирование дыхания клеток (минус на оси ординат) после 10 секундной активации сразу же после внесения юглона (рис. 1б). После индукции юглоном в
нерестовых условиях и для гордонии были зарегистрированы реакции на юглон (но по-прежнему наблюдали ингибирование дыхания клеток при высоких концентрациях юглона). Возможно, клетки Rhodococcus sp. 1 содержали конститутивный фермент (или ферменты), индуцирующий разложение юглона в аэробных условиях, а G. polyisoprenivorans 135 – индуцибельный. В дальнейшем разработка методики определения активности юглон 3-монооксиеназы в бесклеточных экстрактах позволит подтвердить сделанное выше заключение.

Юглон часто используют как источник активных форм кислорода (АФК). При работе с юглоном в аэробных условиях, как показано в [2], происходит образование стабильного анион-радикала; наличие неспаренного электрона обуславливает его высокую реакционную способность. Возможно, гордония более чувствительна к этому радикалу.

С использованием биосенсорной методики для иммобилизованных клеток обеих культур были построены графики зависимости скорости реакции на юглон от его концентрации (рис. 2) для неиндуцированных клеток и индуцированных юглоном в нерестовых условиях. Известно, что реакция микробного сенсора (отклик иммобилизованных клеток) – скорость реакции на юглон – определяется двумя процессами: скоростью ферментативной реакции (метаболизм юглона) и скоростью транспорта юглона в микробные клетки. В [3] показано, что если определяющей является скорость

Рис. 1. Влияние индукции юглоном на активность интактных клеток Rhodococcus sp. 1 (а) и G. polyisoprenivorans 135 (б). Обозначения одинаковые на обоих графиках. 0 – реакция 0 рА/с.

а

б
ферментативного процесса, то насыщение наблюдается при концентрации субстрата, лишь немного большей \(S_{0.5} \). (\(S_{0.5} \) – концентрация субстрата, при которой скорость процесса составляет половину максимальной скорости, величина численно равная \(K_m \) уравнения Михаэлиса-Ментен). Однако если процесс лимитируется скоростью транспорта субстрата, то насыщение может быть достигнуто и при концентрациях субстрата, значительно превышающих \(S_{0.5} \).

По-видимому, у *Rhodococcus sp.* 1 (рис. 2а) реакция неиндукированных клеток определялась прежде всего скоростью ферментативного превращения юглона. Существенный вклад в реакцию индуцированных клеток родококка вносил процесс транспорта. Воздействие юглона на клетки в неростовых условиях приводило к ингибированию ферментов разложения юглона у родококка, что согласуется с данными, представленными на рис 1а. В индуцированных клетках *G. polyisoprenivorans* 135 (рис. 2б) активировались прежде всего системы транспорта юглона в клетки, и, вероятно, индуцибельные ферменты. Незначительные реакции на юглон у неиндукированных клеток гордонии являлись подтверждением предположения об индуцибельности ферментов разложения юглона у этой культуры.

![Diagram](image1.png)

Рис. 2. Влияние индукции юглоном на активность иммобилизованных клеток *Rhodococcus sp.* 1 (а) и *G. polyisoprenivorans* 135 (б). Обозначения одинаковые на обоих графиках.

Для исходных клеток родококка \(S_{0.5} \), комплексная величина характеризующая прочность связывания субстрата (юглона) с ферментом и с транспортным посредником, составляла \(1,1 \times 10^{-6} \) М, а для гордонии была ниже: \(0,9 \times 10^{-6} \) М. После индукции
величины констант для этих культур возрастали до 3,7×10⁻⁶ М и 1,7×10⁻⁶ М, соответственно.

Для Pseudomonas putida J1 известна величина K_m юглон 3-монооксигеназы. Она составила 4,2×10⁻⁶ М для конститутивного фермента и 18,5×10⁻⁶ М – для индуцибельного [1].

После оптимизации условий выращивания Rhodococcus sp. 1 и G. polyisoprenivorans 135 мы построили кривые зависимости реакции на юглон от концентрации субстрата (рис. 3) и определили константы $S_{0.5}$: 12,7×10⁻⁶ М – для родококка и 18,0×10⁻⁶ М – для гордонии. Дальнейшее исследование активности монооксигеназы и процессов транспорта юглона в клетки поможет лучше понять константобразование $S_{0.5}$ для иммобилизованных клеток актинобактерий и использовать эту константу для оценки метаболизма юглона.

Список литературы:
EXPLORING THE ABILITY OF ACTINOBACTERIA TO UTILIZE JUGLONE

Emelyanova E.V., Solyanikova I.P.
FSBIS G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russia; elenvem@ibpm.pushchino.ru

This study was performed to estimate the ability of actinobacteria to utilize juglone (5-hydroxy-1,4-naphthoquinone) with the use of intact and immobilized cells of bacteria. A comparison was made using the example of two cultures - *Rhodococcus sp.* 1 and *Gordonia polyisoprenivorans* 135, the observed differences between which are most likely due to different properties of enzyme systems involved in the metabolism of juglone.

Responses of bacterial intact and immobilized cells to juglone were determined prior and after induction by juglone under non-growth conditions. The differences in responses can be apparently explained by the presence of constitutive enzymes in one culture and inducible enzymes in another. Furthermore, induction by juglone leads to activation of not only the inducible enzymes but also the systems of juglone transport into the cell.

ANTIOXIDANTНАЯ И БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ АЛКИЛТИОМЕТИЛЬНЫХ ПРОИЗВОДНЫХ ГИДРОХИНОНА

Емельянова И.А. ¹, Багавиева Т.К. ¹, Просенко А.Е. ¹,²
¹ФГБОУ ВО «Новосибирский государственный педагогический университет», Новосибирск, Россия
²Научно-исследовательский институт химии антиоксидантов, Новосибирск, Россия, airina95@mail.ru

Аннотация. В настоящее время перспективным направлением поиска новых высокоэффективных антиоксидантов является разработка серосодержащих соединений бензильного типа на основе многоатомных фенолов. Гидрохинон один из наиболее доступных многоатомных фенолов, обладающих разнообразием химических свойств, биологической и антиоксидантной активностью. Гидрохиноновый фрагмент входит в структуру ряда биологически активных природных соединений.
(арбутин, коэнзим Q). Широкое применение в пищевой промышленности в качестве стабилизаторов и антиокислителей нашли производные гидрохинона (трет-бутилгидрохинон, бутилоксианизол). В данной работе представлен синтез серосодержащих производных бензильного типа на основе гидрохинона, также показаны результаты сравнительного исследования антиоксидантных свойств и предварительные биологические исследования синтезированного соединения – 2,5 бис (додецилтиометил) гидрохинона.

Исследование природных фенольных соединений одно из ведущих направлений в биологии, химии, медицине, фармакологии и пищевой промышленности. Это связано с разнообразной функциональной ролью и высокой биологической активностью фенольных соединений, которая обусловлена их химической структурой. Актуально исследование серосодержащих алкилфенолов бензильного типа, поскольку было установлено, что на липидных субстратах они на порядок превосходят не только монофункциональные антиоксиданты, но и свои аналоги с положением атома серы, отличного от бензильного.

Известно, что двухатомные фенолы превосходят по скорости взаимодействия с пероксидными радикалами свои одноатомные аналоги и, в качестве фрагмента, входят в структуру молекул фенольных соединений. Гидрохинон один из наиболее доступных многоатомных фенолов, обладающих антиоксидантной активностью. Широкое применение в пищевой промышленности в качестве стабилизаторов и антиокислителей нашли производные гидрохинона (трет-бутилгидрохинон, бутилоксианизол).

Проведена модификация молекулы гидрохинона, путем введения алкилтиометильных групп, в результате чего были синтезированы моно- и ди(алкилтиометил)производные гидрохинона, обладающие высокой антиоксидантной и биологической активностью.

Проработано несколько альтернативных подходов к синтезу алкилтиометильных производных гидрохинона. Прямое введение алкилтиометильных групп в молекулу гидрохинона, используя формальдегид и тиол, в щелочной среде провести не удалось, поскольку происходит окисление исходного гидрохинона до
хинона, и также зафиксированы продукты поликонденсации гидрохинона с формальдегидом. Разработан способ получения целевых продуктов через основание Манниха в условиях аналогичных [1,2]:

Согласно проведенной оптимизации условий синтеза 2,5-бис(додецилтиометил)гидрохинона через основание Манниха удалось достигнуть высокого выхода целевого продукта. Разработанный способ успешно апробирован при получении 2,5-бис (октадецилтиометил) гидрохинона и 2,5-бис (октилтиометил) гидрохинона.

В НИИ химии антиоксидантов НГПУ был разработан эффективный способ алкилтиометилирования фенолов (Н,Н-диэтиламинометил) алкилсульфидами [3]. Первоначально, путем конденсации тиола, формальдегида и диэтиламина были получены алкилтиометилирующие реагенты.

Используя данный способ, были получены в одну стадию моно (алкилтиометил)производные гидрохинона.

Проведена оптимизация условий синтеза 2-(додецилтиометил)гидрохинона, в результате которой удалось получить продукт с высоким выходом (более 60%).

Синтез по данной методике ди(алкилтиометил)производных гидрохинона ведет к образованию, помимо целевого продукта, изомера (2,6-бис(алкилтиометил)гидрохинон), вследствие снижается селективность реакции.
Состав и строение синтезированных соединений доказаны данными ЯМР Н1, ИК, УФ спектроскопии и элементного анализа.
Тестирование антиоксидантной активности показало, что по способности ингибировать автоокисление жиров и растительных масел синтезированные соединения значительно превосходят как известные монофункциональные антиоксиданты, так и серосодержащие аналоги на основе одноатомных фенолов (рис.1, рис. 2).

Рис.1. Период индукции (t, мин.) автоокисления лярда (133 °C) ингибитированного фенольными антиоксидантами

Рис.2. Период индукции (t, сут.) автоокисления растительного масла (60 °C) ингибитированного фенольными антиоксидантами (контроль 3,5 суток)

Проведены предварительные биологические исследования и выявлено, что синтезированные соединения обладают выраженной биологической активностью.
Исследование острой токсичности 2,5-бис (додецилтиометил) гидрохинона при внутрижелудочном введении мышам в виде масляного раствора показало чрезвычайно низкую токсичность соединения. Исследование влияния на икру рыб семейства осетровых показало, что данное вещество способствует сохранению запасов желтка у личинок рыб после выклева из икры. Благодаря этому повышается выживаемость осетров при выходе их на активное питание. 2,5-бис(додецилтиометил)гидрохинон проявляет умеренное противоотечное действие на модели псевдоаллергического воспаления. Данные полученные на двух различных по патогенезу моделях гепатита в эксперименте на мышах, свидетельствуют о наличии у 2,5-бис (додецилтиометил) гидрохинона антихолестазной и антицитолитической активности.
Установлено, что соединение 2-(додецилтиометил)
гидрохинон в виде масляного раствора при внутрижелудочном введении в эксперименте на мышах обладает кардиопротективным действием в широком диапазоне концентраций при моделировании окислительного стресса.

Сочетание высокой антиоксидантной активности и биологической позволяет рассматривать полученные соединения как высокоэффективные биоантиоксиданты.

Список литературы:
1. Дюбченко О.И., Никулина В.В., Терах Е.И., Нефтехимия, 2005, 45, 359.
2. Просенко А.Е., Дюбченко О.И., Марков А.Ф., Нефтехимия, 2006, 46, 310.

ANTIOXIDANT AND BIOLOGICAL ACTIVITY OF ALKYLTHOMETHYL DERIVATIVES OF HYDROCHINONE

Emelyanova I.A.¹, Bagavieva T.K.¹, Prosenko A.E.¹²
¹FGBOU VO "Novosibirsk State Pedagogical University", Novosibirsk, Russia
²Scientific Research Institute of Antioxidant Chemistry, Novosibirsk, Russia, airina95@mail.ru

Currently, the promising direction towards the research on new highly effective antioxidants is the development of sulfur-containing benzyl type compounds based on polyhydric phenols. Hydroquinone is one of the most accessible polyhydric phenols, possessing a variety of chemical properties as well as biological and antioxidant activity. The hydroquinone fragment is a part of a number of biologically active resources (arbutin, coenzyme Q). Derivatives of hydroquinone (tert-butylhydroquinone, butyloxyanisole) are using as stabilizers and antioxidants in the food industry. The synthesis of sulfur-containing benzyl type derivatives based on hydroquinone is presented in this paper. Also, the results of comparative research on antioxidant properties and preliminary biological studies of the synthesized compound - 2,5 bis (dodecylthiomethyl) hydroquinone had been examined by the author.
АНТИСТРЕССОВЫЕ СВОЙСТВА N-АЦЕТИЛЦИСТЕИНИНАТ 2-ЭТИЛ-6-МЕТИЛ-3-ГИДРОКСИПИРИДИНА

Жигачева И.В.1, Генерозова И.П.2, Бинюков В.И.1, Миль Е.М.1

1 ФГБУН Институт биохимической физики им. Н.М. Эмануэля РАН, Москва, Россия, zhigacheva@mail.ru
2 ФГБУН Институт физиологии растений им. К.А. Тимирязева РАН, Москва, Россия

Аннотация. Изучено влияние N-ацетилцистеинат 2-этил-6-метил-3-гидроксипиридин на функциональное состояние митохондрий 5-дневных этиолированных проростков гороха с использованием модели «старения» митохондрий, вызывающую увеличение генерации АФК и, следовательно, активацию ПОЛ в их мембранах. Полученные данные свидетельствуют о том, что это соединение, по-видимому, способствует сохранению функционального состояния митохондрий, что находит отражение в сохранении их морфологических характеристик.

Митохондрии, являясь одним из центров регуляции энергетического обмена, играют важную роль в ответе организма на стрессовые воздействия. Различные стрессовые факторы (токсические веществ, значительные изменения условий окружающей среды и т.д.) приводят к смещению антиоксидантно-прооксидантного равновесия в сторону увеличения генерации АФК этими органеллами. При этом антиоксидантная система клетки не в состоянии справиться с чрезмерной продукцией АФК, что лежит в основе нарушения многих физиологических функций растений (ростовые функции, урожайность и т.д.) [1].

Можно предположить, что биологически активные вещества (БАВ), обладающие антиоксидантными свойствами, могут оказать влияние как на продукцию АФК в дыхательной цепи митохондрий, так и на функциональное состояние этих органелл.

В своей работе мы обратили внимание на производные 3-оксицистирины. Интерес к изучению химических свойств и биологической активности производных 3-оксицистирина (3-ОП) обусловлен тем, что они являются структурными аналогами
соединений группы витамина B₆, играющих важную роль в жизнедеятельности организма. При этом производные 3-оксипиридина являются гетероциклическими аналогами ароматических фенолов и в этой связи проявляют антиоксидантные и антирадикальные свойства [2].

В качестве объектов исследования было выбрано производное 3-оксипиридина. N-ацетилцистеинат 2-этил-6-метил-3-гидроксипиридина:

Для изучения влияния N-ацетилцистеинат 2-этил-6-метил-3-гидроксипиридина: на функциональное состояние митохондрий 5-дневных этиолированных проростков гороха использовали модель «старения» митохондрий, вызывающую увеличение генерации АФК и, следовательно, активацию ПОЛ в мембранах митохондрий [3].

Материалы и методы. Работу проводили на митохондриях 6-дневных проростков гороха (Pisum sativum L.) сорт Флора-2.

Семена гороха промывали водой с мылом и 0,01% раствором КМnО₄ и в течение 30 минут замачивали в воде. Затем их переносили на влажную фильтровальную бумагу, где их проращивали в течение 6 суток при температуре 24°С. На шестые сутки выделяли митохондрии из эпикотилей проростков.

Выделение митохондрий из эпикотилей этиолированных проростков гороха проводили методом дифференциального центрифугирования (при 25000 г в течение 5 мин и при 3000 г в течение 3 мин) [4]. Осаджение митохондрий проводили в течение 10 мин при 11000 г. Осадок ресуспендировали в 2-3 л среды, содержащей: 0,4 М сахарозу, 20 мM КН₂РО₄ (pH 7,4), 0,1% БСА (свободный от жирных кислот) и вновь осаждали митохондрии при 11000 г в течение 10 мин.

Скорости дыхания митохондрий проростков гороха регистрировали электродом типа Кларка, используя полярограф LP-7 (Чехия). Среда инкубации содержала: 0,4 М сахарозу, 20 мМ НЕPES-Tris-буфер (pН 7,2), 5 мМ КН₂РО₄, 4 мМ MgCl₂, и 0,1% БСА.

Уровень перекисного окисления липидов (ПОЛ) оценивали флуоресцентным методом [5]. Регистрацию флуоресценции проводили в десятимиллиметровых кварцевых кюветах на

Морфологию митохондрий исследовали методом атомно-силовой микроскопии (ACM). Образцы митохондрий фиксировали 2% глutarовым альдегидом в течение 1 часа с последующей промывкой водой и осаждением методом центрифугирования. Исследование проводили на приборе SOLVER P47 SMENA на частоте 150кгц в полу контактном режиме, использовался кантителевер NSG11 с радиусом кривизны 10нм.

В эксперименте использовали реактивы следующих фирм: метанол, хлороформ (Merck, Германия), сахароза, Трис, глutarовый альдегид, малат, глутамат, сукцинат, (Sigma, США), БСА (свободный от жирных кислот) (Sigma, США), HEPES

Рис.1. Спектры флуоресценции продуктов ПОЛ в мембранах митохондрий. Условные обозначения: 1-10^{-9}М 3-ОП; 2-10^{-9}М 3-ОП;3-10^{-13}М3-ОП; 4-контроль; 5-«старение»; 6--«старение»; 7—10^{-12}М 3-ОП.

Результаты и обсуждение. «Старение» митохондрий проростков гороха, приводило к 5-кратному увеличению интенсивности флуоресценции конечных продуктов ПОЛ (оснований Шиффа) (рис.1). N-ацетилцистеинат2-этил-6-метил-3-гидроксипиридина в концентрациях 10^{-6} -10^{-11}М и 10^{-13}М снижал интенсивность флуоресценции продуктов ПОЛ почти до
контрольных значений (рис.1), что, возможно, свидетельствовало о наличии у препарата антистрессовых свойств. В наших дальнейших исследованиях мы использовали препарат в концентрации 10⁻⁶ М.

«Старение» вызывало увеличение скоростей окисления НАД-зависимых субстратов в фосфорилирующем состоянии (V₃) почти на 28% и небольшое повышение этих скоростей в состоянии покоя (V₄), что может свидетельствовать о некотором набухании митохондрий [6]. Введение 10⁻⁶ М препарата в среду инкубации митохондрий восстанавливало биоэнергетические характеристики митохондрий до уровня контроля, что, возможно, было связано с предотвращением набухания органелл (таблица 1).

Инкубация в гипотонической среде приводила к изменению морфологии митохондрий. Появлялось большое количество набухших митохондрий. Обработка семян и проростков гороха 10⁻⁶ М раствором препарата предотвращала изменения морфологии митохондрий, что, вероятно, свидетельствовало о протекторной активности препарата.

Таблица 1.

Влияние N-ацетилцистеинат 2-этил-6-метил-3-гидроксипирдин на скорости окисления НАД-зависимых субстратов митохондриями этиолированных проростков гороха (Скорости окисления представлены в нг атомах O₂/мг белка мин). (Число экспериментов – 10).

<table>
<thead>
<tr>
<th></th>
<th>Vo</th>
<th>Препарат</th>
<th>V₃</th>
<th>V₄</th>
<th>V₃/V₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>Контроль</td>
<td>15,0 ±2.0</td>
<td>-</td>
<td>60,8±2.4</td>
<td>18,82±1.4</td>
<td>3.23±0.02</td>
</tr>
<tr>
<td>Контроль</td>
<td>14,8±1.9</td>
<td>12,6±1,5</td>
<td>58,0±3.5</td>
<td>18,40±2.2</td>
<td>3.15±0.04</td>
</tr>
<tr>
<td>«Старение»</td>
<td>10,5±1,4O4</td>
<td>-</td>
<td>73,8±3,9</td>
<td>21,63±1,440</td>
<td>3,41±0,023</td>
</tr>
<tr>
<td>«Старение»</td>
<td>11,3±2,2</td>
<td>10,8±2,4</td>
<td>65,1±1,7</td>
<td>19,10±3,1</td>
<td>3,41±0,01</td>
</tr>
</tbody>
</table>

Дополнительные добавки: 5 мМ малат, 10 мМ глутамат, 125 мкМ АДФ, 10⁻⁶ М N-ацетилцистеинат 2-этил-6-метил-3-гидроксипиридин. Условные обозначения: Vo - скорости окисления субстратов; V₃ - скорости окисления субстратов в присутствии АДФ; V₄ - скорости окисления в состоянии покоя.

Предотвращая активацию ПОЛ, N-ацетилцистеинат 2-этил-6-метил-3-гидроксипиридин, по-видимому, способствует сохранению функционального состояния митохондрий, что находит отражение в сохранении морфологических
ANTI-STRESS PROPERTIES OF 2-ETHYL-6-METHYL-3-
HYDROXYPYRIDINE N-ACETYLCYSTEINATE

Zhigacheva I.V.1, Generosova I.P.2, Binyukov V.I.1, Mil’ E.M.1
1Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Russia, Moscow, zhigacheva@mail;
2Institute of Plant Physiology. K.A. Timiryazev, Russia, Moscow

The influence of an antioxidant from the class of 3-hydroxypyridines - N-acetylcysteinate 2-ethyl-6-methyl-3-
hydroxypyridine on the functional state of mitochondria of 5-day etiolated pea seedlings was studied. The model of "aging" of mitochondria causing a increase in ROS generation and, consequently, activation of the LPO in mitochondrial membranes was used. The introduction into the incubation medium of 10-6 -10-11M and 10-13M of the drug prevented the activation of LPO in mitochondrial membranes. It is assumed that N-acetylcysteine 2-ethyl-6-methyl-3-
hydroxypyridine, preventing activation of the LPO, probably contributes to the maintenance of a high functional state of mitochondria, which is reflected in the preservation of the morphological characteristics of mitochondria.

Moreover, the drug prevented the swelling of mitochondria in the hypotonic environment and changes in their bioenergy characteristics.
СОВМЕСТНАЯ СОРБЦИЯ ФЕНОЛЬНЫХ КИСЛОТ МОДИФИЦИРОВАННЫМ КАОЛИНИТОМ В СТАТИЧЕСКИХ И ДИНАМИЧЕСКИХ УСЛОВИЯХ

Заварзина А.Г.1,2,3, Ермолин М.С.1,3, Демин В.В.1, Федотов П.С.1,3
1Факультет почвоведения МГУ им. М.В.Ломоносова, Москва, Россия, zavarzina@mail.ru
2Палеонтологический институт им. А.А.Борисяка РАН, Москва, Россия
3Институт геохимии и аналитической химии им. В.И.Вернадского, Москва, Россия

Аннотация. Исследована сорбция эквимолярной смеси фенольных кислот глинистым минералом в статических условиях и проточной системе. Установлено влияние структурных особенностей фенольных кислот на параметры их сорбции.

Фенольные кислоты, поступающие в почву в виде растворимых метаболитов, считаются агентами аллелопатических взаимодействий, ограничивающими рост и развитие конкурирующих видов растительности или патогенов [1, 2]. Фитотоксичность и биодоступность фенольных кислот во многом определяется сорбционными процессами, обусловливающими распределение этих соединений в системе твердая фаза/раствор. Однако, однозначных взаимосвязей между интенсивностью сорбции и структурой фенольных кислот не установлено, совместная сорбция смесей фенольных кислот почвенными компонентами малоизучена. Цель настоящей работы состояла в исследовании сорбции эквимолярной смеси фенольных кислот глинистым минералом в статических условиях и проточной системе, установлении влияния структурных особенностей фенольных кислот на параметры их сорбции.

В качестве минеральной фазы использовали каолинит, а также каолинит, на котором была осаждена аморфная гидроокись алюминия. Минералы, поверхность которых содержат гидроксиды Fe и Al, широко распространены в почвах. В качестве фенольных кислот были взяты соединения, встречающиеся как в метаболитах пioneerной растительности, пример, лишайниках [3, 4], так и в продуктах деструкции лигнина высших растений [5].
Все эксперименты по сорбции фенольных кислот проводили в 20 мМ Na-ацетатном буфере (pH 4.5).

Модификация поверхности каолинита привела к увеличению сорбции галловой кислоты (мкмоль/г) примерно в 20 раз, в 2 раза возросло ее сродство к поверхности минерала (значение параметра k в уравнении Ленгмюра). Значительное увеличение сорбционной емкости минеральных фаз к фенольным кислотам в присутствии аморфной гидроокиси Al согласуется с литературными данными и объясняется как увеличением площади поверхности, так и положительным зарядом, который несет Al(OH)x при значениях pH 4-8, что способствует электростатическим взаимодействиям с отрицательно заряженными карбоксильными группами фенольных кислот. У исходного каолинита расчетная величина заполнения поверхности молекулами галловой кислоты составляла 8%, а у модифицированного - около 25%, таким образом, установлено, что значительная часть поверхности глин, даже модифицированных, в сорбции фенольных кислот не участвует.

При добавлении эквимолярной смеси фенольных кислот к модифицированному каолиниту в статических условиях установлено, что сорбция гидроксизамещенных кислот значительно превышает таковую метоксизамещенных соединений. Так, сорбция галловой кислоты была в 1.5 раза выше, чем протокатеховой и на порядок выше, чем п-гидроксибензойной, ванилиновой, сиреневой и феруловой кислот. Увеличение сорбции в ряду п-гидроксибензойная кислота < протокатеховая < галловая свидетельствует о важной роли OH-групп в орто-положении во взаимодействии с поверхностью минерала. Установленные закономерности сорбции выявлены также и в динамическом (проточном) режиме, который позволил показать конкуренцию кислот за центры связывания по мере заполнения активных центров на каолините-Al(OH)x. Сорбирующаяся галловая кислота вытесняет остальные кислоты, которые переходят в раствор в следующем порядке п-оксибензойная > ванилиновая > сиреневая >> феруловая > протокатеховая.

Высокое сродство орто-замещенных гидроксибензойных кислот к минеральным фазам свидетельствует об их потенциально низкой биодоступности, в отличие от сорбирующихся в меньшей степени и менее прочно п-
оксибензойной, ванилиновой, феруловой и сиреневой кислот.

Работа выполнена при поддержке гранта РНФ №17-14-01207

Список литературы.
3. Заварзина А.Г., Романкевич Е.А., Пересыпкин В.И., Ульянцев А.С., Беляев Н.А., Заварзин А.А. Феноль-дериваты лигнина в лишайниках // Доклады Академии Наук. 2015. Т.464. №4. С.494-497.
4. Загоскина Н.В., Николаева Т.Н., Лапшин П.В., Заварзин А.А., Заварзина А.Г. Водорастворимые фенольные соединения у лишайников // Микробиология. 2013. Вып. 82. №4. С.434-441.

РАДИКАЛ-УЛАВЛИВАЮЩАЯ АКТИВНОСТЬ ФЛАВОНОИДОВ: КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ И ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ

Ильясов И.Р.1, Кадочников В.В.1,2, Белобородов В.Л.1, Порозов Ю.Б.1,2

1 ФГАОУ ВО Первый МГМУ им. И.М. Сеченова Минздрава России (Сеченовский Университет), Москва, Россия, igor@ilyasov.net
2 ФГАОУ ВО Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики (Университет ИТМО), Санкт-Петербург, Россия, vlkadochnikov@gmail.com

Аннотация. С помощью трех различных подходов, основанных на применении радикал-катионов ABTS\(^{+}\) получены экспериментальные данные о количестве моделей радикалов, улавливаемых одной молекулой антиокисдант-флавоноида. В исследование включены
восемь соединений, относящихся к различным подгруппам
флавоноидов: flavanon нарингенин; flavanonol
dиgidрокверцетин; flavоны – лютеолин, апигенин;
флавоны – морин, кверцетин, кемпферол и дигликозид
кверцетина рутин. Экспериментальные данные
сопоставлены с результатами квантово-химических
расчётов, осуществленных в программе Jaguar пакета
Schrodinger. Смоделированы наиболее вероятные пути
проявления flavоноидами радикал-улавливающей
активности.

Несмотря на большое количество публикаций, посвященных
исследованию антиоксидантной активности природных
полифенолов и, в частности, flavоноидов, механизмы их
взаимодействия с радикальными частицами остаются
невыясненными.

Цель исследования заключалась в сопоставлении
экспериментальных данных о количестве радикалов,
улавливаемых одной молекулой каждого из анализируемых
флавоноидов с результатами расчетов, полученных с помощью
методов компьютерной химии, и моделировании наиболее
вероятных путей проявления flavоноидами радикал-
улавливающей активности.

Для исследований были выбраны следующие flavоноиды:
dиgidрокверцетин, кверцетин, нарингенин, апигенин, рутин,
кемпферол, лютеолин, морин. Экспериментальные данные о
количестве радикалов, улавливаемых одной молекулой каждого
из исследуемых flavоноидов были получены с помощью трех
различных подходов, основанных на применении радикал-
кационов 2,2'-азино-бис(3-этилентиазолин-6-сульфоновой
кислоты) диаммониевой соли (ABTS**) in vitro:
деколоризационного, кинетического методов и
спектрофотометрического титрования [1-3]. Экстинкция радикал-
катаиона ABTS** при длине волны 730 нм (для растворов PBS) или
747 нм (для этанольных растворов) принималась равной 15000
л/(моль*см) [4].

Квантово-химические расчеты геометрической оптимизации
dанных молекул в газовой фазе и в водном окружении с моделью
солвента Пуассона-Больцмана и использованием гибридного
метода теории функционала плотности M06-2X с набором
базисных функций 6-31+** были проведены в программе Jaguar
в пакета Schrodinger [5].

Все рассматриваемые flavonoиды имеют одинаковые структурные фрагменты: карбонильную группу в кольце С и OH-группы в положениях 5 и 7 кольца А. Различия заключаются в наличии двойной связи между C2-C3 и наличии гидроксильной группы или биозного заместителя у атома С-3 кольца С, а также характера гидроксилирования кольца В. Исследование деколоризационным, кинетическим методами и спетрофотометрическим титрованием показало, что количество радикалов, улавливаемых одной молекулой каждого из исследуемых flavonoидов находится в диапазоне 4.6-12.0, 2.7-4.7 и 0.9-8.0, соответственно. Получены данные квантово-химических расчетов энергий: а) гомолитического разрыва первой из связей О-Н (эти расчёты были проведены как в газовой среде, так и в водной, дальнейшие расчёты проводились только в газовой фазе); б) гомолитического разрыва второй связи О-Н; в) гомолитического разрыва третьей связи О-Н; г) образования хиноидных структур; д) стабилизации хиноидных структур за счет димеризации с образованием новой С-С связи по кольцу А или по кольцу В; е) стабилизации за счет присоединения молекул растворителя. Сопоставление экспериментальных данных и данных квантово-химических расчетов позволяет предположить наиболее вероятные пути радикального окисления flavonoидов.

Список литературы

RADICAL-SCAVERGING ACTIVITY OF FLAVONOIDS: COMPUTER SIMULATION AND EXPERIMENTAL DATA

Ilyasov I.R.¹, Kadochnikov V.V.¹,², Beloborodov V.L.¹, Porozov Yu.B.¹,²
¹I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia, igor@ilyasov.net
²ITMO University, Saint Petersburg, Russia, vlkadochnikov@gmail.com

Using three different approaches based on the use of radical cations ABTS•⁺ experimental data on the number of model radicals captured by one molecule of the antioxidant flavonoid were obtained. The study included eight compounds belonging to different subgroups of flavonoids: flavanone naringenin; flavanol dihydrossoycetin; flavones – luteolin, apigenin; flavonols – morin, quercetin, kempferol and diglycoside quercetin rutin. The experimental data are compared with the results of quantum chemical calculations carried out in the Jaguar program of Schrodinger package. The most probable ways of radical-trapping activity manifestation by flavonoids are modeled.
Важнейшим преимуществом метода является то, что каротиноиды практически идентичны ненасыщенным жирным кислотам по способности взаимодействовать с кислородными радикалами, поэтому полученные результаты хорошо отражают поведение антиоксидантов в реальных липид содержащих модельных системах и пищевых продуктах.

Известно, что окисление полиненасыщенных жирных кислот (ПНЖК), входящих в состав липидов, проходит с участием эндогенных ферментов, а также под действием кислорода и активных форм радикалов, содержащихся в воздухе. Перекисное окисление липидов относится к цепным реакциям, в которых образующиеся продукты окисления сами являются радикалами-окислителями, которые могут продлевать или обрывать цепь. Инициатором этих реакций являются свет, тепло и окислители. Для снижения степени окисления ПНЖК необходимо свести к минимуму контакты липидов с воздухом и светом, выдерживать оптимальный температурный режим хранения, а также использовать пищевые антиоксиданты (АО).

Ключевым термодинамическим свойством веществ, отражающим их способность окисляться или восстанавливаться, является редокс потенциал (E°). Величины E° для каротиноидов и ПНЖК близки и составляют около 800 мВ и 600 мВ, соответственно [1,2]. Это означает, что эти соединения практически одинаково подвергаются автоокислению и поэтому для изучения автоокисления ПНЖК можно использовать системы на основе каротиноидов паприки. Эти растительные тетратерпиноиды имеют интенсивную окраску от желтой до темно-красной благодаря наличию в их молекулах системы сопряженных двойных связей. При окислении активными радикалами из воздуха каротиноиды быстро обесцвечиваются, АО ингибируют обесцвечивание, сохраняя их окраску [3].

Использовали коммерческий препарат экстракта паприки (ЭП) («Plant Lipids», Индия), содержащий красные (капсантин и капсорубин) и желтые (β–каротин, зеаксантин и β–критоксантин) каротиноиды [4]. В качестве носителя использовали нативный крахмал восковидной кукурузы («ROQUETTE», Франция). Исследовали АО: ионол (2,6-ди-трет-бутил-4-метилfenол), аскорбил пальмитат, три дезодорированных экстракта розмарина компании “AKAY Flavours & Aromatics Pvt. Ltd.” (Индия), а также
эфирные масла (ЭМ) гвоздики, орегана, чеснока и кориандра компании “Plant Lipids Ltd.” (Индия).

Ацетоновый раствор ЭП без и с добавлением АО (по 4% к массе экстракта) наносили на крахмал, образцы имели ярко оранжевый цвет, их оставляли при комнатной температуре и естественном освещении для автоокисления каротиноидов. Периодически отбирали навески, не окисленные каротиноиды экстрагировали ацетоном и снимали спектры поглощения. Содержание каротиноидов в образцах рассчитывали как отношение оптической плотности хранившихся образцов к плотности свежеприготовленных (%). Метод имел хорошую воспроизводимость, стандартное относительное отклонение для 9 образцов составляло 5.7 – 8.3%.

Рис. 1. Относительное содержание каротиноидов при автоокислении образцов в присутствии антиоксидантов: ионола (1), аскорбила пальмитата (2), дезодорированных экстрактов розмарина (3-5), эфирных масел гвоздики (6), орегана (7), чеснока (8) и кориандра (9).

Предлагаемый в настоящей работе метод является модификацией хорошо известного и часто используемого метода оценки АО свойств веществ в модельной системе на основе окисления смеси линолевой кислоты и β-каротина. Преимуществом этого метода, а также предлагаемой нами его модификации, является то, что кинетический подход позволяет определить общую ингибирующую способность индивидуальных АО или их смеси и обеспечивает точную оценку АО защиты [3]. Недостатком метода является окисление модельной системы в
неконтролируемых условиях, что затрудняет воспроизведение полученных ранее данных, но это не мешает проводить сравнение активности нескольких АО в одном эксперименте при одинаковых условиях автоокисления [5].

Как видно из рисунка, в течение 17 суток самыми эффективными АО были все ЭМ. При дальнейшем автоокислении ЭМ орегано, кориандр и чеснок быстрее других теряли эффективность и через 26 суток только ионол и ЭМ гвоздики сохраняли 50-60% каротиноидов. Все розмариновые препараты имели активность близкую к АО аскорбин пальмитата и ЭМ орегано. Экстракты розмарина содержали одно и то же количество (4%) карнозиновой кислоты, основного АО, но содержание флавоноидов и фенольных кислот, которые присутствуют в экстрактах [6], вероятно, было разным, поэтому их эффективность значительно различалась. Самыми эффективными ингибиторами автоокисления каротиноидов были ЭМ гвоздики и ионол. В ЭМ гвоздики АО был эвгенол, механизм реакций эвгенола и ионола с радикалами приведен в [7]. Аналогичные результаты получены при изучении способности этих же АО ингибировать автоокисление метиловых эфиров ПНЖК льняного масла, исследование системы проводилось в течение 6 месяцев с применением трудоемкого и дорогого метода капиллярной газовой хроматографии [8]. Но в системе на основе каротиноидов паприки, нанесенных на пористый нейтральный носитель – пищевой крахмал, аналогичный результат был получен за 23 дня с применением только спектрофотометрии, при этом процесс можно ускорить и стандартизировать путем использования специальных источников света.

Список литературы.
6. Charles D.J. Antioxidant Properties of Spices, Herbs and Other
ESTIMATION OF ANTIOXIDANT PROPERTIES OF PREPARATIONS IN MODEL SYSTEM OB THE BASE OF PAPRIKA CAROTENOIDS

Kiseleva V.I.,1 Misharina T.A.1,2, Kalinchenko M.A.1
1Emmanuel Institute of Biochemical Physics, RAS, Moscow, Russia, tmish@rambler.ru
2Plekhanov Russian Economic University, Moscow, Russia

A method for the estimation of antioxidant properties of preparations has been developed on the base on inhibition of paprika carotenoids auto-oxidation. Carotenoids as paprika extract were coated on the porous inert polysaccharide as a support. Developed method has good reproducibility and is effective for comparison of the activity of different antioxidants. The most important advantage of the method is that carotenoids are almost identical to unsaturated fatty acids in ability to interact with oxygen radicals. Therefore, the results obtained are in good accordance with behavior of antioxidants in real lipid-containing model systems and food products.
металлоценов были взяты ферроцен и цимантрен, в качестве производных изоксазола использовали 3-(хлорметил)-5-фенил(п-толил)изоксазолы. Полученные соединения представляют интерес как синергисты биологически активных препаратов и подготовлены для биотестирования.

Нами осуществлен синтез серии сложных металлоцен-гетероциклических систем, содержащих в молекуле различные гетероциклы, связанные с изоксазолом посредством фенольного линкера. В качестве металлоценов были взяты ферроцен и цимантрен, в качестве производных изоксазола использовали 3-(хлорметил)-5-фенил(п-толил)изоксазолы. Исходными веществами на первой стадии служили природные альдегидофенолы: ванилин и п-гидроксибензальдегид; последний использовался в качестве модельного соединения.
для отработки методик.
Первоначально алкилированием альдегидофенолов 3-(хлорметил)-5-арилизоксазолами были получены простые эфiry с альдегидной функцией, а далее по реакции конденсации с ацетилферроценом и ацетилцимантреном синтезировали соответствующие аналоги изоксазол-металлоценовых халконов. В молекулах халконов изоксазольный и кетометаллоценовый фрагменты связаны через фенольный линкер. В случае ванилина молекулы соответствующих аналогов халконов имеют следующее строение с E-конфигурацией заместителей у винильного фрагмента.

Действием на халконы 1,2- и 1,3-бифункциональных реагентов (гидроксиламина, семикарбазида и тиосемикарбазида) в спиртовой среде в присутствии щелочи синтезирована серия бис-гетероциклических - изоксазол-изоксазольных, изоксазол-пиридиновых и изоксазол-пиразольных производных ферроцена и цимантрена, содержащих фенольный линкер.
Полученные соединения представляют интерес как синергисты биологически активных препаратов и подготовлены для биотестирования.

Список литературы.
1. Loganayaki N., Siddhuraju P., Manian S. Antioxidant activity and free radical scavenging capacity of phenolic extracts from Helicteres isora L.

PROMISING BIOLOGICALLY ACTIVE CONJUGATES OF METALLOCENES WITH AZAHETEROCYCLIC DERIVATIVES OF NATURAL ALDEHYDOPHENOLS

Kolesnik I.A., Kletskov A.V., Petkevich S.K., Dikusar E.A., Potkin V.I.

Institute of Physical Organic Chemistry, NAS of Belarus, Minsk, Belarus, irynakolesnik93@gmail.com

Conjugates of phenols with ferrocene can enhance and reduce oxidative stress in cells. Their antiproliferative activity is significantly higher than that of unmodified molecules, and they usually have low toxicity. In addition, it was previously shown that some isoxazoles are able to enhance the biological effect of known drugs, which allows reducing their dose.

A series of metallocene-heterocyclic systems containing various azaheterocycles in the molecule connected with 5-phenyl(p-tolyl)isoxazole via a phenolic linker were synthesized. Ferrocene and cimantrene were used as representatives of metallocenes. Natural aldehydophenols were selected for phenolic linker forming. The compounds obtained are of interest as synergists of biologically active agents and are prepared for biotesting.
ПРИРОДНЫЕ АЦИЛФЛОРОГЛЮЦИНОЛЫ

Литвиненко В.И., Попова Н.В., Георгиевский В.П., Кузанян А.С.
ГП «Государственный центр лекарственных средств и медицинской продукции» Харьков, Украина.
Национальный фармацевтический университет. Харьков, Украина
ГП «Украинский научный фармакопейный центр качества лекарственных средств», Харьков, Украина, bromatology@nuph.edu.ua

Аннотация. Среди недостаточно исследованных фенольных производных лекарственных растений отечественной флоры следует выделить ацилфлороглюцинолы. В работе проведен анализ вопросов классификации, распространения в растительном мире, биологической активности этого класса веществ. Среди лекарственных растений, сырье которых содержит производные флороглюцина, следует указать на виды бессмертника (Helichrysum), хмеля (Humulus), папоротника (Dryopterix), а также зверобоя (Hypericum) и эвкалипта (Eucalyptus). Интерес представляет антиоксидантная, седативная, противораковая виды активности этих видов фенольных веществ, а также вопрос стандартизации растительного сырья по этому классу биологически активных соединений.

В последние годы в связи с изучением качественного и количественного состава фенольных соединений различных видов бессмертника Helichrysum [1,5] мы обратили внимание на необычные соединения, называемые ацилфлороглюцинолами или ацилфлороглюцинами [11,12,15,16].

Основным структурным элементом в этих соединениях является флороглюцин или 1,3,5-тригидроксисибензол.

Обычно ацилфлороглюцины в растениях встречаются параллельно с флавоноидами. По современным представлениям во флавоноидах флороглюциновое кольцо (А) биосинтетически образуется с участием СоА-фермента из трех ацетильных или малонильных групп. Вторая часть молекулы флавоноидов представлена ацильным остатком коричных кислот [3,4]. Вероятно, ацилфлороглюцины образуются по тому же пути, что и флавоноиды.

Большинство из обнаруженных ацилфлороглюцинолов
содержат, главным образом, два вида заместителей: группы пренил/ геранила и ацильные группы. Ацильные заместители представлены бутаноилом, изобутаноилом, 2-метилбутаноилом или бензоилом. Пренильные и гераноильные группы, возможно, были подвергнуты циклизации, что привело к образованию хромановых производных [9, 11, 12, 15, 16].

Некоторые примеры известных ацилфлороглюцинов приведены в табл. 1.

Таблица 1.
Ацилфлороглюциновые растительные производные

<table>
<thead>
<tr>
<th>Тривиальное название</th>
<th>Химическая структура</th>
<th>Растительный источник</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. гелинивен A</td>
<td>1-бензоил-3 (3-метилбут, 2-энилацetat)- флороглюцинол</td>
<td>Helichrysum niveum</td>
</tr>
<tr>
<td>2. гелинивен B</td>
<td>1-бензоил-3 (2S-гидрокси-3-метилбут--3-энил) -флороглюцинол</td>
<td>«»</td>
</tr>
<tr>
<td>3. гелинивен C</td>
<td>8-(2-метилпропанон)-3S,5,7-тригидрокси -2,2-диметоксихроманон</td>
<td>«»</td>
</tr>
<tr>
<td>4.</td>
<td>1-(2-метилбутанон)-4-O-пренил - флороглюцинол</td>
<td>«»</td>
</tr>
<tr>
<td>5.</td>
<td>1-(2-метилпропанон)-4-O-пренил - флороглюцинол</td>
<td>«»</td>
</tr>
<tr>
<td>6.</td>
<td>1-(бутанон)-3-пренил - флороглюцинол</td>
<td>«»</td>
</tr>
<tr>
<td>7.</td>
<td>1-(2-метилбутанон)-3-пренил - флороглюцинол</td>
<td>«»</td>
</tr>
<tr>
<td>8.</td>
<td>1-бутанон-3-(3-метилбут-2-энилацetat)- флороглюцинол</td>
<td>«»</td>
</tr>
<tr>
<td>9.</td>
<td>1-(2-метилпропанон)-3-пренил- флороглюцинол</td>
<td>«»</td>
</tr>
<tr>
<td>цеспитат</td>
<td>2-метил-4-[2',4',6'-тригидрокси-3'-(2-метилпропаноил)-пренил-бут-2-энилацetat</td>
<td>H.caespititium, H. niveum</td>
</tr>
<tr>
<td>11.</td>
<td>транс-(2R, 3R)- 5,7-дигидрокси-2,3-диметил 4-хроманон</td>
<td>H.paronychioides</td>
</tr>
<tr>
<td>12.</td>
<td>2-бутаноил-4-пренил-1-метокси флороглюцинол</td>
<td>H.paronychioides</td>
</tr>
<tr>
<td>13.</td>
<td>2-(2-этилпропаноил)-4-пренилфлороглюцинол</td>
<td>H.paronychioides</td>
</tr>
<tr>
<td>14.</td>
<td>2-(2-метил-бутаноил)-4-пренилфлороглюцинол</td>
<td>H.paronychioides</td>
</tr>
</tbody>
</table>
| 15. Арзанол | 1-акетил(3-пренил-)-5-метилен-3 | *H. italicum ssp.*
Из ацетонового экстракта надземной части Helichrysum italicum ssp. microphyllum был выделен флороглюцинол-α-пирон-арзанол (1a) как мощный ингибитор NF-κB [9]. Арзанол оказался идентичным гомоаренолу [20]. Эти первые химические вещества группы ацилфлороглюцинов из H. niveum были исследованы in vitro на биологическую активность. Полученные результаты свидетельствуют о новых перспективах применения этих фенольных соединений в косметике, фармации и медицине подобно препарату аренарину.

Аренарин представляет собой 5% раствор веществ с антимикробной активностью, извлекаемых 96% этиловым спиртом из соцветий бессмертника песчаного. Это прозрачная жидкость зеленовато-коричневого цвета со слабым специфическим запахом. Содержание спирта не менее 86%, сухого остатка не менее 5%. Аренарин - комплексный препарат, действующими веществами его являются флавоноиды и смоляные кислоты полифенольной природы. Ранее полагали, что биологически активным компонентом аренарина являются флавоноиды (нарингенин) [7, 9] и/или фталиды [5,6].

На основании новых данных, считается что, главным компонентом высокоактивного антибактериального препарата аренарина является арзанол [7,8,9], а не гомоаренол [9,11,20]. Структура гомоаренола уточнена как арзанол, таким образом, решив давнюю головоломку над биогенетическим происхождением гомоаренола [9,11]. Показателем качества аренарина является антимикробная активность против стафилококка золотистого штамма 209. Субстанция должна отвечать требованиям ВФС 42-1378-83. Препарат разрешен к применению в медицинской практике в виде 1% глазной мази (*ВФС 42-1347-83) (*приказ МЗ СССР от 23 ноября 1983 г.№ 1346 (рег. уд.№ 83/13461). Арзанол препятствует копирование HIV-1 в T-клетках и

<table>
<thead>
<tr>
<th>(гомоаренол)</th>
<th>(4-гидрокси-5-метил-6-этил)-хроман-2-он флороглюцинол</th>
<th>microphyllum, H.arenarium</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. гумулон</td>
<td>1-(3-метилбутанлоил)-2,6-дигидрокси-4-кето-3,5,5-трипренил-дигидробензил</td>
<td>Humulus lupulus</td>
</tr>
<tr>
<td>17. лупулон</td>
<td>1-(3-метилбутанлоил)-2,6-дигидрокси-4-кето-3,5, -дипренил-дигидробензил</td>
<td>Humulus lupulus</td>
</tr>
</tbody>
</table>
проявляет активность в отношении противоспалительных цитокинов [9, 11].

Одним из богатых источников производных ацилфлороглюциноволов являются «шишки» (или соплодия) хмеля *Humulus lupulus* L., Cannabaceae. Хмелевые горькие кислоты - ацикличные фенольные кислоты, встречаются как моно-, ди- или три-пренилированные флороглюциновольные производные и продукты их окисления. Известны две главные α- и β-кислоты, выделенные из хмеля.

Две серии соединений охватывают, фактически, по три компонента, отличающихся природой боковой цепи: - α-кислоты представлены тремя главными компонентами - когумулоном, гумулоном и адгумулоном. β-Кислоты также имеют три производных - колупулон, лупулон и адлупулон (с шестичлененной структурой). β-Кислоты отличаются структурно от α-кислот еще одной пренильной группой. Кроме того, есть несколько гомологов и аналогов, в том числе постгумулоны /постлупулоны, прегумулоны / прелупулон и адпрегумулоны.

Когумулон и гумулинов - два соответственно окисленных продукта α-кислот с пятичленной структурой. Также, как и когулунон и гулунон - окислительное соответствие колупулону и лупулон/адлупулону с пятичленной структурой. α-Кислоты и соответствующие изо-α-кислоты, также как и β-кислоты, происходят из шести различных близких соединений, отличающихся углеродным скелетом цепи алканильной стороны. Самая главная химическая конверсия, которая происходит в хмеле - тепловая изомеризация α-кислот или гумулона в изо-α-кислоты или изогумулоны через ацильного типа - сжатие.

Изогумулоны - оптически активные соединения, которые являются цис- и транс- изомерами, из которых образуются два эпимерных изогумулона, (цис- и транс-изогумулоны), в зависимости от пространственного расположения третичной спиртовой функции при С(4) и цепи пренильной группы при С(5).

Гумулоны обладают антиоксидантной, седативной, а также противоопухолевой активностями, проявляя эффекты при карциногенезе на коже мыши.

Следующим источником ацилфлороглюциновых производных являются корни и корневища папоротников. Род *Dryopteris* (лесной папоротник, мужской папоротник) включает 250 видов папоротников, произрастающих в Восточной Азии,
Америке, Европе, Африке. Мужской папоротник Dryopteris filix-mas был в течение многих лет рекомендовали в качестве глистогонного средства и включен в ряд фармакопей мира, в том числе и Фармакопею США и СССР [21].

Сложный комплекс ацилфлороглюцинов папоротника представлен фласпидовыми, филиксовыми кислотами аспидинами и другими соединениями, в основе структур которых находится флороглюцин и его различные окисленные формы. Многие производные находятся в виде моно-, ди-, три-, тетра- и полимерных форм.

Следующими представителями ацилфлорофглюцинолов являются соединения зверобоя (гиперфорин) и эвкалиpta [17, 21].

Все эти растения, как правило, мало оцениваются по качественному и количественному составу ацилфлороглюцинов, хотя они обуславливают многообразие их лекарственных свойств [21].

Список литературы:
1. К вопросу о стандартизации лекарственного растительного сырья. Сообщ. 1. Оценка цветков бессмертника песчаного по содержанию биологически активных соединений. / В.П. Георгиевский, А.А. Зинченко, А.Ю. Куликов, В.И. Литвиненко, А.В. Колиснык, Н.В. Попова, Л.А. Бобрицкая // Фармаком. – 2017. – № 2. – С.34-57.
13. Phloroglucinol compounds of natural origin: Synthetic aspects / I.P.

NATURAL ACYLFLOROGLYUTSINOLS
Litvinenko V.I., Popova N.V., Georgievsky V.P., Kutsanian A.S.
State Enterprise "The State Center of Medicines and Medical Products", Kharkov, Ukraine.
National Pharmaceutical University. Kharkov, Ukraine
State Enterprise "Ukrainian Scientific Pharmacopoeial Center for the Quality of Medicines", Kharkov, Ukraine, bromatology@nuph.edu.ua

Among the insufficiently investigated phenolic derivatives of medicinal plants of the native flora, acyl phloroglucinols should be especially mentioned. This paper analyzes the problem of classification, distribution in the plant kingdom, biological activity of this class of substances. Among medicinal plants whose herbal drugs contain derivatives of phloroglucin, mention should be made of species of immortelle (Helichrysum), hops (Humulus), fern (Dryopterix), St. John's Wort (Hypericum) and gum-tree (Eucalyptus). Of interest is the antioxidant, sedative, anticancer activity of these phenolic substances, and also the issue of standardization of herbal drugs with the reference into this class of biologically active compounds.
РОЛЬ TYR-ФРАГМЕНТА В МЕХАНИЗМЕ
ФЕРМЕНТАТИВНОГО КАТАЛИЗА NI(FE)-ARD
ДИОКСИГЕНАЗАМИ

Матиенко Л.И., Бинюков В.И., Мосолова Л.А., Миль Е.М.
ФБГУН ИБХФ РАН, Москва, Россия, mila.matienko@yandex.ru

Аннотация: Обсуждается возможная роль Tyr-фрагмента в механизме действия Ni-ARD, основываясь на экспериментальных данных, которые впервые получены на модельных системах, гетеролигандных комплексов {Ni(acac)₂·L²·L³} (L² = NMP, HMPA, MSt (M = Na, Li), L-Гистидин (NMP = N-метил-2-пирролидон); L³= PhOH, L-Тирозин) с помощью метода ACM.

Цикл синтеза и воспроизведения метионина (MSP) играет важную роль в регуляции ряда важных метаболитов у прокариот и эукариот [1]. Метилтиоаденозин (MTA) является первым промежуточным продуктом на этом пути, и формируется из S-аденозил метионина (SAM) в процессе синтеза полиаминов у животных и этилена в растениях. МТА является ингибитором как синтеза полиаминов, так и реакций трансметилирования. Ингибирование синтеза полиаминов, которые необходимы для роста и пролиферации клеток, тормозит репликацию ДНК, а увеличение концентрации полиаминов может привести к развитию злокачественных новообразований. Концентрация MTA в клетках контролируется циклом MSP. Ферменты Ациредуктон Диоксигеназы Ni(Fe)-ARD выполняют важные функции в пути рециркуляции метионина.

Эти Диоксигеназы представляют необычный случай катализа, так как в зависимости от иона металла в активном месте фермента, различаются по механизму действия в отношении общих субстратов (1,2-дигидрокси-3-оксо-5 (метилтио) пент-1-ен (Ациредуктон) и молекулярный кислород) [1]. FeARD катализирует предпоследний шаг в метаболическом пути окислительного (O₂) разложения Ациредуктона в формиат и кето-кислотный предшественник метионина 2-кето-4-(тиометил) бутират (KMTB). Путь реакции окисления (O₂) Ациредуктона, катализируемой NiARD, не приводит к образованию метионина. Но в результате этой реакции образуется CO, являющийся
нейротрансмиттером. СО идентифицирован в качестве антицитоплазматической молекулы у млекопитающих [1].

Можно было предположить направляющую роль водородных связей, как один из важных факторов в регулировании синтеза метионина при участии Ni(Fe)-ARD. Мы предположили, что различная активность ферментов Ni(Fe)-ARD по отношению к общим субстратам объясняются, в качестве одной из причин, самоорганизацией катализаторов в различные макроструктуры за счет межмолекулярных Н-связей.

Мы предложили новый подход к исследованию механизма гомогенного катализа и механизма действия ферментов. Метод Атомно-Силовой Микроскопии (ACM) впервые успешно использован нами для исследования возможности формирования супрамолекулярных структур за счет межмолекулярных Н-связей на основе гетеролигандных комплексов никеля и железа, являющихся не только катализаторами окисления алкиларенов молекулярным O2, но и структурными и функциональными моделями Диоксигеназ Ni(Fe)-ARD и Fe-Ацетилацетон Диоксигеназы, FeII-Dke1: Ni2(acac)(OAc)3·MP·2H2O, FeIII(x(acac)y18C6m(H2O)n, Ni(acac)2·L2·PhOH (L2 =NMP, HMPA, MSt (M = Na, Li)), (NMP = N-метил-2-пирролидон) [2-4].

Так, мы наблюдали самоорганизацию за счет Н-связей комплексов FeIII(x(acac)y18C6m(H2O)n, моделирующих активный центр FeARD, в супрамолекулярные структуры, напоминающие по форме трубочку тубулина (ACM) [4]. Формирование структур, подобных белку тубулина, может благоприятствовать активации O2 и последующим реакциям, ведущим к образованию метионина.

Мы впервые высказали предположение, что в случае функционирования Ni(Fe)-ARD необходимо учитывать роль второй координационной сферы, включающей Туг-фрагмент (Схема 1), который способен затормозить действие NiARD, как, например, предполагалось участие Туг-фрагмента в снижении активности Homoprotocatechuate 2,3-Dioxygenase [5].

Нами было установлено, что в ходе реакции окисления этилбензола молекулярным O2, катализируемой трехкомпонентными системами {Ni(acac)2+L2+PhOH},形成的 на начальных стадиях реакции комплексы Ni(acac)2·L2·PhOH устойчивы и не подвергаются окисительно-восстановительным превращениям.
трансформации, как это происходит в случае бинарных комплексов Ni(acac) 2·L 2 [2]. Лиганд acac- в составе тройных комплексов Ni(acac) 2·L 2·PhOH не окисляется молекулярным O 2. Ранее мы установили, что трансформация комплексов Ni(acac) 2·L 2, являющихся первичной моделью NiARD, под влиянием молекулярного O 2, происходит по механизму, аналогичному действию NiARD [1,2], т.е. в результате региоселективного присоединения O 2 к лиганду acac- с образованием ацетат-иона (OAc -), ацетальдегида и CO [2].

Схема 1. Структура NiARD с Тыр фрагментом во внешней координационной сфере [1].

Убедительное свидетельство в пользу регуляторной роли Тыр-фрагмента в функционировании Ni(Fe)-ARD, было получено нами с помощью метода ACM. Мы впервые наблюдали не только самоорганизацию в супрамолекулярные структуры модельных систем Ni(acac) 2·L 2·PhOH, но также образование макроструктур в условиях, приближенных к реальным биологическим системам, включающих Тыр- и His лиганды, Ni(acac) 2·NMP·Тыр (Тыр=L-Тирозин), {Ni(acac) 2+His+Тыр} (His=L-Гистидин) (Рис.1а,б, 2). Спонтанный процесс самоорганизации в макроструктуры исследуемых тройных систем на специально подготовленной
модифицированной кремниевой поверхности обусловлены балансом между межмолекулярными и молекулярно-поверхностными взаимодействиями, которые могут быть следствием (фенол-карбоксилата) водородных связей и других не ковалентных взаимодействий.

Полученные результаты свидетельствуют в пользу регуляторной роли Тyr-фрагмента, координация которого к Ni-центру может привести к снижению активности NiARD фермента в функционировании Ni(Fe)-ARD Диоксигеназ.

Рис. 1. ACM трехмерный имидж наноструктур, образующихся на модифицированной кремниевой поверхности, на основе: a – тройных комплексов Ni(acac)₂·MP·PhOH, h~80-100 nm, b – тройных систем {Ni(acac)₂+His+Tyr}, h~30 nm.

Рис. 2. (1) Диаграмма средних значений объемов частиц (a) на основе двойных {Ni(acac)₂+His}(a) и тройных систем {Ni(acac)₂+His+Tyr}(b) (95% доверительный интервал). (2) Эмпирическое и теоретическое кумулятивное логнормальное распределение объемов частиц на основе системы {Ni(acac)₂+His+Tyr}.
THE ROLE OF TYR-FRAGMENT IN ENZYME CATALYSIS WITH NI(FE)-ARD DIOXYGENASES

Matienko L.I., Binyukov V.I., Mosolova L.A., Mil E.M.
PhBStI IBhPh RAS, Moscow, Russia, mila.matienko@yandex.ru

In this article, we discuss the possible role of Tyr-fragment in the mechanism of Ni-ARD action, based on the experimental data, we received at first on model systems, heteroligand complexes \(\{\text{Ni(acac)}_2 \cdot L^2 \cdot L^3\} \) (\(L^2 = \text{NMP, HMPA, MSt (M = Na, Li)} \), \(L^3 = \text{PhOH, L-Tyrosine} \)) using AFM method.
СВОБОДНО-РАДИКАЛЬНЫЕ РЕАКЦИИ ФЕНОЛЬНЫХ СОЕДИНЕННЫХ НА ФОНЕ БОЛЬШИХ КОНЦЕНТРАЦИЙ ЭНДОГЕННЫХ И ДРУГИХ АНТИОКСИДАНТОВ

Мехедова О.В., Фенин А.А.
ФГБО УВО Российский химико-технологический университет имени Д.И. Менделеева, Москва, Россия, fmkfenin@rctu.ru

Аннотация. Реакционная способность фенольных соединений сопоставима с реакционной способностью эндоэгенных антиоксидантов, однако концентрация экзогенных антиоксидантов много меньше. Предположено, что фенольные соединения реагируют не с “первичными” радикалами, а радикалами эндоэгенных антиоксидантов и продемонстрирована возможность протекания таких процессов.

В организме присутствуют эндоэгенные антиоксиданты (ЭАО), концентрация которых превышает концентрацию фенольных соединений на порядки величин. Фенольные соединения смогут проявлять свою активность лишь в том случае если для какого-то из типов радикалов, участвующих в цепном механизме, произведение \(k_{\Phi C+R} \cdot [\Phi C] \) окажется больше или сопоставимым с произведением \(k_{\Theta A+R} \cdot [\Theta A] \)

\[
R + \Phi C \rightarrow \text{продукты} \quad W_1^A = k_{\Phi C+R} \cdot [\Phi C] \cdot [R]
\]

\[
R + \Theta A \rightarrow \text{продукты} \quad W_2^A = k_{\Theta A+R} \cdot [\Theta A] \cdot [R]
\]

Было предположено, что возможная роль фенольных соединений в антирадикальной защите состоит во взаимодействии их с радикалами эндоэгенных антиоксидантов. В частности при взаимодействии цистеина с радикалами образуется цистеильный радикал:

\[
\overset{\cdot}{R} + CysSH \rightarrow RH + CysS\overset{\cdot}{\cdot}
\]

Данный радикал может взаимодействовать с липидами окисляя их.
Таким образом, цепь свободно-радикальных процессов не обрывается. В том случае если фенольные соединения способны
взаимодействовать с радикалами эндогенных антиоксидантов цепь свободно-радикальных процессов обрывается. В этом случае фенольные соединения проявят антирадикальную активность, хотя прямого взаимодействия с «первичными» радикалами происходить не будет и фенольные соединения выступят в качестве «последнего рубежа» антирадикальных реакций.

Для исследования возможности участия антоцианов в свободно-радикальных реакциях на фоне больших концентраций эндогенных антиоксидантов проводили радиолиз спиртовых растворов мальвидин-3,5-дигликозида (концентрация 0,1мМ) с добавкой аскорбиновой кислоты в диапазоне концентраций 10^{-5}–10^{-2} моль/л. Показано (рис.1), что степень ингибирования разложения антоцианов значительно меньше моделью не учитывающей возможность реакции между радикалом аскорбиновой кислоты и антоцианом.

Рис. 1. Зависимость степени ингибирования разложения антоцианов ($c=0,1\text{мМ}$) ($G_{[AK]}=v/G_{[AK]}_i$) от концентрации аскорбиновой кислоты.

Аналогичная ситуация наблюдалась при введении цистеина и кофейной кислоты. Таким образом, показана возможность антоцианов вступать в реакцию с радикалами других антиоксидантов.

FREE RADICAL REACTIONS OF PHENOLIC COMPOUNDS IN THE PRESENCE OF A GREATER CONCENTRATION OF ENDOGENOUS AND OTHER ANTIOXIDANTS

Mehedova O.V., Fenin A.A.
Dmitry Mendeleev University, Moscow, Russia, fmkfenin@rctu.ru
The reactivity of phenolic compounds is comparable to the reactivity of endogenous antioxidants, but the concentration of exogenous antioxidants is much less. It is assumed that the phenolic compounds react not with the "primary" radicals but with radicals of endogenous antioxidants and demonstrated the possibility of such processes.

РЕАКЦИОННАЯ СПОСОБНОСТЬ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ В ВОДНО-ОРГАНИЧЕСКИХ РАСТВОРАХ

Мовчан Е.Н., Кобозева В.А., Стребков А.А., Фенин А.А.
ФГБО УВО Российский химико-технологический университет имени Д.И. Менделеева, Москва, Россия, fmkfenin@rctu.ru

Аннотация. В работе рассмотрено влияние состава водно-органического раствора (соотношение вода/органический компонент и рН среды) на антирадикальную активность фенольных соединений.

В настоящее время производится много различных лекарственных препаратов и БАДов, в состав которых входят антиоксиданты. Флаваноиды и их производные проявляют противоопухолевую, противоспалительную, антиаллергическую активность, а также проявляют довольно высокую биологическую активность, в том числе антикоагулирующую, спазмолитическую и другие свойства.

Известно, что под действием стрессовых факторов образуются свободные радикалы, которые могут вызывать повреждения функционально-важных молекул. Способность антиоксидантов взаимодействовать со свободными радикалами и превращать их в неактивные продукты может уменьшить характер повреждения, выступая в роли защитного агента. В живом организме действует физико-химическая регуляторная система, которая поддерживает необходимый уровень свободнорадикальных реакций, регулирует обмен мембранных липидов и скорость расходования антиоксидантов. Если уровень антиоксидантов повышается, то процессы окисления в клеточных мембранах замедляются.

Целью исследований в данной работе стало моделирование процессов, которые могут происходить в данных...
системах под действием внешних факторов, а именно при действии ионизирующего излучения и определение влияния таких факторов как соотношение вода/органический компонент и pH среды на реакционную способность соединений.

Объектами исследования стали антоцианы, флавонолы, оксикоричные и гидроксибензойные кислоты.

В растворах фенольные соединения образуют сольватные комплексы с растворителем в результате чего изменяется распределение электронной плотности в молекулах, что может приводить к изменению их активности в свободно-радикальных процессах. Для изучения влияния состава водно-спиртового раствора на активность антоцианов была получена зависимость радиационно-химического выхода разложения антоцианов от концентрации спирта в растворе. Необходимо отметить, что теоретические расчеты говорят о небольшом (в пределах 20%) изменении выхода гидроксиалкильного радикала при переходе от низких концентраций спирта к высоким.

Рис. 1. Зависимость радиационно-химического выхода разложения антоцианов от концентрации спирта.

Полученные данные свидетельствуют о снижении активности антоцианов по отношению к гидроксиалкильному радикалу при малых концентрациях спирта.

Изменение значения pH может приводить к изменению механизма реакции с механизма переноса атома водорода при низких pH на более быстрый процесс переноса электрона при повышении pH и переходом от недиссоциированной молекулы к молекуле с диссоциированной OH связью. Данный факт был подтвержден исходя из влияния показателя кислотности на константу скорости реакции взаимодействия фенольных
соединений с радикалами.

REACTIVITY OF PHENOLIC COMPOUNDS IN AQUEOUS-ORGANIC SOLUTIONS

Movchan E.N., Kobozeva V.A., Strebkov A.A., Fenin A.A.
Dmitry Mendeleev University, Moscow, Russia

The effect of the composition of the aqueous-organic solution (water / organic component and pH of the medium) on the antiradical activity of phenolic compounds is considered in this work.

ОКСИМИНОАЛКИЛИРОВАНИЕ ФЕНОЛОВ И ДРУГИХ НО-КИСЛОТ. НОВЫЙ ПОДХОД К СИНТЕЗУ α-ОКСИОКСИМОВ И ИХ ПРИМЕНЕНИЕ В НАПРАВЛЕННОМ СИНТЕЗЕ

Наумович Я.А., Сухоруков А.Ю., Иоффе С.Л.
Институт органической химии им. Н. Д. Зелинского РАН, Лаборатория функциональных органических соединений, Москва, Россия, yanaumovich@yandex.ru , sukhorukov@ioc.ac.ru , iof@ioc.ac.ru

В работе предложен новый подход к синтезу α-оксиоксимов 1 – соединений, известных своей фунгицидной активностью [1] и широко применяемых в качестве интермедиатов в синтезе фармакологически активных веществ. В основе данного метода лежит ранее не известная реакция присоединения НО-кислот к N,N-бис(окси)енаминам А, легко доступным из нитроалканов (Схема 1) [2].

В сочетание с енаминами А были успешно вовлечены различные моно- и бис-фенолы, а также карбоновые и гидроксамовые кислоты (Схема 1). Целевые продукты 1 получены с хорошими выходами (52-98%). Также проведены детальные исследования механизма присоединения НО-кислот к енаминам А, показано, что он может меняться в зависимости от природы субстрата и растворителя.

Полученные α-оксиоксимы 1, могут быть восстановлены в производные ценных 1,2-аминоспиртов 2 и 1,2-гидроксиламиноспиртов 3 (Схема 1). Данным способом были успешно синтезированы антиаритмический препарат...
Мексилетин, его N-гидрокси-производное, а также известный ингибитор матриксной металлопротеиназы (ММП).

Схема 1

Примеры полученных продуктов:

- Мексилетин
- N-гидрокси-Мексилетин
- ингибитор ММП

Работа выполнена при финансовой поддержке гранта РНФ (грант 17-13-01411).

Список литературы:

OXIMINOALKILATION OF PHENOLS AND OTHER HO-ACIDS.
A NEW APPROACH TO SYNTHESIS OF α-OXYOXIMES AND THEIR APPLICATION IN TIRGET-DIRECTED SYNTHESIS

Naumovich Y.A., Sukhorukov A.Y., Ioffe S.L.
Institute of Organic Chemistry, Moscow, Russia, yanaumovich@yandex.ru

A new approach to the synthesis of α-hydroxy oximes is proposed. This method is based on the previously unknown reaction of addition of HO acids to N, N-bis (oxy) enamines. Various mono- and bis-phenols, as well as carboxylic and hydroxamic acids, have been successfully involved in interaction with enamines. The target products were obtained in good
yields (52-98%). The resulting α-hydroxy oximes can be reduced to derivatives of 1,2-aminoalcohols and 1,2-hydroxylamine alcohols.

РЕАКЦИОННАЯ СПОСОБНОСТЬ ОКСИКОРИЧНЫХ КИСЛОТ И РОДСТВЕННЫХ СОЕДИНЕНИЙ В РЕАКЦИЯХ С УГЛЕРОД-ЦЕНТРИРОВАННЫМИ РАДИКАЛАМИ

Николаева В.В., Федорова Л.В., Таракова Н.В., Фенин А.А., Магомедбеков Э.П.
ФГБО УВО Российский химико-технологический университет имени Д.И. Менделеева, Москва, Россия, valli888@bk.ru

Аннотация. В работе рассмотрен метод определения константы скорости реакции фенольных соединений по отношению к α-гидроксиэтильному и карбоксиметильному радикалу. Два соединения группы гидроксибензойных кислот и оксикоричных кислот константа скорости составляет (2–10)·10^5 л·моль^{-1}·с^{-1}.

Для успешной защиты биомолекул от пагубного действия радикалов необходимо чтобы экзогенные антиоксиданты эффективно конкурировали с биомолекулами за радикалами. Способность конкурировать за свободные радикалы характеризуется константой скорости соответствующей реакции. Определение константы скорости является сложной задачей поскольку фенольные соединения могут выступать не только в роли акцептора радикалов, но и изменить активность системы генерирующей радикалы, например, хелатируя ионы железа в реакции Фентона.

Радиационно-химическое генерирование свободных радикалов выгодно отличается от других методов, поскольку на выход радикалов не влияют добавки исследуемых веществ, скорость инициирования постоянна, реакция может быть мгновенно остановлена, существуют большие возможности для генерации различных видов радикалов.

Происходящие при радиолизе растворов фенольных соединений (АН) процессы в первом приближении можно описать тремя уравнениями:
\[\text{RH} \xrightarrow{\text{AH}} \text{R} \]

\[W_0 = kGP \]

\[\text{R} + \text{AH} \rightarrow \text{продукты взаимодействия} \quad W_A = k_A [\text{R}] [\text{AH}] \]

\[\text{R} + \text{R} \rightarrow \text{продукты рекомбинации} \quad W_p = 2 \cdot k_p [\text{R}]^2 \]

В том случае, если скорость второй реакции значительно меньше третьей и ей можно пренебречь, стационарная концентрация радикалов будет определяться выражением \[[\text{R}] = \frac{W_0}{\sqrt{2 \cdot k_p}} \], также в этом случае реакция акцептирования будет реакцией псевдопервого порядка по концентрации акцептора. Концентрация акцептора в зависимости от времени процесса будет описываться следующим выражением \[C_A = C_0 \times e^{-k_A [\text{R}]t} \], что в полулогарифмических координатах будет давать \[\ln C_A = \ln C_0 - [k_A [\text{R}] t] \] линейную зависимость, из углового коэффициента которой можно определить константу скорости реакции.

Рассматривая приведенные выше уравнения можно сделать вывод о том, что для определения константы скорости необходимо повышать скорость инициирования и снижать концентрацию акцептора. Для константы скорости порядка \(10^5 \text{л} \cdot \text{моль}^{-1} \cdot \text{с}^{-1} \) данные условия согласно моделированию кинетики реализовывались при скорости инициирования \(\sim 10^{-6} \text{моль} \cdot \text{л}^{-1} \cdot \text{с}^{-1} \) и концентрации акцептора <10^{-4} \text{моль/л}.

Для определения константы скорости фенольные соединения в концентрации 1–50мкМ растворялись в этиловом спирте (для исследования реакции с гидроксиэтильным радикалом) или в 1% растворе уксусной кислоты (для исследования реакции с карбоксиметиленным радикалом). После чего растворы насыщались в течение 30 минут гелием до облучения и в дальнейшем непрерывно при облучении в хроматографической виале. Концентрацию вещества в облученных растворах, а так же продукты реакции определяли на ВЭЖХ со спектрофотометрическим, флюориметрическим и масс-спектрометрическим детектором.

Показано, что при концентрациях акцептора 10^{-5}–10^{-4} \text{моль/л} протекают побочные реакции, приводящие к уменьшению или, наоборот, к увеличению наблюдаемой константы скорости (рис.1).
В области малых (<10^{-5} моль/л) концентраций исследуемого вещества наблюдаемая константа скорости в пределах погрешности не зависела от концентрации и ее можно было принять за истинную константу. Результаты приведены в таблице.

Рис. 1. Зависимость наблюдаемой константы скорости реакции 4-гидроксибензойной кислоты с карбоксиметильным радикалом от концентрации.

<table>
<thead>
<tr>
<th>Реакция α-гидроксиэтильный радикал и фенольное соединение</th>
<th>Реакция карбоксиметильный радикал и фенольное соединение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Кислота</td>
<td>k_a, л·моль$^{-1}$·с$^{-1}$</td>
</tr>
<tr>
<td>кофейная</td>
<td>3,9</td>
</tr>
<tr>
<td>p-кумаровая</td>
<td>2,4</td>
</tr>
<tr>
<td>транс-феруловая</td>
<td>6,4</td>
</tr>
<tr>
<td>синаповая</td>
<td>10,3</td>
</tr>
</tbody>
</table>

Согласно полученным данным по продуктам реакции фенольных соединений с исследованными радикалами для оксикоричных кислот основной процесс взаимодействия – присоединение по двойной связи с последующей димеризацией аддуктов, а для гидроксибензойных кислот отщепление атома водорода с последующей С-С димеризацией.
REACTIVITY OF HYDROXYCINNAMIC ACID AND RELATED COMPOUNDS IN REACTION WITH CARBON-CENTERED RADICALS

Nikolaeva V.V., Fedorova L.V., Tarasova N.V., Fenin A.A., Magomedbekov E.P.
Russian University of Chemical Technology named after D.I. Mendeleyev, Moscow, Russia, valli888@bk.ru

In this work was study method of determination of rate constant for reaction phenolic compounds with α-hydroxyethyl and carboxymethyl radicals. For hydroxycinnamic and hydroxybenzoic acid it was found that the rate constant has be (2–10)·10^5 l·mole^-1·s^-1

БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ НЕКОТОРЫХ ПРОСТРАНСТВЕННО-ЗАТРУДНЕННЫХ ФЕНОЛОВ С КИСЛОРОД-, АЗОТ- И ФОСФОРСОДЕРЖАЩИМИ ФУНКЦИОНАЛЬНЫМИ ГРУППАМИ

Писцова А.Л.¹, Шамсутдинова Л.П.¹, Исмагилов Р.К.¹, Газизов М.Б.¹, Шулаева М.П.²
¹ ФГБОУ ВО «Казанский Национальный Исследовательский Технологический Университет» Казань, Россия
² КГМА, Казань, Россия, larisasham@mail.ru

Аннотация. Осуществлено исследование антимикотической и антибактериальной активности ряда соединений на тест-культурках условно-патогенной микрофлоры. Один из препаратов являются наиболее эффективным и представляет несомненный интерес для расширенных испытаний с перспективой создания новых композиций для дезинфекции.

Исследование способов синтеза и свойств пространственно-затрудненных фенолов (ПЗФ) с кислород-, азот-, фосфорсодержащими функциональными группами – антиоксидантов с бифункциональным механизмом антиокислительного действия является актуальной задачей органической химии и ведется в ряде отечественных и зарубежных научных центров.
Исследования, проведенные на кафедре органической химии ФГБОУ ВО КНИТУ позволили обнаружить ряд реакций полиорганогалогенидов и фосфорилированных метиленхинонов с некоторыми нуклеофильными реагентами, приводящих к продуктам обмена и 1-6-присоединения. Практическая значимость этих научных работ состоит в разработке новых методов синтеза P-, 2P-, N-, 2N-, P,N-, 2P, 2N, O- содержащих ПЗФ [1].

Нами осуществлено исследование антимикотической и антибактериальной активности ряда соединений на тест-культурках условно-патогенной микрофлоры.

В работе использовали музейные штаммы кафедры микробиологии: Staphylococcus aureus (ATCC 29213), Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), Bacillus cereus и Candida albicans (ATCC 885-653).

Для оценки активности непосредственно перед исследованием готовили 1% растворы исследуемых соединений в бензоле, ДМСО и ацетоне.

Суточные культуры микроорганизмов отстандартизовывали по стандарту мутности до 0,5 по МакФарланду (1,5x10^8 КОЕ/мл). Затем инокулировали поверхности питательных сред (среда Сабуров для грибов рода Candida и среда Мюллера –Хинтона для остальных микроорганизмов), используя тампоны. На поверхности сред, просекали лунки и в каждую лунку вносили химический препарат, разведенный одним из растворителей. Кроме опытных лунок на чашке просекали лунки и для контролей.

В качестве контролей использовали растворители химических веществ: бензол, ДМСО и ацетон, для того чтобы исключить антимикробное действие последних.

В работе использовали контроль – запатентованный антисептик 0,05% хлоргексидин, широко применяемый в лечебных учреждениях, который являлся веществом сравнения. Чашки инкубировали при 35°C в течение 24-48 часов, затем
оценивали величину зоны задержки роста микроорганизмов, измеряя ее с точностью до 0,1 мм. Результаты представлены в таблице 1.

Таблица 1. Протокол испытаний антимикотической и бактерицидной активности соединений в концентрации 1%

<table>
<thead>
<tr>
<th>№</th>
<th>Соединение</th>
<th>Величина зоны задержки роста, d (мм)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>E. coli Bacillus cereus Ps. aeruginosa S. aureus Candida albicans</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>11</td>
</tr>
</tbody>
</table>
Как следует из данных, представленных в таблице 1, соединения, содержащие фрагмент пространственно-затрудненного фенола, проявляют антимикотическую и бактерицидную активность.

Ни одно из представленных соединений не ингибуировали рост кишечной палочки Escherichia coli.

Оценивая воздействие химических соединений на рост бацилл Bacillus cereus нашли, что антимикотическую активность проявили соединения 1, 2, 3, 4, 5, 6, 7. Наибольшую активность проявил препарат 3 в ДМСО – 26 мм.

В отношении синегнойной палочки Pseudomonas aeruginosa из 10 взятых в исследование соединений, только 7 и 10 препараты обладают антибактериальным свойством.

По отношению к стафилококкам Staphylococcus aureus проявили активность соединения 1, 2, 3, 4, 5, 7. Наибольшую активность проявил препарат 3, разведенный ДМСО (zona задержки роста 27 мм), остальные проявили меньшую активность в ДМСО – 13-16 мм.

Антимикотическую активность по отношению к грибам рода Candida albicans проявили соединения 1, 2, 3, 4, 5, 6, 7, 8, 9. Наибольшую активность проявил препарат 3 (30 мм) по сравнению с антимикотическим препаратом клотримазолом (20 мм). Активность остальных соединений составила 14-17 мм.

Таким образом установлено, что данные соединения проявляют хорошую антимикробную активность in vitro и антимикотическую активность, по своей активности выделяется препарат 3.
Представляло интерес проведение дополнительных испытаний антимикотической и бактерицидной активности соединения 3, проявившего наибольшую активность в различной концентрации в растворе бензола. Результаты испытаний представлены в таблице 2.

Таблица 2.
Протокол испытаний антимикотической и бактерицидной активности соединения 3 в концентрации 1% и 0,05%.

<table>
<thead>
<tr>
<th>№ оп</th>
<th>Соединение</th>
<th>E. coli</th>
<th>B. cereus</th>
<th>S. aureus</th>
<th>Candida albicans</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Соединение 8 (1%)</td>
<td>29</td>
<td>28</td>
<td>30</td>
<td>17</td>
</tr>
<tr>
<td>2.</td>
<td>Соединение 8 (0,05%)</td>
<td>23</td>
<td>20</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td>Контроли</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Слайт (1%)</td>
<td></td>
<td>16</td>
<td>22</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td>Слайт (0,05%)</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Состав слайта: полимер N,N-1,6-гександ (циангуанидин, амидпропил, феноксиэтанол, 2-пропанол и др.

Как следует из данных, представленных в таблице 2, соединение 3 проявляет высокую активность по отношению к грамположительной флоре независимо от концентрации. Согласно полученным данным, активность соединения 3 превышает аналогичные показатели контроля в 1,5-2 раза по отношению к кишечной палочке Escherichia coli, бациллам Bacillus cereus, стафилококкам Staphylococcus aureus и грибам рода Candida albicans. Используемая на практике композиция «Слайт» совершенно не работает при концентрации 0.05%, т.е. не задерживает рост микроорганизмов. В тоже время препарат 3 при этой концентрации показывают хорошую активность.

Таким образом, препарат 3 являются наиболее эффективным из исследованных и представляет несомненный интерес для расширенных испытаний с перспективой создания новых композиций для дезинфекции.

Список литературы:
2. Поройков В.В. Компьютерное предсказание биологической активности химических веществ: виртуальная хемогеномика / В.В.
МОНОФУНКЦИОНАЛЬНЫЕ ПИРОКАТЕХИН-ТИОЭФИРЫ: РЕДОКС-ПРЕВРАЩЕНИЯ И АНТИОКСИДАНТНЫЕ СВОЙСТВА

Питикова О.В., Смолянинов И.В., Берберова Н.Т.
ФГБОУ ВО «Астраханский Государственный Технический университет», Астрахань, Россия, oba_dog@mail.ru

Аннотация. Изучены электрохимические свойства сульфидов 1-9, содержащих редокс-активный пирокатехиновый фрагмент и алкильные, циклоалкильные, ароматические заместители при атоме серы. Электроокисление соединений 1-9 на первой стадии способствует образованию о-бензохинонов. Введение тиоэфирной группы приводит к появлению дополнительного редокс-перехода, для которого характерна зависимость числа электронов, участвующих в электродной реакции, от строения углеводородной группы при атоме серы. Антиоксидантная активность тиоэфиров рассмотрена в реакции аутоокисления олеиновой (цис-октадекаеновой) кислоты. Для исследуемых соединений значения эффективной концентрации (EC_{50}), необходимые для снижения уровня ROOH на 50%, составляют 30-35 мкмоль. Для сульфидов установлена ингирующая активность в процессе окисления глутатиона, индуцированного 2,2'-азобис(2-амидинопропан) диgidрохлоридом (ААПГ).

Введение атомов халькогенов (S, Se, Te) в структуру фенольных антиоксидантов, синтетических производных токоферолов, флавоноидов открывает новые перспективы для получения полифункциональных антиокислителей. Электрохимические методы активно используются для прогнозирования биологической активности пирокатехинов, гидрохинонов и их окисленных форм. Значение редокс-потенциала пары хинон/гидрохинон (пи́рокатехин) имеет главенствующий эффект на прооксидантную и/или...
антиоксидантную активность и оказывает значительное влияние на баланс цитоксичных и цитопротекторных свойств данного класса соединений. Настоящее исследование посвящено изучению электрохимических превращений пирокатехин тиоэфиров 1-9, установлению механизма их окисления и исследованию влияния гидрофобных групп при атоме серы на антиоксидантные свойства.

Электрохимическое окисление соединений 1-9 в ацетонитриле на СУ-электроде протекает в две последовательные стадии. Первый двухэлектронный пик является необратимым и отвечает окислению пирокатехинового фрагмента до o-бензохинона. Потенциалы анодных пиков регистрируются при 1.18 – 1.23 В. В ряду соединений 1-5 не наблюдается влияния углеводородной группы при атоме серы на значении потенциала окисления. Замена алкильного (циклоалкильного) заместителя на фенильный приводит к смещению потенциала окисления тиоэфира 8 в анодную область. Наличие тиоэфирной группы способствует анодному сдвигу потенциалов окисления соединений 1-9 по сравнению с 3,5-ди-трет-бутилпирокатехином (1.14 В), что указывает на ее электроноакцепторный характер.

Введение тиоэфирной группы приводит к расширению диапазона редокс-свойств исследуемых соединений за счет появления дополнительного редокс-перехода, который фиксируется при 1.54 – 1.63 В. Электрохимическое окисление сульфидов может происходить как одно- или двухэлектронный процесс [1]. Исследуемые тиоэфиры можно разделить на две группы: первая (I) – соединения 1-5 с алкильными заместителями, которым свойственно участие двух электронов во втором анодном процессе; вторая (II) – тиоэфиры 6-9, характеризующиеся одноэлектронным уровнем по току. Низкая стабильность электрогенерированных дикатионов для соединений 1-5 указывает на следующую за переносом электрона химическую стадию: разрыв связи C-S или
образование сульфониевых солей. В то же время катион-радикальные интермедиаты, генерируемые при электроокислении тиоэфиров 6,8 и 9, относительно стабильны во времени эксперимента. Общую схему электрохимических превращений соединений 1-9 можно представить следующим образом:

Возможность образования о-хинонов в процессе окисления исходных соединений предполагает проявление потенциального токсического эффекта, который зависит от соотношения окисленной и восстановленной форм. В ряду рассматренных тиоэфиров варьирование углеводородных заместителей в тиоэфирной группе позволяет регулировать гидрофобные свойства соединений. Расчетные значения коэффициента распределения октанол – вода (ClogP) изменяются в следующем порядке: 6 (6.53) < 1 (6.57) < 8 (6.66) < 9 (6.72) < 7 (7.02) < 2 (7.07) < 3 (7.58) < 4 (8.08) < 5 (8.46). Исследуемые соединения – гидрофобные молекулы, проявляющие реакционную способность в липофильных средах. Вследствие этого, на примере модельной реакции аутоокисления олеиновой (цис-9-октадециновой) кислоты при 60°C (5 ч) исследовали антиоксидантную активность пирокатехинов 1-9. Процесс перекисного окисления субстрата контролировали по изменению концентрации гидропероксидов (ROOH). Введение добавок соединений 1-9 в диапазон концентраций от 0.1 до 1.0 ммоль/л не приводит к значительным изменениям на кинетических кривых, на которых наблюдается период индукции в течение всего времени эксперимента. Это указывает на поведение свойственное антиоксидантам, выступающим в роли прерывателей цепных процессов за счет взаимодействия с активными ROO-радикалами.
Для проведения сравнительной оценки эффективности действия тиоэфиров использовали показатель EC\textsubscript{50} – концентрация ингибитора необходимая для снижения содержания гидропероксидов на 50% от исходного уровня на 5 час аутоокисления олеиновой кислоты. Варьирование концентраций соединений 1-9 в диапазоне от 10 до 100 µмоль/л позволило установить минимальные значения EC\textsubscript{50}, которые изменяются в диапазоне от 30 до 35 µмоль. Все тиоэфир демонстрируют высокую активность в ингибировании процесса окисления олеиновой кислоты.

Глутатион (GSH) занимает особое место в ряду серосодержащих соединений, участвующих в функционировании антиоксидантной защиты организма. Хиноны способны формировать аддукты с глутатионом или окислять его до дисульфида (GSSG). Исследуемые пирокатехины при электроокислении превращаются в о-хиноны, поэтому для установления их потенциального токсического эффекта изучено окисление GSH при совместном действии тиоэфиров и радикального инициатора – 2,2’-азобис(2-амидинопропан) дигидрохлорида (ААПГ). Добавка промотора ведет к закономерному снижению концентрации глутатиона в реакционной среде на 60 мкмоль от исходного значения (1-3 ч).

При совместном введении ААПГ и тиоэфиров 1-9 наблюдается слабое антиоксидантное действие, выраженное в 5-12% превышении значений, по сравнению с контрольным экспериментом. Невысокая эффективность антиоксидантного действия тиоэфиров связана с низкой растворимостью в водных растворах. Для установления роли тиоэфирной группы использовали незамещенный 3,5-ди-трет-бутилпирокатехин, проявляющий выраженный прооксидантный эффект. Промоторующее влияние для 3,5-ди-трет-бутилпирокатехина обусловлено взаимодействием его окисленной формы с GSH по реакции Михаэля с образованием соответствующего тиоэфира. Таким образом, установлено, что наличие тиоэфирной группы влияет на электрохимические превращения и антиоксидантную активность соединений 1-9.

\[R \equiv \text{тиоэфирная группа} \]
The electrochemical properties of sulfides 1-9 containing a redox-active catechol fragment and alkyl, cycloalkyl, aromatic substituents at a sulfur atom have been studied. Electrooxidation of compounds 1-9 in the first stage results in the formation of \(\text{o-}
\)benzoquinones. The introduction of the thioether group leads to the appearance of an additional redox transfer, which is characterized by the dependence of the number of electrons participating in the electrode reaction on the structure of the hydrocarbon group at the sulfur atom. The antioxidant activity of thioethers is considered in the autooxidation reaction of oleic (cis-octadecanoic) acid. The effective concentration (EC\(_{50}\)) values required to reduce the ROOH level by 50% are 30-35 \(\mu \)mol for the test compounds. The inhibitory activity in the oxidation of glutathione induced by 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) is established for the sulphides under study.

ВЛИЯНИЕ СТРУКТУРЫ ФЕНОЛЬНЫХ АНТИОКСИДАНТОВ НА АГРЕГАЦИЮ ФОСФОЛИПИДОВ В НЕПОЛЯРНЫХ РАСТВОРИТЕЛЯХ

Повх А.Ю., Маракулина К.М., Плащина И.Г., Шишкина Л.Н.
ФГБУН Институт биохимической физики им. Н.М. Эмануэля РАН,
Москва, Россия, alice.povkh@yandex.ru

Аннотация. Исследовано влияние фенольных антиоксидантов на примере ряда изоборнилфенолов (ИБФ) на мицеллообразование препаратов лецитина в среде \(\text{n-}
\)гексана. Выявлены особенности агрегации лецитина
различного состава. Проведен сравнительный анализ воздействия изученных ИБФ на мицеллообразование лецитина и яичного фосфатидилхолина в неполярной среде. Сделан вывод о конкурентном влиянии структуры ИБФ и соотношения фракций фосфолипидов в составе лецитина на его агрегацию в н-гексане.

Биологическая активность антиоксидантов (АО) в живых системах обусловлена не только участием их в процессах перекисного окисления липидов, но и воздействием на структурное состояние клеточных мембран. Поэтому перспективным представляется исследование влияния АО на агрегацию фосфолипидов (ФЛ), что позволило бы оценить воздействие препарата на внешнюю структуру или проникновение его внутрь частицы. В качестве адекватной модельной системы для первичной оценки влияния биологически активных веществ (БАВ) на структуру мембран используется способность лецитина к агрегации в н-гексане [1]. Полусинтетические АО из класса ИБФ, в структуре которых одна или несколько изоборнильных групп, рассматриваются как перспективные БАВ [2]. Физико-химические свойства и биологическая активность любых фенольных АО зависят от природы и положения заместителей в молекуле.

Целью работы стал анализ влияния структуры ИБФ и состава фосфолипидов на мицеллообразование лецитина в неполярной среде (н-гексан).

Объектами исследования являлись препараты соевого лецитина (ЛС) в виде 10%-ного раствора в этаноле. Предварительно этанол отгоняли и растворяли ЛС в н-гексане. Исследованы следующие ИБФ: 4-метил-2,6-диизборнилфенол (ТФ-7); 4-метил-2-третбутил-6-изборнилфенол (ТФ-37); 2,4-дитретбутил-6-изборнилфенол (ТФ-47); 2, 4-диметил-6-изборнилфенол (ТФ-50). Препараты были синтезированы сотрудниками ФГБУН Института химии Коми НЦ УрО РАН и любезно предоставлены нам для исследований. Качественный и количественный состав ФЛ лецитина определяли методом ТСХ по Шталью [3]. Подробности методики анализа изложены в работе [4]. Влияние ИБФ на способность ЛС к агрегации в н-гексане исследовали методом динамического светорассеяния на приборе Zeta Sizer Nano (Malvern Instruments, UK), снабженным 4 мВт He-Ne лазером и автоматической программой обработки
данных. Использован диапазон концентраций ЛС от 30 до 34 мкг/мл при эквимолярном количестве ИБФ. Повторность измерений составляла не менее 5 раз для каждой пробы.

Экспериментальные данные обрабатывали стандартными методами вариационной статистики с использованием пакетов программ MO Excel и KINS [5]. Результаты представлены в виде среднеарифметических величин с указанием их средних квадратичных ошибок (M±m).

Как любой природный объект, ЛС характеризуется достаточно высокой вариабельностью состава, поэтому его мицеллообразование характеризуется набором нескольких по размеру фракций, одна из которых обычно является доминирующей. Интересно отметить, что сфингомиелин (СМ) в неполярном растворителе образует преимущественно агрегаты одного размера, поскольку в его препаратах суммарная доля минорных фракций ФЛ значительно меньше, чем в препаратах других природных ФЛ [6]. Однако именно при изучении влияния ряда ИБФ на процесс агрегации лецитина в n-гексане было обнаружено соответствие с их воздействием на структурное состояние эритроцитов [1]. На агрегацию ЛС оказывают влияние не только наличие, число и расположение заместителей в молекуле ИБФ, но и фракционный состав ФЛ самого лецитина, особенно доли фосфатидилхолина (ФХ) и таких минорных фракций, как СМ, фосфатидилэтаноламин (ФЭ) и лизоформы ФЛ (ЛФХ) [7]. В таблице представлен количественный состав ФЛ партий лецитина, использованных в работе.

Таблица 1. Количественный состав ФЛ (% P) препаратов лецитина

<table>
<thead>
<tr>
<th>Образец ЛС</th>
<th>ЛФХ</th>
<th>СМ</th>
<th>ФХ</th>
<th>ФИ + ФС</th>
<th>ФЭ</th>
<th>КЛ</th>
<th>ФК</th>
</tr>
</thead>
<tbody>
<tr>
<td>№ 1</td>
<td>0,51±0,06</td>
<td>7,76±0,7</td>
<td>82,9±0,8</td>
<td>0,41±0,02</td>
<td>6,5±0,3</td>
<td>0,68±0,06</td>
<td>1,2±0,3</td>
</tr>
<tr>
<td>№ 2</td>
<td>3,68±0,23</td>
<td>3,77±0,24</td>
<td>83,5±0,4</td>
<td>2,20±0,10</td>
<td>3,77±0,19</td>
<td>0,86±0,03</td>
<td>2,26±0,33</td>
</tr>
<tr>
<td>№ 3</td>
<td>3,33±0,11</td>
<td>2,97±0,13</td>
<td>88,8±0,3</td>
<td>0,50±0,09</td>
<td>2,70±0,09</td>
<td>0,76±0,06</td>
<td>0,93±0,03</td>
</tr>
</tbody>
</table>

Принятые в таблице сокращения: ФИ - фосфатидилинозит, ФС - фосфатидилсерин, КЛ - кардиолипин, ФК - фосфатидная кислота.

Как видно, образец лецитина № 3 характеризуется наиболее высоким содержанием ФХ. Ранее было показано, что рост суммарного содержания СМ и ФХ приводит к образованию
более крупных мицелл [6]. Напротив, повышение суммарного содержания ФЭ и лизоформ ФЛ в лецитине обусловливает образование более мелких частиц. Примечательно, что среди препаратов лецитина именно для образца № 3 основная фракция мицелл представлена частицами самого большого диаметра.

Рис. 1. Соотношение мицелл различного диаметра в растворе образцов лецитина в н-гексане и их смесей с ИБФ. Диаметр мицелл обозначен маркировкой.

В смесях лецитина с ИБФ картина мицеллообразования изменялась в широких пределах. Так, при взаимодействии образца лецитина № 1 с ТФ-37 (см. рисунок) наблюдалась несколько иная картина по сравнению с влиянием на агрегацию яичного ФХ в н-гексане [8]: рост среднего диаметра агрегатов ФХ в отличие от снижения среднего размера частиц лецитина в присутствии ТФ-37. При этом ТФ-37 существенно не влиял на диаметр агрегатов для образца лецитина № 3.

Характер воздействия препарата ТФ-47 на агрегацию лецитина (рисунок) также отличается от его влияния на мицеллообразование ФХ [8]: наблюдалось уменьшение, а не рост размера агрегатов при увеличении доли мелких частиц.

Действие ТФ-7 на агрегацию лецитина и ФХ вызывало рост средних размеров мицелл. Способность ТФ-50 вызывать увеличение среднего диаметра мицелл яичного ФХ [8] и выявленная тенденция роста как размера агрегатов, так и доли более крупных частиц лецитина образца № 3 с повышенным содержанием ФХ позволяет предположить, что это обусловлено взаимодействием ТФ-50 преимущественно с ФХ.
Следовательно, существенные различия влияния изученных ИБФ на агрегацию лецитина и яичного ФХ свидетельствуют о конкуренции двух факторов: структуры ИБФ и соотношения фракций ФЛ в составе лецитина. Это обусловливает необходимость детального изучения межмолекулярных взаимодействий ИБФ с разными фракциями ФЛ для выявления механизма их влияния на структурное состояние мембран.

Авторы выражают искреннюю благодарность сотрудникам ФГБУН Института химии Коми НЦ УрО РАН (руководитель чл.-корр. РАН А. В. Кучин) за предоставление ИБФ для исследований.

Список литературы
THE EFFECT OF THE PHENOLIC ANTIOXIDANTS STRUCTURE ON THE AGGREGATION OF PHOSPHOLIPIDS IN NON-POLAR SOLVENTS

Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow, Russia; alice.povkh@yandex.ru

The influence of phenolic antioxidants among several isobornylphenols (IBP) on the micellar aggregation of preparations of lecithin in \(n \)-hexane is investigated. Peculiarities of the lecithin aggregation with the different composition are revealed. A comparative analysis of the influence of the studied IBP on the micellar formation of lecithin and egg phosphatidylcholine in the non-polar solvents was carried out. The conclusion is made about the competitive influence of the IBP structure and the ratio of the fractions of phospholipids in the lecithin on its aggregation in \(n \)-hexane.

FE\(^{2+}\)-ХЕЛАТИРУЮЩАЯ АКТИВНОСТЬ ФОСФОРИЛЗАМЕЩЕННЫХ ПРОСТРАНСТВЕННО-ЗАТРУДНЁННЫХ ФЕНОЛОВ

Половинкина М.А.\(^1\), Осипова В.П.\(^2\), Берберова Н.Т.\(^1\), Милаева Е.Р.\(^3\)

\(^1\)ФГБОУ ВО «Астраханский государственный технический университет», Астрахань, Россия, polovinkina.ast@gmail.com
\(^2\)ФГБУН ФИЦ Южный научный центр РАН, Ростов-на-Дону, Россия
\(^3\)ФГБОУ ВО Московский государственный университет имени М.В. Ломоносова, Москва, Россия

Аннотация. Исследована металлхелатирующая способность фосфорсодержащих производных 2,6-ди-трет-бутилфенола в сравнении с ионолом (BHT) и 2,6-ди-трет-бутил-4-тиоксифенолом фотоколориметрическим методом по образованию окрашенного феррозин-Fe\(^{2+}\) комплекса. Выраженную Fe\(^{2+}\)-хелатирующую активность (99%) проявили неэтилированные фосфоновые кислоты с пространственно-затруднённым фенольным фрагментом, что подтверждает полифункциональный механизм их антиоксидантного действия.
Кислород в живых организмах может проявлять токсические свойства при образовании активных форм (АФК), повреждающих мембранные липиды, белки и ДНК [1]. Для нейтрализации действия АФК необходимо применение антиоксидантов (АО), сочетающих в своей структуре функциональные группы, работающих по различным механизмам ингибирования пероксидного окисления липидов (ПОЛ). Хелатирующую способность соединений является индивидуальным типом фармакологической активности и может выступать одним из видов антиоксидантного потенциала. Полифункциональные антиоксиданты должны являться не только «ловушками» свободных радикалов, но и обладать способностью хелатировать металлы, предотвращая реакции разложения перекисей с образованием OH*, то есть ингибировать пероксидное окисление липидов (ПОЛ), промотируемое ионами переходных металлов.

В связи с этим, в работе была изучена хелатирующая активность фосфорсодержащих производных 2,6-ди-

бутилфенола 1-6 в сравнении с ионолом (2,6-ди-

бутил-4-

метилфенолом) и 2,6-ди-трет-бутил-4-

тиоксифенолом (RSH) фотоколориметрическим методом, основанным на способности веществ связывать ионы Fe^{2+}, в результате чего уменьшается количество окрашенного феррозин-Fe^{2+} комплекса [2].

![Схема соединений](image)

Металлхелатирующую активность рассчитывали по полученным значениям оптического поглощения контрольного образца (A_{к}) и рабочей пробы (A_{р}) по формуле:

\[
\text{ингибирование (\%)} = \frac{A_{\text{к}} - A_{\text{р}}}{A_{\text{к}}} \times 100
\]

Хелатообразующую активность соединений оценивали, используя в качестве стандарта динатриевую соль ЭДТА, прочно и обратимо связывающую дивалентные катионы в соотношении 1:1. Ингибитивное Na_{2}ЭДТА составило 100%, процент ингибирования остальных соединений в концентрации 10 мМ рассчитан относительно данного показателя.
Выраженную Fe$^{2+}$-хелатирующую активность (99%) проявили соединения 1 и 3 (рис.1). Ранее в опытах in vitro для данных соединений была установлена высокая антиоксидантная активность как в условиях автоокисления, так и при промотировании процесса ПОЛ соединениями олова и ртути [3,4]. Полученные данные подтверждают предположение о том, что антиоксидантная активность фосфорсодержащих производных 2,6-ди-trem-бутилфенола связана не только с антирадикальной активностью, за счет наличия пространственно-экранированного фенольного фрагмента, но и с их железохелатирующей способностью.

В пользу указанного вывода свидетельствуют результаты незначительной Fe$^{2+}$-хелатирующей способности соединений 2, 4, 5, 6, являющихся этилированными аналогами соединений 1 и 3, а также ионола и RSH. Отсутствие неэтилированных фосфорсодержащих групп у исследованных соединений приводит к значительному снижению металлхелатирующего эффекта.

Таким образом, фосфорсодержащие производные ионола могут быть рекомендованы в качестве полифункциональных антиоксидантов для предотвращения окислительного повреждения ДНК и пероксидного окисления липидов путем хелатирования реакционнспособных ионов и ингибирования свободных радикалов.

Работа выполнена при поддержке РФФИ (гранты № 16-03-00334).
Список литературы.
3. Н.А. Антонова, М.Н. Коляда, В.П. Осипова, Ю.Т. Пименов, Н.Т. Берберова, В.Ю. Тюрин, Ю.А. Грачева, Е.Р. Милаева Исследование антиоксидантных свойств фосфорилзамещённых фенолов // Доклады Академии наук. – 2008. – Т.419. – Вып.3. – С.342–344.

FE$^{2+}$-HELATING ACTIVITY OF PHOSPHORYLATED STERICALLY HINDERED PHENOLS
Polovinkina M.A.¹, Osipova V.P.², Berberova N.T.¹, Milaeva E.R.³
¹Astrakhan’ State Technical University, Astrakhan, Russia, polovinkina.ast@gmail.com
²Southern Scientific Center of RAS, Rostov-on-Don, Russia
³Lomonosov Moscow State University, Moscow, Russia

The metal chelating capacity of phosphorus-containing derivatives of 2,6-di-tert-butylphenol was determined by the photocolorimetric method by the formation of a colored ferrosin-Fe$^{2+}$ complex and such capacity was compared with ionol (BHT) and 2,6-di-tert-butyl-4-thioxyphenol. The expressed Fe$^{2+}$ chelating activity (99%) was found for non-ethylated phosphonic acids with a sterically hindered phenolic fragment, which confirms the polyfunctional mechanism of their antioxidant action.
СИНТЕЗ НОВЫХ ГЕТЕРОЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ НА ОСНОВЕ ТЕРПЕНОФЕНОЛОВ

Попова С.А., Чукичева И.Ю.
ФГБУН Институт химии Коми научного центра Уральского отделения РАН, Сыктывкар, Россия, popsyz@yandex.ru

Аннотация. На основе замещенного резорцина синтезированы новые кумариновые бис-имины с терпеновым заместителем в бензопирановом кольце. При взаимодействии с этилендиамином получены симметричные бис-имины кумаринов.

Терпенофенолы – биологически активные соединения, проявляющие высокие антиоксидантные свойства при низкой токсичности, что обусловлено присутствием в молекуле объемного терпенового заместителя [1]. Неоспоримым преимуществом этих соединений является огромный синтетический потенциал для целей тонкого органического синтеза и биоорганической химии. Синтез гетероциклических соединений на основе терпенофенолов может стать основой для конструирования новых биоактивных антиоксидантов.

В свою очередь бензопираноновый фрагмент обнаружен во многих природных и синтетических молекулах лекарственных препаратов [2, 3]. Кумариновые производные (2Н-1-бензопиран-2-оны) демонстрируют разнообразную биологическую активность, особенно антиоксидантную и противовоспалительную [4]. Направленная модификация аналогов природных биорегуляторов с целью получения соединений с новыми или усовершенствованными характеристиками является актуальной задачей.

Нами синтезированы новые кумариновые производные на основе замещенного резорцина с высокими выходами (схема). Кумарины 4-6 получены по реакции Пехмана путем взаимодействия эквимолярных количеств терпенофенолов 1-3 с этилацетоацетатом в присутствии H2SO4. Бис-кумариновые производные 7-9 образуются в результате конденсации 4-метилкумаринов 4-6 с этилендиамином в среде этанола. Все полученные соединения охарактеризованы с помощью ИК, ЯМР 1Н и 13С спектроскопии и масс-спектрометрии.
Схема. Получение производных кумаринов

Работа выполнена при финансовой поддержке программы фундаментальных исследований УрО РАН, проект № 18-3-3-27.

Список литературы.
SYNTHESIS OF NEW HETERO CYCLIC COMPOUNDS FROM THERPENOPHENOLS

Popova S.A., Chukicheva I.Yu.
Institute of Chemistry, Komi Scientific Centre, Ural Branch of the Russian Academy of Sciences, Russia, popsyz@yandex.ru

New coumarins with a terpene moieties in the benzopyran ring were synthesized from substituted resorcinol. Symmetric bis-imines were obtained by the interaction of coumarins with ethylenediamine.

К ВОПРОСУ О МЕХАНИЗМЕ ФОРМИРОВАНИЯ НАНОЧАСТИЦ МЕТАЛЛОВ В ОБРАТНЫХ МИЦЕЛЛАХ В ПРИСУТСТВИИ КВЕРЦЕТИНА И КИСЛОРОДА

Ревина А.А.1,2, Суворова О.В.1
ФГБУН Институт физической химии и электрохимии им. А.Н. Фрумкина РАН, Москва, Россия, Alex_revina@mail.ru
ГБОУ ВПО ИФХ РХТУ им. Д. И. Менделеева, Москва, Россия

Аннотация. Полученные экспериментальные результаты физико-химических исследований образования лабильных обратимых оксокомплексов, зарегистрированных при взаимодействии многих органических соединений, включая фенольные соединения, с молекулярным кислородом, выявляют их важную роль в сложных окислительно-восстановительных (ферментативных, фото- и электро-кatalитических процессах).

Подтверждение особого значения первичной стадии активирования молекулярного кислорода А.Н. Баха (1897 г.), развитого Н.М. Эмануэлем, особенно в теории селективного ингибиции процессов окисления углеводородов [1], а также Н.А. Бах и её учениками, при использовании метода импульсного радиолиза по моделированию редокс реакций органических и биологически активных природных соединений [2,3] внесло свой вклад в развитие нанотехнологий и изучение процессов эволюционного образования наноразмерных объектов в самоорганизующихся системах живой природы.
Объяснение катализитической активности flavоноидов в процессах «мOLEкулярной сборки» наноразмерных частиц металлов в реакции восстановления ионов в обратномицеллярных растворах в присутствии мOLEкулярного кислорода и кверцетина за счет его способности образовывать обратные оксокомплексы (nQrδ+... mO2δ-) было предложено в работе [4].

В спектрах спиртовых и водно-спиртовых растворов кверцетина насыщенных гелием, методом UV-VIS спектрофотометрии, зарегистрированы две характерные полосы поглощения кверцетина с максимумами при (λI ~256 нм и λII ~365 нм). После впуска воздуха наблюдается батохромное смещение полос с λI и λII на 5+15 нм, которое указывает на формирование лабильного обратимого оксокомплекса [nQrδ+...mO2δ-]. В аэробных условиях в водно-спиртовых растворах кверцетина при введении ионов Cu2+, (и металлов Fe3+, Ag+) регистрируется снижение интенсивности полосы оптического поглощения Qr и появление новой полосы, связанной с образованием тройного оксокомплекса с ионом меди (nQrδ+...Cu2+... mO2δ-) с λmax~450-460 нм, что связано с проявлением хелатирующих свойств flavоноидами.

Рис. 1. Спектры поглощения принадлежат промежуточным частицам, детектируемых в буферном растворе через 8 мкс после воздействия 40 нс-импульса электронов (ускоритель ЭЛУ-10): полоса поглощения O2- (λmax ~ 256 нм) – спектр 1, супероксокомплекса [nQrδ+...mO2δ-] (λmax ~ 269 нм) (2); полоса поглощения с λмакс. ~274 нм тройного короткоживущего металлло-супероксокомплекса [nQrδ+...Cu2+... mO2δ-] (4).

С применением наносекундного импульсного радиолиза проведено сравнительное изучение спектров оптического
поглощения иона O$_2^-$ ($\lambda_{\text{max}} \sim 256$ нм) в аэрированных буферных растворах. При импульсном радиолизе буферного раствора с кверцетином зарегистрированы полосы поглощения супероксокомплексов [nQr$^{\delta^+}...mO_2^{\delta^-}]^-$ при отсутствии полосы поглощения O$_2^-$. На рис. 1 представлены спектры оптического поглощения O$_2^-$, супероксокомплекса [nQr$^{\delta^+}...mO_2^{\delta^-}]^-$ и тройного комплекса с ионами Cu$^{2+}$ [nQr$^{\delta^+}...Cu^{2+}...mO_2^{\delta^-}]^-$ при добавлении в буферный раствор Qr ионов меди [3,4].

Рис. 2. Спектры оптического поглощения наноразмерных частиц серебра, полученных в аэробных и анаэробных условиях в ОМР (200 мкМ Qr /0.15 М AOT/изооктан).

В обратномицеллярных растворах (OMP) в присутствии молекулярного кислорода и кверцетина происходит образование обратимых оксокомплексов (nQr$^{\delta^-}$...mO$_2^{\delta^-}$), а при добавлении ионов металлов – тройных комплексов с ионами металлов, которые спектрофотометрически регистрируются в том же диапазоне длин волн, как в соответствующих спиртовых растворах Qr, отличающихся более коротким временем жизни. Образование комплексов представляет одну из первых стадий формирования металлических нанокластеров в ОМР [5]. Поскольку константа реакции электрона с ионами металлов одного порядка с константой реакции электрона с O$_2$ возникают дополнительные сложности в описании механизмов синтеза наночастиц в реакциях химического восстановления ионов металлов в ОМР в присутствии Qr и молекулярного кислорода. Было доказано, что в связанном состоянии кислород не только не мешает восстановлению ионов металлов, более того, он должен присутствовать в обратномицеллярных растворах и
участвовать в реакциях образования наночастиц.

Об этом свидетельствуют результаты экспериментов по синтезу НЧ серебра в ОМР при насыщении исходных растворов O_2 воздуха и инертным газом гелием. На Рис.2 приведено сравнение спектров деазированых ОМР НЧ Ag со слабой интенсивностью полосы поглощения и тех же растворов сразу после впуска воздуха - с характерной для НЧ Ag интенсивной полосой с $\lambda_{max}\sim440$ нм [6].

Кинетика первичных стадий образования тройного комплекса $(nQr_δ^+...Ag^+...mO_2^δ^-)$ с $\lambda_{max}\sim450-460$ нм и последующего формирования НЧ Ag, отвечающего за рост интенсивности полосы с $\lambda_{max}\sim430$ нм, представлены на Рис.3.

На основе приведенных данных по кинетике формирования НЧ Ag на рис. 3 трудно сделать вывод о механизме реакций восстановления ионов металла с участием кверцетина как катализатора: кверцетин расходуется - в качестве «жертвы», или после реакции возвращается в исходное состояние, что должно фиксироваться спектрофотометрически. С целью выяснения этого вопроса для синтеза НЧ были выбраны соли таких металлов, наночастицы которых имеют оптическое поглощение, не перекрывающие поглощение кверцетина.

а) б)

Рис. 3. Кинетика формирования НЧ Ag в ОМР (150 mM Qr /0.15 M AOT/алкан), ω =5.0. Первая стадия формирования комплексов $[nQr_δ^+...mO_2^δ^-...pAg^+]$ при $\lambda_{max}\sim450-460$нм, и НЧ Ag $\lambda_{max}\sim430$нм – а); те же кинетические зависимости, но зарегистрированные через большие интервалы времени, мин – б) [7].
Полосы поглощения ОМР НЧ Ru и НЧ Rh лежат в УФ - части спектра, как показано на Рис. 4 а) и 4 б), и не перекрывают полосы Qr его оксокомплекса в диапазоне длин волн ~370-390 нм. Можно видеть, что при одинаковом содержании солей рутения и родия в обратно мицеллярных растворах в процессе формирования НЧ изменения формы и интенсивности полосы ~370-390 нм в случае НЧ Rh не зарегистрировано, что свидетельствует о сохранении исходной концентрации Qr.

Результаты сравнения интенсивностей полос поглощения Qr в обоих экспериментах позволяет сделать вывод, что в ОМР с ионами рутения при формировании НЧ Ru кверцетин выступает в роли катализатора «жертвы», т.к. его концентрация снижается. В отличие от рутения в ОМР родия формирование НЧ происходит при полном сохранении кверцетина. Как видно, в зависимости от выбранных металлов и условий экспериментов функциональная роль кверцетина в химическом синтезе наночастиц может быть различной и требует дальнейшего исследования.

а) б) Рис. 4. Спектры оптического поглощения ОМР (ω=5.0) НЧ, полученных химическим методом (в присутствии кверцетина) в ОМР состава 200 мкМ Qr в 0.15 М растворе AOT в изооктане в зависимости от времени синтеза: НЧ Ru – а), НЧ родия – б). Концентрация исходной соли в водном растворе и рутения и родия: 0,04М. Содержание солей в ОМР при ~ 5.3 мМ.

Для развития «зеленых» нанотехнологий, для объяснения механизма формирования наночастиц в ОМР при использовании реакций восстановления ионов металлов в аэробных условиях
при комнатных температурах в присутствии flavanoids, для понимания процессов эволюционного образования наноразмерных объектов в самоорганизующихся системах разной степени организации - подходы, основанные на представлениях «о важной роли ранних стадий активирования молекулярного кислорода» теории перекисного окисления А.Н. Баха, представляются актуальными и перспективными.

Список литературы
1. Эмануэль Н. М. Современные представления о механизме окисления в жидкой фазе и роли в нем перекисных радикалов // Успехи химии органических перекисных соединений и аутоокисление. М. Химия. 1969. С 319-338.
3. Ревина А.А. Радиационно-химическое моделирование быстропротекающих процессов с участием промежуточных кислородсодержащих реакционных центров в различных системах. Дис. д.х.н., 1995, ИХФ РАН.
5. Ревина А.А.. Патент РФ № 2312741. Препарат наноразмерных частиц металлов и способ его получения. Биол. № 35. 20.12.2007.
7. Кузьмин В.И., Гадзаов А.Ф., Тытик Д.Л., Бусев С.А., Ревина А.А. Кинетика образования НЧ Ag в обратных мицеллах. 3. Концентрация восстановителя и температура как факторы управления синтезом наночастиц //Коллоидный журнал. Т. 77. № 6. С. 742-754.

ON THE ISSUE OF THE METAL NANOPARTICLES FORMATION MECHANISM IN REVERSE MICELLES IN THE PRESENCE OF QUERCETIN AND OXYGEN
Revina A.A. ¹,², Souvorova O.V.¹
Metal NP synthesis in reverse micelles in aerobic conditions in the presence of flavonoid (Quercitin) used as a redox agent undergoes through vital stage of oxocomplexes \((nQr^{\delta^+}...\text{mO}_2^{\delta^-})\) and metal oxocomplexes \((nQr^{\delta^+}...\text{Ag}^+...\text{mO}_2^{\delta^-})\) formation.

ИНГИБИРОВАНИЕ ОКИСЛЕНИЯ ЛИПОСОМ ФОСФАТИДИЛФОЛИНА ФЕНОЛЬНЫМИ СОЕДИНЕНИЯМИ ГВОЗДИЧНОГО МАСЛА

Сажина Н.Н., Пальмина Н.П.
ФГБУН Институт биохимической физики им Н.М. Эмануэля РАН, Москва, Россия, Natnik48s@yandex.ru

Аннотация. Проведено изучение инициированного окисления липосомных структур на основе фосфатидилфолина (ФХ) при разных температурах и ингибирования его фенольными соединениями гвоздичного масла (ГМ). Показано, что инициированное ААРН окисление липосом ФХ при \(T=37^0C\) можно достаточно эффективно (на 80-90%) ингибировать фенольными соединениями (эвгенолом) гвоздичного масла, однако при повышении температуры до \(60^0C\) значительно (в 3-4 раза) увеличивается скорость окисления, и ингибирование образования продуктов окисления липосом существенно (примерно на 20%) уменьшается.

В настоящее время большой интерес вызывают работы по созданию и исследованию липосомных структур на основе фосфатидилфолина (ФХ), как наноконтейнеров для доставки в ткани и клетки живых организмов различных лекарственных препаратов, жизненно необходимых ненасыщенных \(\omega-3\) и \(\omega-6\) жирных кислот, витаминов и др. соединений [1-3]. Липосомы из ФХ служат также моделями для изучения биохимических процессов в мембранах живых клеток человека и животных, в частности перекисного окисления липидов (ПОЛ), и
ингибитирования этого окисления различными субстанциями [4]. Окисление липосом кислородом воздуха при хранении происходит благодаря наличию в ФХ ненасыщенных жирных кислот (ЖКК) с двойными связями в их молекулах. Для предотвращения этого используют различные антиоксиданты, среди которых перспективными являются фенольные соединения, входящие в состав эфирных масел (ЭМ) пряно-ароматических растений [5]. К таким соединениям относятся природные растительные моно- и полifenолы: эвгенол, тимол, карвакрол, фенольные кислоты, флавоноиды, каротиноиды, кумарины, антоцианидин, танины, алкалоиды и др. Было установлено [5], что при ингибитировании авто-окисления метиловых эфиров полиненасыщенных ЖК кислот, выделенных из льняного масла, эфирными маслами 16-ти различных пряно-ароматических растений, наибольшую эффективность показало ЭМ гвоздики.

Цель настоящей работы – изучение ингибитированного окисления липосом ФХ при разных температурах и ингибитирования его фенольными соединениями гвоздичного масла (ГМ).

Материалы и методы. Для приготовления липосом использовали суспензию ФХ (1,2-диацил-sn-глицеро-3-фосфохолин, фирмы Lipoid GmbH, Германия) в фосфатном буфере (рН = 7.2, ионная сила I = 0.001 М) с концентрацией 1мг/мл. Смесь перемешивали 20 минут в шейкере, добавляя, при необходимости, разные количества ГМ (Plant Lipids Ltd., Индия), растворенного в 100-200 мкл этанола. Затем проводили механическую гомогенизацию полученной смеси при помощи гомогенизатора (Heidolph, Германия) - 2мин при 20000 об/мин. Для формирования липосом использовали ультразвуковой гомогенизатор VCX-130, (Sonics&Materials, США) в течение 15 минут, при этом раствор охлаждался во льду. Далее смесь липосом пропускали через мембранный фильтр с диаметром пор 100 нм, используя экструдер (AVANTI PolarLipid, США). Полученный раствор, таким образом, состоял из липосом ФХ размером не более 100 нм.

Для инициирования окисления липосом использовался водорастворимый инициатор ААРН - 2,2'-азо-бис (амидинопропан) дигидрохлорид (Fluka, Германия) с конечной концентрацией в растворе липосом 2мМ. Окисление осуществлялось при Т=370С и 600С в пробирках, помещенных в
водный термостат, из которых отбирались пробы для измерений. Степень развития ПОЛ контролировалась спектрофотометрически при регистрации во времени УФ-спектров поглощения (от 200 до 300 нм) на спектрофотометре (Perkin Elmer, Lambda-25, Германия). Продукты ПОЛ – диеовые конъюгаты (ДК) и кетодиены (КД) определялись по максимумам поглощения при λ=233 и 274 нм, соответственно. Погрешность измерения оптической плотности (А) окисляемых образцов с учетом повторяемости результатов не превышала 10%.

Результаты и их обсуждение. На рис. 1 приведен пример спектров поглощения липосом ФХ в разные моменты времени в процессе их окисления: нижняя кривая – начало, верхняя – окончание окисления. Концентрация ФХ 1мг/мл. Т=370С.

Рис. 2. Окисление липосом ФХ (1) и ингибирирование его липосомами с ГМ разной концентрации: 2 - 4,0%; 3 - 2,0% и 4 - 1,5%. Т=370С.
А0 – оптическая плотность на λ=233 нм при t=0.

Так как температура является существенным фактором, как для ПОЛ, так и для проявления веществами антиоксидантной активности (АО), были проведены эксперименты по окислению

Рис. 1. Спектры поглощения липосом ФХ в разные моменты времени в процессе их окисления: нижняя кривая – начало, верхняя – окончание окисления. Концентрация ФХ 1мг/мл. Т=370С.

Рис. 2. Окисление липосом ФХ (1) и ингибирирование его липосомами с ГМ разной концентрации: 2 - 4,0%; 3 - 2,0% и 4 - 1,5%. Т=370С.
А0 – оптическая плотность на λ=233 нм при t=0.

Так как температура является существенным фактором, как для ПОЛ, так и для проявления веществами антиоксидантной активности (АО), были проведены эксперименты по окислению
липосом ФХ и его ингибированию ГМ при двух температурах: T=37°C и 60°C (рис.3а,б). Как следует из рисунков, при повышении температуры окисление липосом увеличилось примерно в 3 раза, причем исчез небольшой (30 мин) период индукции, который имел место при T=37°C [6]. Скорость окисления липосом за счет повышения температуры увеличилась в течение часа примерно в 3-3,5 раза (от 1,2·10^{-7} M/мин до 3,7·10^{-7} M/мин). Главным образом, это происходит за счет значительного (в 20 раз) увеличения константы скорости термической диссоциации ААРН и наработки инициирующих окисление радикалов, а также, вероятно, за счет увеличения констант скорости реакций продолжения цепей окисления [7].

При окислении липосом с ГМ (4%) повышение температуры уменьшает время полного ингибирования окисления гвоздичным маслом примерно в 18 раз (с 180 до 10 мин.). При T=37°C в течение 180 мин происходит полное торможение окисления ФХ гвоздичным маслом, а в момент максимального накопления ДК, ГМ снижает их концентрацию примерно в 8 раз (87,5%). При окислении липосом при T=60°C степень снижения концентрации ДК на протяжении всего времени окисления составила в среднем 1,5 раза. Соевый ФХ содержит в своем составе такие ненасыщенные ЖК, как: оleinовая -9%; линолевая-60%; линolenовая-7%, которые и подвергаются окислению. В состав ГМ входят: эвгенол
(от 70 до 85%), ацетат эвгенола (13%), кариофиллен (10%), эвгенил ацетат (5%), α-бергамотен (3%), цинеон (3%), линалоол, терпены и др. соединения, содержание которых менее 1% [5]. Эвгенол (4-аллил-2-метоксиfenол, М.м.=164,2 г/моль) – очень активный моно-фенольный антиоксидант (Рис. 4). Он и определяет, главным образом, ингибирование окисления ЖК в ФХ липосом [8-10]. В [8] методом капиллярной газовой хроматографии по реакции авто-окисления транс-2-гексеналя была проведена оценка антиокислительных свойств эвгенола в составе ГМ. Показано, что даже при низких концентрациях ГМ (1 %), эвгенол обладает достаточно высокой антиокислительной активностью (АОА) по отношению к окислению гексеналя (время окисления увеличилось в 3 раза), а сохранение эвгенола в ГМ с этой концентрацией при комнатной температуре составило порядка 100 суток. В [9] методом люминолзависимой хемилюминесценции исследовалось ингибирующее действие чистого эвгенола на образование активных форм кислорода (АФК) в ходе стимулированного респираторного взрыва нейтрофилов человека при 370С. Снижение образования АФК линейно зависело от концентрации эвгенола и составило 86% при его концентрации 22мкг/мл, что говорит о высокой антирадикальной активности (АРА) эвгенола. Это подтверждает и исследования [11], в которых измеряли АРА ГМ в реакции восстановления дифенилпикрилгидразил-радикала и АОА при ингибировании обесцвечивания β-каротина в системе автоокисления метиллинолеата (80%).

Таким образом, в настоящей работе показано, что инициированное ААРН окисление липосом ФХ при T=370С можно достаточно эффективно (на 80-90%) ингибировать фенольными соединениями (эвгенолом) гвоздичного масла, однако при повышении температуры до 600С значительно (в 3-4 раза) увеличивается скорость окисления, и ингибирование образования продуктов окисления липосом существенно (примерно на 20%) уменьшается. Результаты работы могут быть использованы при разработке современных функциональных продуктов питания на основе липосом ФХ с различными природными антиокислительными добавками, а также
технологии их хранения и переработки.

Список литературы
5. Т. А. Мишарина, Е. С. Алинкина, А. К. Воробьева, М. Б. Теренина, Н. И. Крикунова // Прикладная биохимия и микробиология. 2016. Т.52. №3. с.1-76.
8. А.Л. Самусенко // Химия растительного сырья. 2014. №2. c. 97–102

ВЛИЯНИЕ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ НА СВОБОДНО-РАДИКАЛЬНЫЕ РЕАКЦИИ АДЕНОЗИНА

Стрединина Г.А., Николаева В.В., Разуваева О.И., Фенин А.А.
ФГБО УВО Российский химико-технологический университет имени Д.И. Менделеева, Москва, Россия, fmkfenin@rctu.ru

Аннотация. В работе рассмотрено влияние фенольных соединений на формирование конечных продуктов взаимодействия аденоzина с радикалами. Показано, что фенольные соединения, находяся в значительно меньших концентрациях, снижают выход образования мутагенного продукта – 8-оксо-аденозина.
Свободные радикалы в последние годы привлекают большое внимание. Свободные радикалы могут неблагоприятно влиять на липиды, белки и ДНК, а также с ними связывают старение и ряд заболеваний человека. Ущерб, причиненный ДНК, может привести к мутагенезу и канцерогенезу. Природа наделила нас защитными антиоксидантными механизмами - супероксиддисмутазой (СОД), каталазой, глутатионпероксидазы и редуктазы, витамин Е (токоферолы и токотриенолы), витамин С и т. д., кроме того многие диетические компоненты могут выступать в роли защитников от окислительного стресса. Имеются эпидемиологические свидетельства наличия корреляции высокого потребления продуктов с антиоксидантными свойствами и снижения заболеваемости и смертности. Текущие исследования показывают различные потенциальные применения антиоксидантов в профилактике или борьбе с болезнями. Для предотвращения воздействия свободных радикалов на молекулы ДНК и соответственно уменьшение мутагенеза возможно либо непосредственно перехватом свободных радикалов, либо переводить промежуточные продукты этого взаимодействия в менее мутагенные формы.

Рис. 1. Ингибирирование накопления продуктов и расходования аденозина, а) п-кумаровой кислотой; б) кофейной кислотой

Облучением водных растворов аденозина (концентрация 1мМ) с добавками фенольных соединений исследовано влияние последних на образование продуктов реакций аденозина с гидроксильным радикалом. Показано, что исследованные соединения способны ингибировать образование 8-оксо-
аденозина, но неспособны предотвращать образование свободного основания. Так на рис.1 мы видим, что степень ингибитирования образования 8-оксо-аденозина значительно выше степени ингибитирования разложения аденина уже при малых концентрациях, в то время как ингибитирование образования аденина совпадает с ингибитирования разложения аденина.

Полученные результаты означают, что фенольные соединения способны восстанавливать аддукт гидроксильного радикала к аденину, но неспособны восстанавливать катион-радикал аденина.

Показано, что фенольные соединения снижают выход образования 8-оксо-аденозина и таким образом предположительно способны проявлять антимутагенную активность.

INFLUENCE OF PHENOLIC COMPOUNDS ON FREE RADICAL ADENOSINE REACTIONS

Stredinina G.A., Nikolaeva V.V., Rasuvaeva O.I., Fenin A.A.
Dmitry Mendeleev University, Moscow, Russia

The influence of phenolic compounds on the formation of final products of the interaction of adenosine with radicals is considered. It is shown that phenolic compounds are in significant concentrations reduce the yield of mutagenic product - 8-oxo-adenosine.

СПЕКТРОФОТОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ СВЯЗЫВАНИЯ ДВУХАТОМНЫХ ФЕНОЛОВ В-ЦИКЛОДЕКСТРИНОМ

Сутягин А.А., Фабер А.А.
Южно-Уральский государственный гуманитарно-педагогический университет, Челябинск, Россия, sandrey0507@mail.ru

Аннотация. Рассмотрена возможность связывания двухатомных фенолов (резорцин, пирокатехин, гидрохинон) β-циклодекстрином с помощью фотометрического метода анализа. Показана взаимосвязь степени связывания с количественными соотношениями «хозяин : гость», а также с расположением гидроксильных групп в ароматическом кольце.
В фармакологической промышленности распространены и популярны лекарственные препараты на основе ароматических соединений фенольного ряда. Их применение может быть ограничено токсичностью фенольных соединений. Кроме того, последние могут легко окисляться на воздухе, что снижает эффективность препарата и срок его использования. Для уменьшения токсического эффекта и повышения устойчивости может быть использован метод инкапсулирования – заключения молекулы в оболочку, способствующую медленному высвобождению препарата в организме и предотвращающую раннее «старение». Эффект инкапсулирования может быть применен и для снижения токсичных фенольных соединений, широко поступающих в окружающую среду, например, в качестве гербицидов.

В качестве структурных молекул, выступающих в качестве «капсул», могут быть использованы циклодекстринны – продукты ферментативного расщепления крахмала, циклические олиgosахариды, построенные из остатков D-глюкопиранозы и обладающие жесткой торроидной структурой с гидрофобной полостью, способной включать молекулы достаточно больших размеров, в том числе, фенольные фрагменты, с образованием соединений включения типа «гость – хозяин» [1]. Степень связывания и устойчивость образующихся комплексов могут быть направленно изменены путем увеличения жесткости каркаса модификациями циклодекстринов [2].

Подобное инкапсулирование позволяет обеспечивать дозированное применение лекарственного препарата, облегчает его транспортировку и безопасность обращения с токсичными веществами. Использование инкапсулирования позволяет существенно расширить спектр применяемых препаратов, обладающих пониженной растворимостью за счет повышения этого показателя при связывании. В водных растворах и на поверхности высокодисперсного кремнезема получены комплексы β-циклодекстринна с салициловой кислотой, а на примере комплексов с аспирином показана возможность снижения раздражающего действия на ЖКТ, повышение устойчивости препарата к внешним факторам. Ряд препаратов в результате связывания проявляет пролонгированное действие [3].

Эффект связывания может быть использовано для сорбции фенольных соединений, например, при очистке сточных вод. На
Основе циклодекстрина разработаны эффективные фильтры для очистки сточных вод, связывающие за один раз до 90% бисфенола A [4]. Циклодекстрины образуют устойчивые комплексы с бисфенолами, подвергающимися фотохимической трансформации под действием солнечного света. Комплексы включения могут быть использовано для разработки новых катализитических методов фотохимической очистки от бисфенолов в растворах и твердой фазе [5].

Нами исследована возможность связывания β-циклодекстрином двухатомных фенолов по изменению оптической плотности растворов фенолов, окрашенных хлоридом железа (III) при добавлении в систему циклодекстрина в различных соотношениях циклодекстрин : фенол. Для работы использовался водный раствор циклодекстрина фирмы “Merck” с концентрацией 0,003М. рассмотривали зависимость оптической плотности раствора от концентрации фенолов. Затем проводились аналогичные измерения при мольных соотношениях циклодекстрин : фенолы 1:10; 1:20; 1:30 и 1:40 (опыт 1). Во втором варианте аналогичные измерения проводились при соотношениях 1:5; 1:10; 1:15 и 1:20 (опыт 2). По изменению величины оптической плотности раствора судили о степени связывания фенолов.

Данные анализа показывают, что степень связывания зависит как от концентрации рецептора и субстрата, так и от структуры фенолов. Наибольшей степенью связывания характеризуется пирокатехин с орто-расположением гидроксильных групп. Так, при соблюдении мольных отношений «хозяин – гость» по опыту 1 содержание свободного пирокатехина в растворе уменьшается в 1,5 раза, что говорит о степени связывания 6 моль фенола / 1 моль циклодекстрина. Дальнейшее увеличение концентрации циклодекстрина (опыт 2) приводит к снижению степени связывания от 0,2 до 2-кратного по отношению к опыту 1, при этом коэффициент уменьшения связывания прямо пропорционален возрастанию концентрации гостя. Возможно, что в данном случае концентрационный фактор вызывает возникновение конкуренции гостя за связывание несколькими полостями циклодекстрина.

При связывании резорцина наблюдается эффект возрастания оптической плотности растворов, что может быть связано с фотохромными эффектами, которыми может характеризоваться образование клатратов [6]. При этом эффект
связывания наблюдается только при увеличении концентрации «хозяина» (опыт 2). Возможно, что в данном случае мета-расположение гидроксилных групп в молекуле гостя создает стерические затруднения при ориентации ароматического кольца около циклодекстриновой полости. Эти затруднения компенсируются при возрастании концентрации «хозяина».

При использовании в качестве «гостя» гидрохинона с пара-расположением изменения оптической плотности не наблюдается при любых концентрациях фенола и циклодекстрина. Возможно, в данном случае происходит образование водородных связей между молекулой фенола и двумя молекулами циклодекстрина, что препятствует проникновению ароматического кольца внутрь циклодекстриновой полости.

Таким образом, проведенное исследование показывает, что циклодекстрины могут выступать в качестве сорбентов для связывания фенольных соединений в водно-спиртовых растворах. При увеличении концентраций гостя и хозяина наблюдается уменьшение степени связывания, обусловленное стерическими затруднениями или распределением молекулы гостя между двумя молекулами хозяина. Наибольшая степень связывания наблюдается при ближнем орто-расположении гидроксилных групп в молекуле пирокатехина, что не препятствует комплексообразованию. При мета-расположении связывание происходит только при увеличении концентрации хозяина, а в случае пара-расположения – не наблюдается при любых концентрациях фенола и циклодекстрина, что можно объяснить образованием водородных связей, препятствующих комплексообразованию.

Список литературы.

SPECTROPHOTOMETRIC DETERMINATION OF BINDING OF TWO-ATOMIC PHENOLS WITH β-CYCLODEXTRIN
Sutyagin A.A., Faber A.A.
South Ural State Humanitarian-Pedagogical University, Chelyabinsk, Russia, sandrey0507@mail.ru

The possibility of binding diatomic phenols (resorcinol, pyrocatechol, hydroquinone) with β-cyclodextrin using the photometric assay method is considered. The relationship between the degree of binding and the quantitative ratios of "host: guest" is shown, as well as the location of hydroxyl groups in the aromatic ring.

ФЕНОЛЬНЫЕ СОЕДИНЕНИЯ ТРУТОВЫХ ГРИБОВ

Сысоева М.А., Хабибрахманова В.Р., Бурмасова М.А., Носов А.И., Галеева Г.И.

ФГБОУ ВО Казанский национальный исследовательский технологический университет, Казань, Россия, oxygen1130@mail.ru

Аннотация. Разработана методология по выделению из трутовых грибов фракций, содержащих фенольные соединения в их нативном состоянии, которая применена
для определения их содержания в грибах и изучения состава. Это определить большее количество веществ фенольной природы в трутевых грибах, по сравнению с литературными данными, и впервые показать присутствие в них ряда фенолкарбоновых кислот, флавоноидов, иридоидов и азуленов. На основе полученных фракций, содержащих фенольные соединения, в дальнейшем, перспективно разработать БАД и пищевые добавки с высокими антиоксидантными, бактерицидными или фунгицидными свойствами.

Трутевые грибы широко распространены в лесных ареалах наших лесов. В официальной медицине используется только гриб *Inonotus obliquus* – чага, хотя многие трутевые грибы применяют для лечения различных заболеваний в народной медицине. Расширение знаний о качественном составе и количественном содержании фенольных соединений трутевых грибов, обладающих широким спектром терапевтических свойств актуально, поскольку может быть использовано для более полного понимания их метаболизма, а также позволит более эффективно использовать трутевые грибы для получения на их основе БАД и пищевых добавок.

Цель работы - разработать методологические подходы по выделению из трутовых грибов фракций, содержащих фенольные соединения в их нативном состоянии, для определения их содержания и изучения состава, с возможностью разработать на основе этих фракций БАД и пищевые добавки с высокими антиоксидантными, бактерицидными или фунгицидными свойствами.

Объектами исследования являлись грибы: *Inonotus obliquus* – чага, *Ganoderma applanatum* – трутовик плоский, *Phellinus igniarius* – трутовик ложный и *Fomitopsis pinicola* – трутовик окаймленный. Трутевые грибы в процессе своей жизнедеятельности накапливают пигменты. Часть из них ассоциирована с белками и полисахаридами в полифенольные комплексы, которые в последнее время отнесены к меланинам. В водных извлечениях меланины образуют полидисперсные коллоидные системы. Фенольные соединения играют центральную роль в формировании дисперсной фазы - меланинов, и в меньшей степени дисперсионной среды. Наиболее трудно выделять фенольные соединения,
находящиеся в связанном в меланине состоянии, поскольку им часто сопутствуют терпеноидные и стероидные соединения и другие.

К часто применяемым подходам по выделению и исследованию соединений содержащихся в природном сырье, в том числе и фенольных, является подбор экстрагента, в котором лучше растворяются эти соединения. Для экстракции фенольных соединений из природного сырья обычно используют спирты – водные растворы метанола или этанола различной концентрации. Популярным методом, облегчающим выделение индивидуальных веществ из природного сырья, является применение гидролиза водных извлечений или меланинов, что не позволяет адекватно определить содержание соединений и выделить их в нативном состоянии.

В разработанном нашей исследовательской группой подходе к изучению содержания и состава фенольных соединений трутовых грибов мы сочетали подбор растворителей, используемых: для экстракции природного сырья, его водных извлечений и меланинов [1-5]. Подбирали условия экстракции и использовали её интенсификацию с применением СВЧ [6]. Для разделения веществ, высвобождения их из связанного состояния кроме использования органических растворителей различной полярности, изменяли температурные условия и рН среды. Для изучения легко отделяемых от меланинов фенольных соединений применен электрофорез [7] и анализ фильтратов, полученных при использовании различных осаждающих агентов.

Примененный комплексный подход к исследованию фенольных соединений трутовых грибов позволил определить большее их количество в грибах, по сравнению с литературными данными, и впервые показать присутствие в трутовых грибах ряда фенолкарбоновых кислот, флавоноидов, иридоидов и азуленов.

Список литературы.
2. Сысоева М.А. Получение водных экстрактов трутовых грибов /Сысоева М.А., Носов А.И. Бутлеровские сообщения//2012, т.30, в.4, с.147-152
The methodology of excreting from the Polyporaceae fungi of the fractions containing phenolic compounds in their native state which is applied for determination of their content and studying of structure is developed. It has allowed to define bigger quantity in fungi of the phenolic substances, in comparison with literary data, and for the first time to show presence at them the new phenolcarbonic acids, flavonoids, iridoids and azulenes. On the basis of the received fractions containing phenolic compounds, further it is challenging to develop dietary supplement and nutritional supplements with high antioxidant, bactericidal or fungicide properties.
Аннотация. Целью исследования являлось извлечение фенольных соединений из биотехнологического сырья лапчатки золотистоцветковой в разных условиях. Установлено наличие конденсированных и гидролизуемых дубильных веществ, ксантона, флавоноидов, кумаринов и других фенольных соединений у растений-регенерантов Potentilla chrisantha. В субкритических условиях, по-видимому, происходит более полное их извлечение.

Одним из перспективных видов, фитомассу которого можно рассматривать в качестве нового сырья, является Potentilla chrisantha Trev. (Лапчатка золотистоцветковая) - многолетнее растение 15-40 см высотой. Стебли тонкие, приподнимающиеся, малооблиственные, дихотомически-ветвистые, одеты коротким пушком и более длинными, оттопыренными волосками. Корневые и нижние стеблевые листья длиночерешчатые, пятерные, средние также пятерные, верхние тройчатые, короткочерешчатые или почти сидячие, отстоящеволосистые, зеленые. Цветки многочисленные, в соцветии, крупные или довольно мелкие. Лепестки золотисто-желтые. Цветет в мае-июле. Распространена в европейской части России (Волжско-Камский район, Урал), в Западной (Обский, Иртышский, Алтайский районы), Восточной Сибири (Ангаро-Саянский, Даурский районы), в Средней Азии (Джунгаро-Тарбагатайский район). Растет в разреженных лесах, на опушках, лугах, луговых склонах. Корни содержат дубильные вещества (14,96%). В траве обнаружены фенолкарбоновые кислоты и их производные (галловая, метиловый эфир галловой кислоты, эллаговая), дубильные вещества, флавоноиды (1,7%): гликозиды кверцетина, кемпферола, изорамнетина. В листьях найдены фенолкарбоновые кислоты (в гидролизате кофейная, феруловая,
п-кумаровая), кемпферол, кверцетин, С-глюкозид кемпферола, в цветках — flavonoids [1]. Вид занесен в Красную книгу Республики Саха (Якутия) (IV категория).
Методы биотехнологии позволяют получить качественное лекарственное растительное сырьё в короткие сроки, в большом количестве не уничтожая природные запасы [2].
Целью данного исследования являлось извлечение фенольных соединений из биотехнологического сырья лапчатки золотистоцветковой в разных условиях.
Сырьём служили растения-регенеранты Potentilla longifolia Willd., полученные в Отделе биотехнологии Южно-Сибирского ботанического сада, Алтайского государственного университета [3].
Для получения спиртового извлечения использовали спирт этиловый различной концентрации: 40, 70 и 96%. Кратность экстракции равна 3, время экстракции — по 60 минут, соотношение сырье — экстрагент — 1:10. Температура экстракции — 60-65 °C.
Процедура извлечения фенольных соединений в субкритических условиях состояла в следующем: навеску в 0,5 г сухого среднеизмельченного исходного сырья помещали в экстрактор (цилиндрический толстостенный сосуд из нержавеющей стали внутренним объёмом 20 мл), в который добавляли 18 мл растворителя. Экстрактор герметично закрывали и устанавливали в сушильный шкаф с заданной температурой 250 °C (точность термостатирования ±1°С) на 1 час. Затем экстрактор охлаждали до комнатной температуры в ёмкости с холодной проточной водой. Пробу экстракта фильтровали через складчатый бумажный фильтр [4].
В результате проведения качественных реакций получены следующие результаты (табл.1).

Таблица 1. Результаты качественного анализа сырья растений-регенерантов Potentilla chrisantha Trev. в соответствии с методическими рекомендациями Р.А. Музычкиной и коллек [5]

<table>
<thead>
<tr>
<th>Фенольные соединения</th>
<th>Реакция</th>
<th>Ожидаемый эффект</th>
<th>Результат</th>
</tr>
</thead>
<tbody>
<tr>
<td>Антраценовые</td>
<td>с</td>
<td>карминово-</td>
<td>СКФ-экстракты (спиртовые)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>96% 70% 40%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Производные</td>
<td>Раствором аммиака</td>
<td>Красного (окисленные формы)</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>С концентрированной серной кислотой</td>
<td>Интенсивно синее окрашивание (пара-расположенные OH-группы)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Фенолы</td>
<td>С раствором ацетата свинца основного</td>
<td>Появляется осадок или окрашивание: желтое или оранжевое (фенолы, фенолокислоты, полифенолы, дубильные вещества)</td>
<td></td>
</tr>
<tr>
<td>Реакция Либермана</td>
<td>Появляются различные окрашенные осадки и растворы соответствующих индофенолов</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Флавоноиды</td>
<td>С концентрированной хлороводородной кислотой</td>
<td>Появляется красное окрашивание (халконы, ауроны)</td>
<td></td>
</tr>
<tr>
<td>С 3-5% водным раствором борной кислоты</td>
<td>Выпадает белый осадок (реакция на орто-диксигруппировку)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Дубильные вещества</td>
<td>С бромной водой до появления запаха брома</td>
<td>Выпадает осадок (конденсированные дубильные вещества, катехины)</td>
<td></td>
</tr>
<tr>
<td>С 2 мл 10% уксусной кислоты и 1 мл 10% водного раствора соли ацетата свинца,</td>
<td>Появляется осадок (гидролизуемые дубильные вещества)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ксантоны</td>
<td>С 5% спиртовым раствором хлорида алюминия, встряхивают, появляется зелено-голубое окрашивание</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>В УФ-свете имеет абрикосовый цвет</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Кумарины

<table>
<thead>
<tr>
<th></th>
<th>с 10% раствором калия гидроксида</th>
<th>появляется красное окрашивание (фурокумаринов)</th>
<th>+</th>
<th>+яр.</th>
<th>+яр.</th>
<th>+</th>
<th>+яр.</th>
<th>+яр.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>с 1% спиртовым раствором хлорида железа окисного</td>
<td>появляется различное окрашивание для кумаринов и изокумаринов</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+яр.</td>
<td>+</td>
</tr>
</tbody>
</table>

Примечание: – нет эффекта, + ожидаемый эффект, яр. – яркое окрашивание, сл. – слабое окрашивание.

Из литературных данных известно, что представители рода лапчатки содержат дубильные вещества смешанной группы, флавоноиды, кумарины [6. 7]. В результате наших исследований установлено наличие конденсированных и гидролизуемых дубильных веществ, ксантоны, флавоноиды, кумаринов и других фенольных соединений у растений-регенерантов сырья Potentilla chrisantha. Причём, в субкритических условиях, видимо, происходит более полное извлечение (яркое окрашивание). Антраценовые производные, окисленные формы, извлекались только в субкритических условиях.

Таким образом, использование биотехнологического сырья Potentilla chrisantha как перспективного источника получения биологически активных веществ, является целесообразным. Дальнейшее изучение биохимического состава данного представителя лапчаток позволит более полно оценить перспективы его использования в качестве нового вида лекарственного растительного сырья и культивирования в промышленных масштабах.

Список литературы
3. Тихомирова Л.И., Базарнова Н.Г. Биотехнологии получения
EXTRACTION OF POLYPHENOL COMPOUNDS OF PLANTS-REGENERANTS POTENTILLA CHRISANTHA TREV.

Altai State University, Barnaul, Russia, teberekova2014@mail.ru

One of the promising species, whose phytomass can be considered as a new raw material, is Potentilla chrisantha Trev. (Golden-flowered cacti). The purpose of this study was to extract phenolic compounds from the biotechnological raw material of the golden-flowered tinder in different conditions.

The raw materials were the regenerating plants Potentilla chrisantha Trev., Obtained in the Department of Biotechnology of the South Siberian Botanical Garden, Altai State University. As a result of our studies, condensed and hydrolysed tannins, xanthones, flavonoids, coumarins and other phenolic compounds in Potentilla chrisantha plant regenerants have been identified. Moreover, in subcritical conditions, there seems to be a more complete extraction (bright coloration). Anthracene derivatives, oxidized forms, were extracted only under subcritical conditions.
ФУНКЦИОНАЛЬНЫЕ ПОЛИМЕРНЫЕ СИСТЕМЫ С ТЕТРАФЕНИЛПОРФИРИНАМИ

Тертышная Ю.В.¹, Лобанов А.В.², Попов А.А.¹

¹Институт биохимической физики им. Н.М. Эмануэля РАН, Москва, Россия, moraxella@bk.ru
²Институт химической физики им. Н.Н. Семенова РАН, Москва, Россия, avlobanov@mail.ru

Аннотация. Получен материал на основе биоразлагаемого полимера – полилактида и комплекса марганца (III) с тетрафенилпорфирином и железа (III) с тетрафенилпорфирином. Электронные спектры, полученные методом УФ-спектроскопии, свидетельствуют о наличии микровключений тетрафенилпорфира в матрице полилактида. Методом оптической микроскопии определено, что вышеуказанные включения имеют размер 15 – 20 мкм для композиций комплексом марганца (III) и 50-150 мкм для железа (III) с тетрафенилпорфирином. Показана бактерицидная активность образцов исследуемых композитов, которая повышается с увеличением содержания тетрафенилпорфиринов.

Как известно, получение новых функциональных полимерных материалов – это актуальная задача для исследователей во всем мире. Последнее десятилетие активно ведутся работы по изучению структуры, свойств и биосовместимости «зеленых» полиэфиров, среди которых особое место занимает полилактид (ПЛА) [1 – 3]. Однако значительный интерес представляет разработка материалов на основе ПЛА и порфиринов. Следует отметить, что порфиринов и их аналоги природного и синтетического происхождения обладают рядом практически значимых свойств, например, бактерицидностью. Также они представляют интерес для сенсорных систем, фотокатализа, флуоресцентной диагностики [4].

В данной работе исследованы пленочные композиционные материалы на основе ПЛА и комплекса марганца(III) с тетрафенилпорфирином с содержанием 0.1 – 2 мас.%, а также композиты на основе ПЛА и комплекса железа(III) с тетрафенилпорфирином в малых концентрациях – до 0.1 мас. %
[5]. Для получения композиционного материала был выбран полилактид марки 4032D фирмы Nature Works (США) со среднечисловой молекулярной массой 1.9×10^5 и плотностью 1.24 г/см3. Затем растворным методом (растворитель – хлороформ) были получены пленки ПЛА с введенным в них комплексом марганца с тетрафенилпорфирином и железа с тетрафенилпорфирином.

Рис. 1. Электронные спектры образцов ПЛА (1) и ПЛА – MnСІТФП с содержанием FeСІТФП 0.1 (2), 0.5 (3), 1.0 (4), 1.5 (5) и 2.0 (6) масс.%. На вставке – зависимость поглощения от содержания MnСІТФП в образцах ПЛА.

Полимерные композиционные материалы были исследованы методами оптической микроскопии, спектрофотометрии, дифференциальной сканирующей калориметрии (ДСК). Электронные спектры композитов характеризуются поглощением в области 470-480 нм, относящимся к полосе Соре порфирина (рис. 1). Уширенная форма данной полосы позволяет сделать вывод о существовании в композите областей локального концентрирования металлокомплекса. Этот вывод подтверждает невыполнение закона Бугера-Ламберта-Бера. В то же время образования молекулярных агрегатов, имеющих собственные
полосы поглощения, не наблюдается.
Подобная зависимость отслеживается и в случае композитов ПЛА – FeСІТФП. И если данные УФ-спектроскопии совпадают для обеих систем, то результаты ДСК различаются. В случае образцов ПЛА – FeСІТФП температура плавления ПЛА при введении порфиринна снижается на 1 – 2 °C, а у ПЛА в присутствии MnСІТФП повышается на 1 – 2 °C. Возможно, наличие низкомолекулярной добавки в количестве 1,5 – 2 % увеличивает сегментальную подвижность макромолекул ПЛА, что отражается на процессе кристаллизации и теплофизических характеристиках полимерной матрицы.
Методом оптической поляризационной микроскопии на приборе Zeiss Carl Z2m (Германия) в режиме пропускания показано, что эти включения имеют размер около 50 – 150 мкм. На рисунке 2 приведены микрофотографии образцов, на которых заметно, что распределение тетрафенилпорфирина в матрице полилактида становится равномернее с ростом его процентного содержания. Явного образования агрегатов не наблюдается.

Рис. 2. Микрофотографии образцов ПЛА – FeСІТФП, содержание FeСІТФП 0.013 (a), 0.053 (b), 0.132 мас.% (c).

Следует отметить, что в случае с использованием комплекса марганца(III) с тетрафенилпорфирином размер микровключений ТФП в матрице ПЛА был меньше и составлял 10 – 25 мкм.
Биологический тест показал, что бактерицидная активность образцов исследуемых композитов повышается с увеличением содержания тетрафенилпорфиринов.
Таким образом, полученные пленочные композиты представляют интерес для создания биосовместимых материалов, а также, возможно, сенсорных систем. В дальнейшем планируется провести ряд химических и
FUNCTIONAL POLYMER SYSTEMS WITH TETRAPHENYLPORPHYRIN

Tertyshnaya Yu.V.¹, Lobanov A.V.², Popov A.A.¹
¹Emanuel Institute of Biochemical Physics RAS, Moscow, Russia, moraxella@bk.ru
²Semenov Institute of Chemical Physics RAS, Moscow, Russia, avlobanov@mail.ru

Materials based on biodegradable polymer polylactide and complex of manganese (III) tetraphenylporphyrin and iron (III) with tetraphenylporphyrin are obtained. Electronic spectra obtained by UV spectroscopy, indicate the presence of micro-inclusions of tetraphenylporphyrin in the polylactide matrix. The method of optical microscopy determined that the above inclusions have a size of 15–20 µm for tracks with a complex of manganese (III) and 50-150 µm for Fe (III) with tetraphenylporphyrin. It is shown the bactericidal activity of samples of the investigated composites.
АНТИОКСИДАНТНАЯ АКТИВНОСТЬ ПОЛИФЕНОЛОВ ПРИ ОКИСЛЕНИИ МЕТИЛЛИНОЛЕАТА В МИЦЕЛЛАХ

Тихонов И.В., Бородин Л.И., Осипов Е.М., Рябкова В.А.
ФГБОУ ВО «Ярославский государственный университет им. П.Г. Демидова», Ярославль, Россия, tikhonoviv.ysu@gmail.com

Аннотация. Исследована антиоксидантная активность (АОА) поли- и метоксифенолов при окислении метиллинолеата в мицеллах. Установлена связь АОА со строением соединений. Показано, что пирогаллол и катехоламины проявляют антиоксидантные свойства только в присутствии фермента супероксиддисмутазы, что обусловлено неустойчивостью соответствующих феноксильных радикалов.

Полифенолы благодаря своим антиоксидантным свойствам способны тормозить процессы окислительного стресса в живых клетках. Проблема установления связи строения с АОА полифенолов является одной из центральных в химии этих соединений. Активность биоантиоксидантов исследуют как при окислении субстратов биологической природы in vitro, так в модельных системах, в частности при окислении метиллинолеата (МЛ) в мицеллах [1]. Преимуществом последнего подхода является использование индивидуальных химических соединений постоянного состава, что позволяет обеспечить известную и постоянную во времени скорость генерации активных радикалов (\(W_i\)) и получить надежные и воспроизводимые результаты. АОА в этом случае характеризуется двумя параметрами — константой скорости взаимодействия антиоксиданта с пероксидным радикалом (\(k\)) и коэффициентом ингибирования (\(f\)), показывающим среднее число цепей окисления, обрываемых на одной молекуле ингибитора.

В настоящей работе нами исследована АОА ряда поли- и метоксифенолов при окислении МЛ в мицеллах Triton X-100 (310 К, pH 7,4). Кинетику поглощения кислорода в процессе окисления изучали с использованием кислородного биологического монитора YSI 5300A. Параметры АОА определяли по методике,
описанной в работе [1]. Формулы исследованных соединений приведены на схеме.

Рис. 1. Кинетика поглощения кислорода при ингибитированном физетином 7 окислении МЛ в мицеллах; [МЛ] = 0,01 М; \(W_i = 3,8 \cdot 10^{-9} \) моль/(л·с);
[Тритон X-100] = 0,05 М; рН 7,4; 310 К.
[7] \cdot 10^6, М: 0 (1); 3,3 (2); 5,0 (3); 6,7 (4); 10,0 (5).

Типичные кинетические кривые поглощения кислорода представлены на рис. 1. При введении антиоксиданта на кинетический кривой проявляется выраженный период индукции, продолжительность которого определяется параметром \(f \). Величина константы скорости \(k \) определяет силу ингибирующего действия (наклон начального участка кинетической кривой).
Соответствующие параметры для всех исследованных соединений сведены в таблице 1.

Таблица 1.

Параметры АОА исследованных фенолов.

<table>
<thead>
<tr>
<th>№</th>
<th>Фенол</th>
<th>(k \cdot 10^{-3}), л/(моль·с)</th>
<th>(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Протокатеховая кислота</td>
<td>4,5 ± 0,5</td>
<td>3,4 ± 0,2</td>
</tr>
<tr>
<td>2</td>
<td>Ванильная кислота</td>
<td>0,65 ± 0,05</td>
<td>1,4 ± 0,1</td>
</tr>
<tr>
<td>3</td>
<td>Сиринговая кислота</td>
<td>1,8 ± 0,3</td>
<td>2,2 ± 0,2</td>
</tr>
<tr>
<td>4</td>
<td>Кофейная кислота</td>
<td>5,1 ± 0,3</td>
<td>5,6 ± 0,4</td>
</tr>
<tr>
<td>5</td>
<td>Феруловая кислота</td>
<td>2,0 ± 0,2</td>
<td>2,3 ± 0,2</td>
</tr>
<tr>
<td>6</td>
<td>Синаповая кислота</td>
<td>4,1 ± 0,3</td>
<td>2,6 ± 0,3</td>
</tr>
<tr>
<td>7</td>
<td>Физетин</td>
<td>6,2 ± 0,4</td>
<td>3,7 ± 0,3</td>
</tr>
<tr>
<td>8</td>
<td>Пирогаллол</td>
<td>5 – 10*</td>
<td>1,0 ± 0,1*</td>
</tr>
<tr>
<td>9</td>
<td>Дофамин</td>
<td>4 – 8*</td>
<td>3,5 – 6*</td>
</tr>
<tr>
<td>10</td>
<td>Норадреналин</td>
<td>3 – 5*</td>
<td>4 – 6*</td>
</tr>
</tbody>
</table>

*Определено в присутствии СОД (20 – 100 Ед/мл).

Соединения 1 – 7 обладают выраженным антиоксидантным действием. Величина \(k\) для гидроксикислот возрастает в рядах 2 – 3 – 1 и 5 – 6 – 4, т.е. от метоксифенолов к производным пирокатехина. Аналогичные закономерности для данных соединений ранее были обнаружены нами при окислении неполярного углеводорода – стиrolа [2]. При этом полученные в настоящей работе абсолютные значения \(k\) в 100 – 300 раз ниже, чем в стиrolе, и в 4 – 20 раз ниже, чем при окислении МЛ в гомогенной среде [3]. Причиной столь низких значений \(k\) являются: 1) образование водородных связей между ОН-группой фенола и сложноэфирной группой МЛ, а также другими компонентами среды (ПАВ, вода); 2) распределение антиоксиданта между фазами (водой и внутренней частью мицеллы). Вследствие этого происходит некоторое нивелирование АОА поли- и метоксифенолов: так, в среде стиrolа отношение параметров \(k\) в парах 1 / 2 и 4 / 5 составляло два порядка [2], а при окислении МЛ мицеллах оно равно 2,6 и 7 соответственно.

Структура соединений существенным образом влияет на значения \(f\). Если для метоксифенолов они близки к двум (теоретическое значение для монофенолов), то для полифенолов \(f\) существенно выше. Данный эффект можно было бы объяснить участием в регенерации антиоксиданта радикала \(\text{HO}_2^*\), образующегося при окислении МЛ в мицеллах. В этом
случае значение \(f \) должно снижаться при введении в систему фермента супероксиддисмутазы (СОД), чего в действительности не происходит (доказано на примере 4). По-видимому, высокие значения \(f \) для полифенолов обусловлены олигомеризацией антиоксидантов в процессе окисления с регенерацией активных ОН-групп [1]. Соединения 8 – 10 в обычных условиях не проявляют антиоксидантных свойств. Напротив, с увеличением концентрации данных фенолов скорость окисления МЛ возрастает. Причиной этого, по-видимому, является реакция взаимодействия феноксильного радикала (анион-радикала) с кислородом (6), приводящая к образованию супероксидного радикала \(O_2^{•−} \), способного к продолжению цепей окисления (7). Упрощенный механизм антиоксидантного действия полифенолов (QH\(_2\)) с учетом побочных реакций можно представить в виде схемы (LH – молекула МЛ) [1]:

\[
\begin{align*}
(i) & \quad I + O_2, + LH \rightarrow LO_2^* \\
(1) & \quad LO_2^* + LH + \text{O}_2 \rightarrow \text{LOOH} + \text{LO}_2^* \\
(2) & \quad \text{LO}_2^* + \text{LO}_2^* \rightarrow \text{продукты} \\
(3) & \quad \text{LO}_2^* + \text{QH}_2 \rightarrow \text{LOOH} + \text{QH}^* \\
 & \quad \text{QH}^* \leftrightarrow \text{Q}^{•−} + \text{H}^+ \\
(4) & \quad \text{LO}_2^* + \text{Q}^{•−} \rightarrow \text{продукты} \\
(5) & \quad \text{Q}^{•−} + \text{Q}^{•−} + 2\text{H}^+ \rightarrow \text{QH}_2 + \text{Q} \\
(6) & \quad \text{Q}^{•−} + \text{O}_2 \rightarrow \text{Q} + \text{O}_2^{•−} \\
(7) & \quad \text{O}_2^{•−} + \text{LH} \rightarrow +\text{H}^+, +\text{O}_2 \rightarrow \text{H}_2\text{O}_2 + \text{LO}_2^* \\
\end{align*}
\]

Введение СОД в исследуемую систему препятствует протеканию реакции (7), при этом соединения 8 – 10 ингибируют процесс окисления МЛ. Характерно, что для пирогаллола 8 значение \(f \) равно 1, что объясняется последовательностью реакций (3), (6) с последующей гибелью \(O_2^{•−} \) на молекуле СОД. В то же время катехоламины 9, 10 в присутствии СОД характеризуются высокими значениями \(f \), поскольку в ходе их окислительных превращений возможны процессы циклизации, сопровождающиеся регенерацией ОН-групп. Величины \(k \) и \(f \) для соединений 8 – 10 представлены в таблице 1 в виде диапазона значений, поскольку они зависят от количества вводимого СОД.

Работа выполнена при поддержке гранта РФФИ № 18-03-00644.
ANTIOXIDANT ACTIVITY OF POLYPHENOLS DURING THE OXIDATION OF METHYL LINOLEATE IN MICELLES

Tikhonov I.V., Borodin L.I., Osipov E.M., Ryabkova V.A.

P.G. Demidov Yaroslavl State University, Yaroslavl, Russia, tikhonoviv.ysu@gmail.com

The antioxidant activity of poly- and methoxyphenols was studied during the oxidation of methyl linoleate in micelles. The structure – antioxidant activity relationship was established. It was shown that pyrogallol and catecholamines possess antioxidant properties in the presence of superoxide dismutase enzyme only, which was explained by the instability of the corresponding phenoxy radicals.

ДЕЙСТВИЕ ФЕНОЗАНА К В МАЛЫХ ДОЗАХ НА БИОХИМИЧЕСКИЕ СВОЙСТВА ФЕРМЕНТОВ ГЛИКОЛИЗА И МИКРОВЯЗКОСТЬ МЕМБРАН КЛЕТОК ГОЛОВНОГО МОЗГА ЗДОРОВЫХ МЫШЕЙ

Трещенкова Ю.А., Герасимов Н.Ю., Голощапов А.Н.

Институт биохимической физики им. Н.М. Эммануэля РАН, Москва, Россия, tresch@sky.chph.ras.ru

Аннотация. Показано, что изменения (Vmax,Km,Vmax/Km) альдолазы и ЛДГ цитоплазмы и микровязкости липидного бислоя мембран микросом зависят от дозы фенозана (10^{-14} и 10^{-4} моль/кг) и времени действия. Положительную и обратную взаимосвязь нашли между изменениями Vmax ферментов и микровязкости в разных областях липидного бислоя мембран. Предполагается, что влияние фенозана на структуру мембран важно для связывания ферментов с мембранами.

Исследования малых доз биологически активных веществ (БАВ) и на живые организмы (от молекул до тканей) достаточно
актуальны. Выявлены общие закономерности и механизмы действия сверхмалых доз (СМД) и малых доз БАВ [1,2]. Незначительны данные по изучению СМД на отдельные гликолитические ферменты и структурное состояние мембран клеток в условиях in vivo. Ферменты могут изменять свою активность и свойства при развитии патологических состояний и различных воздействиях. Ранее нами было показано влияние фенозана (10^{-17} – 10^{-5} моль/кг) на биохимические свойства ЛДГ и микровязкость мембран микросом клеток головного мозга [3]. В работе в условиях in vivo изучали действие синтетического антиоксиданта фенозана К (1-β-4 окси-3,5-дитрет-бутил-фенил-1-пропионат К), обладающего широким спектром действия, на кинетические свойства (Vmax, Km, Vmax/Km) альдолазы и ЛДГ цитоплазмы и микровязкость липидного бислоя мембран микросом клеток головного мозга мышей.

Методы исследования. Работа выполнена на здоровых мышах линии F1(CBA/C57Bl), массой 18-22 г. Фенозан вводили однократно в дозах СМД или 10^{-4} моль/кг. Через 1 час, 24 и 96 часов извлекали мозг, из которого с помощью дифференциального центрифугирования при 105 000g получали цитоплазму и микросомы. Спектрофотометрически определяли активность альдолазы с субстратом ФДФ, а ЛДГ с субстратом пируватом в широком интервале концентраций. Кинетические параметры (Vmax,Km) рассчитывали методом Корниш-Боудена и вычисляли значение Vmax/Km (эффективность фермента). Белок определяли методом Лоури. Микровязкость липидного бислоя мембран микросом определяли с зондами, которые различались по своим гидрофобным свойствам и локализацией в мембране:2,2,6,6-тетраметил-4-каприлоилопиперидин-1-оксил (зонд 1) и 5,6-бензо-2,2,6,6-тетраметил-1,2,3,4-тетрагидро-γ-карболовин-3-оксил (зонд2). Спектры ЭПР регистрировали на ЭПР-спектрометре фирмы «Bruker».

Результаты и обсуждение. В цитоплазме (рис.1) после введения фенозана в СМД значительно возрастает Vmax альдолазы в 1,4 и 1,3 раза через 1 ч и 96 ч соответственно.

Фенозан в дозе 10^{-4} моль/кг повышал Vmax в 1,2 раза через 1 ч после введения. Получена положительная взаимосвязь изменений Vmax альдолазы с общим количеством белка (p<0,001). Фенозан в СМД или в дозе 10^{-4} моль/кг значительно увеличивал Km в 2,3 и 1,4 раза через 1 ч и уменьшал в 2,7 и 5,0 раза соответственно через 24 ч. Эффективность (Vmax/Km)
альдолазы понижалась в 1,7 раза через 1 ч и повышалась в 1,8 раза через 24 ч для СМД, а для дозы 10^{-4} моль/кг повышалась в 3 раза через 24 ч.

Рис. 1. Изменение кинетических свойств альдолазы в цитоплазме и микросомах клеток головного мозга мышей через 1,24 и 96 часов после однократного введения фенозана в СМД или малых дозах (10^{-4} моль/кг).

В микросомах получена противоположная направленность изменений Vmax альдолазы: уменьшение в 1,6 и 1,3 раза через 1ч и 24ч, соответственно, для СМД, а в 1,25 раза через 1ч и 96ч для дозы 10^{-4} моль/кг. Эффективность (Vmax/Km) альдолазы понижалась в 1,3-1,38 раза для обеих доз фенозана через 1-96ч после введения.

Значения Vmax ЛДГ в цитоплазме (рис.2) заметно увеличивалась в 1,3 и 1,26 раза для СМД и дозы 10^{-4} моль/кг.

171
соответственно через 1ч после введения. Найдена положительная взаимосвязь изменений Vmax ЛДГ с общим количеством белка (р<0,01) для обеих доз фенозана. Значение Km повышалось в 1,6 раза через 1ч для обеих доз фенозана. Эффективность (Vmax/Km) ЛДГ незначительно изменялась.

Рис. 2. Изменение кинетических свойств ЛДГ в цитоплазме и микросомах клеток головного мозга мышей через 1,24 и 96 часов после однократного введения фенозана в СМД или малых дозах (10⁻⁴ моль/кг).

В микросомах (рис.2) Vmax ЛДГ понижалась для СМД и повышалась для дозы 10⁻⁴ моль/кг. Значения Km увеличивались для СМД через 24ч, для дозы 10⁻⁴ моль/кг через 96ч. Эффективность ЛДГ уменьшалась в 1,5 раза для СМД и увеличивалась для дозы 10⁻⁴ моль/кг через 24ч.

Микровязкость (τc), как видно на рис.3, повышалась в области липидной компоненты (зонд 1) через 24ч и 96 ч и
уменьшалась в области липид-белковых контактов (зонд 2) липидного бислоя мембран для фенозана СМД. Фенозан в дозе 10^{-4} моль/кг существенно увеличивал \(\tau_c \) мембран с зондом 1 (в 1,4 раза) через 1 ч и 24 ч и с зондом 2 (в 1,1-1,2 раза) через 1 ч, 24 ч и 96 ч после введения.

Альдолаза и ЛДГ взаимодействуют с белками и фосфолипидами мембран [4]. В области липидной компоненты (зонд 1) мембран найдена положительная взаимосвязь между изменениями \(V_{\text{max}} \) альдолазы, ЛДГ (\(p<0,1 \)) и \(\tau_c \) и обратная в области липид-белковых контактов (зонд 2) для СМД (\(p<0,05 \)) и для дозы 10^{-4} моль/кг (\(p<0,01 \)).

Список литературы:

EFFECT OF LOW DOSES OF PHENOZAN ON BIOCHEMICAL PROPERTIES THE ENZYMES OF GLYCOLYSIS AND THE MICROVISCOITY OF THE MEMBRANES OF BRAIN CELLS.

Treshchenkova Yu.A., Gerasimov N.Yu., Goloshchapov A.N.
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
It was shown that low doses of phenozan (10^{-14}, 10^{-4} mol/kg) caused changes in kinetic parameters V_{max}, K_m of aldolase and LDG and microviscosity in various ranges of microsomal membranes of brain cells. It is suggested that the effect of phenozan on the structure of membrane is important for binding enzymes with membranes.

СИНЕРГИЧЕСКИЙ ЭФФЕКТ БИНАРНЫХ КОМПОЗИЦИЙ КВЕРЦЕТИН–МОНОСАХАРИД В РЕАКЦИЯХ СО СВОБОДНЫМИ РАДИКАЛАМИ

Удалов Я.С., Белая Н.И., Белый А.В., Тихонова Г.А., Андриенко Г.А.
ГОУ ВПО «Донецкий национальный университет», Донецк, Украина, yarikzbest@mail.ru

Аннотация. В модельной реакции с DPPH* наиболее высокую антирадикальную активность проявили синергические композиции кверцетина с глюкозой и галактозой в соотношении 60:40%. Синергический эффект достигает 75% и определяется способностью всех изученных моносахаридов образовывать межмолекулярные комплексы с кверцетином, повышая его растворимость, а также со способностью редуцирующих углеводов восстанавливать окисленные формы флавоноида. В реакции с пероксирадикалами хлопкового масла (ROO*) синергический эффект комбинаций кверцетин–моносахарид возрастает до 300% только для сахаров, способных восстанавливать радикалы кверцетина и реагировать с кислородом воздуха, снижая стационарную концентрацию ROO* в системе.

Флавоноиды как вторичные метаболиты растений имеют широкий спектр биологического действия и выраженную антиоксидантную активность (АОА). Расширить область их действия можно путем совместного применения с углеводами как основными компонентами пищи, принимающими участие в процессах жизнедеятельности живых организмов.

Целью данной работы является исследование синергического действия бинарных смесей «кверцетин–
моносахранид» в реакции с модельным N-центрированным радикалом 2,2'-дифенил-1-пикрилгидразилом (DPPH') и пероксильными радикалами (ROO'), генерированными в процессе автоокисления хлопкового масла кислородом воздуха при комнатной температуре.

В работе использовали флavoноид – кверцетин (PhOH), моносахраниды (Sacch), относящиеся к группе тетроз, пентоз и гексоз. Реакция DPPH' с PhOH и его смесями с Sacch в разных соотношениях изучалась в деоксигенированном этаноле при T=293±2 K методом фотоколориметрии [1]. Определение стойкости хлопкового масла к окислению проводили путем выдерживания его в тонком слое при Tком. и свободном доступе кислорода воздуха. Кинетику реакции изучали по накоплению перекисного числа методом йодометрии [2].

Для определения наиболее эффективных композиций варьировали концентрации кверцетина и Sacch в широком диапазоне при постоянной суммарной концентрации смеси. Величину синергического эффекта (SE) оценивали по усилению антирадикального действия смеси по сравнению с аддитивным действием кверцетина и моносахранида:

\[
SE = \left(\frac{(v_{\text{mix}} - v_{\text{add}})}{v_{\text{add}}} \right)_{\text{max}} = \left(\frac{\Delta v}{v_{\text{add}}} \right)_{\text{max}} \cdot 100\%,
\]

где \(v_{\text{mix}} \) – начальная скорость реакции DPPH' со смесью кверцетина и моносахранида; \(v_{\text{add}} = v_{\text{PhOH}} + v_{\text{Sacch}} \) – величина начальной скорости в предположении, что действие смеси аддитивно.

Анализ зависимости \(v_{\text{mix}} \) от состава смеси кверцетина с моносахранидом показал (табл.), что все изученные углеводы проявляют синергическое действие в той или иной мере усиливая антирадикальное действие кверцетина. При этом величина максимальной скорости реакции \(v_{\text{max}} \) и SE смеси определяется количеством гидроксильных заместителей и наличием альдегидных или кетонных групп в молекулах углевода.

Чем больше гидроксигрупп в Sacch, тем более эффективно они усиливают активность кверцетина по отношению к DPPH'. Причина синергизма может заключаться в том, что при растворении в воде кверцетин переходит в таутомерную дикетоформу, где между ее карбонильными группами и гидроксигруппами моносахранида возникают водородные связи, способствующие стабилизации дикетона за счет образования
молекулярных комплексов [3], улучшению растворимости флавонола в воде и проявлению синергического эффекта в смеси с углеводом.

Таблица 1.
Величины синергического эффекта (SE) и максимальной скорости реакции (υ_{max}) бинарной композиции кверцетин–моносахарид в реакции с DPPH·. Растительный – деоксигенированный этанол.
T=293±2 K.

<table>
<thead>
<tr>
<th>Композиция PhOH–Sacch</th>
<th>υ_{max}, моль·л⁻¹·с⁻¹</th>
<th>SE, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Тетрозы</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Кверцетин–эритроза (40:60)</td>
<td>5,9·10⁻⁷</td>
<td>10</td>
</tr>
<tr>
<td>Пентозы</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Кверцетин–рибоза (50:50)</td>
<td>1·10⁻⁶</td>
<td>31</td>
</tr>
<tr>
<td>Кверцетин–арабиноза (50:50)</td>
<td>9,65·10⁻⁷</td>
<td>26</td>
</tr>
<tr>
<td>Кверцетин–рибулоза (40:60)</td>
<td>5,8·10⁻⁷</td>
<td>8</td>
</tr>
<tr>
<td>Гексозы</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Кверцетин–галактоза (60:40)</td>
<td>5,94·10⁻⁷</td>
<td>75</td>
</tr>
<tr>
<td>Кверцетин–глюкоза (60:40)</td>
<td>1,22·10⁻⁶</td>
<td>50</td>
</tr>
<tr>
<td>Кверцетин–фруктоза (60:40)</td>
<td>8,57·10⁻⁷</td>
<td>29</td>
</tr>
<tr>
<td>Кверцетин–сорбоза (60:40)</td>
<td>8,3·10⁻⁷</td>
<td>25</td>
</tr>
</tbody>
</table>

Редуцирующие сахара (альдозы) проявили намного больший синергический эффект, чем нередуцирующие (кетозы), независимо от числа гидроксигрупп (табл.), поскольку способны восстанавливать окисленные формы кверцетина, тем самым проявляя синергическое действие.

Синергическое действие композиций кверцетина с глюкозой и фруктозой, определенное в модельной реакции с DPPH·, было проверено при автоокислении хлопкового масла. Установлено, что максимальный SE смеси кверцетин–глюкоза в реакции с ROO· масла достигает 300%. По-видимому, это связано как со способностью глюкозы восстанавливать окисленные формы кверцетина, так и реагировать с O₂ воздуха, понижая тем самым концентрацию ROO· в системе. Фруктоза в композиции с
флавонолом фактически не проявила SE, поскольку не относится к редуцирующим сахарам, а способность проявлять гидротропные свойства за счет образования межмолекулярных комплексов с кверцетином в органической среде, по-видимому, не играет существенной роли в определении синергизма.

Список литературы

SYNERGIC EFFECT OF BINARY COMPOSITES QUERCETIN-MONOSACCHARIDE IN REACTIONS WITH FREE RADICALS
Udalov Y.S., Belaya N.I., Belyj A.V., Tikhonova G.A., Andrienko G.A.
State Educational Institution of Higher Professional Education «Donetsk National University», Donetsk, Ukraine, yarikzbest@mail.ru

In a model reaction with DPPH’ higher antiradical activity was exhibit by the synergic composites of quercetin with glucose and galactose at a ratio of 60:40%. Synergic effect achieves 75% and it is defined by the ability of all studied monosaccharides to form intermolecular complexes with quercetin increasing its solubility and by the ability of reducing carbohydrates to regain oxidized form of flavonoids. In reaction with peroxiradicals of cotton oil (ROO’) the synergic effect of combinations quercetin-monosaccharide increased till 300% only for sugar which was able to regain radicals of quercetin and to react with oxygen of air lowering steady-state density ROO’ in the system.
ИССЛЕДОВАНИЕ АНТИРАДИКАЛЬНОЙ АКТИВНОСТИ ЭКСТРАКТОВ ЛАБАЗНИКА

Холоимова Н.А., Антропова И.Г.
ФГБОУ Российский химико-технологический университет имени Д.И.Менделеева, Москва, Россия, holoimowa.nadezhda@yandex.ru

Аннотация. Представлены результаты исследования экстрактов лабазника вязолистного, в состав которого входят вещества фенольного ряда. Показано изменение содержания пероксида водорода в системе за счет введения экстрактов лабазника.

Известно, что пероксид водорода в определенных количествах необходим организму для нормального функционирования иммунной системы. При избытке он выступает в роли прооксиданта, который вызывает в клетках существенные окислительные процессы [1]. Для предотвращения возникновения таких процессов необходимо присутствие антиоксидантов. В состав лекарственных растений входит большой комплекс биологически-активных веществ, которые проявляют антиоксидантные свойства с выраженной антирадикальной активностью. В состав исследуемого нами растения – лабазника вязолистного (Filipendula) входят такие вещества как дигидрокверцетин, ионол, кумарины и другие [2]. Цель данного исследования заключалась в спектрофоотометрическом исследовании антирадикальной активности лабазника с активными формами кислорода (пероксидом водорода), одним из молекулярных продуктов радиолиза водно-этанольной воды является пероксид водорода.

Для исследования растительного сырья готовились водно-спиртовые экстракты лабазника из расчета 1 г сухого аптечного продукта на 50 мл дистиллированной воды. Определенные объемы готовых отфильтрованных экстрактов отбирали в пробирки, куда следующим этапом добавлялся пероксид водорода (3% об.). Измерения произведены на приборе СФ-2000 при длине волны λ=240 нм (длина волны оптического светопоглощения H₂O₂). Содержание пероксида водорода в растворах после облучения определено по йодометрической методике [3].
Выявлено, что концентрация пероксида водорода в системе с экстрактом лабазника уменьшается, но при дальнейшем введении в систему пероксида водорода, начиная с 250 мкл, эффект был обратным. Возможно, это связано с проявлением уже окислительных свойств компонентов исследованного растения.

Результаты эксперимента сравнения содержания пероксида водорода в растворе экстракта лабазника и воды, облученных на рентгеновской установке, показали, что в образцах генерировался пероксид водорода при действии излучения, в системах с экстрактом лабазника зарегистрировано незначительное образование пероксида водорода. Рассчитан радиационно-химический выход \(G(H_2O_2) \) образования пероксида водорода. Установлено, что в присутствии экстрактов лабазника радиационно-химический выход пероксида водорода уменьшается по сравнению с растворами воды, облученным без внесения экстракта лабазника.

Рассчитанные значения радиационно-химического выхода пероксида водорода в системах в присутствии и в отсутствие водных экстрактов лабазника.

<table>
<thead>
<tr>
<th>D, Гр</th>
<th>Г((H_2O_2)), молекул/100эВ в воде без добавок</th>
<th>Г((H_2O_2)), молекул/100эВ в экстракте лабазника</th>
</tr>
</thead>
<tbody>
<tr>
<td>240</td>
<td>0,04</td>
<td>0,03</td>
</tr>
<tr>
<td>360</td>
<td>0,27</td>
<td>0,04</td>
</tr>
<tr>
<td>480</td>
<td>0,6</td>
<td>0,09</td>
</tr>
</tbody>
</table>

По результатам работы можно отметить, что с возрастанием времени облучения увеличивается концентрация пероксида водорода в системе без добавки экстрактов, но ее содержание значительно уменьшается в системе с экстрактом лабазника. Следовательно, продукты радиационно-химического превращения водного экстракта лабазника перехватывают свободные радикалы и тормозят образование пероксида водорода.

Работа выполнена при финансовой поддержке РХТУ им. Д.И. Менделеева. Номер проекта 43-2018.
STUDY OF THE ANTIRADICAL ACTIVITY OF EXTRACTS OF FILIPENDULA

Holoiomova N.A., Antropova I.G.
The Russian chemical-technological University. D. I. Mendeleev, Moscow, Russia, holoimowa.nadezhda@yandex.ru

Research results of Filipendula extracts which part substances of a phenolic row are provided. Change of content of hydrogen peroxide in system due to introduction of Filipendula extracts is shown.

ФЕНОЛЬНЫЕ СОЕДИНЕНИЯ КСИЛОТРОФНЫХ БАЗИДИОМИЦЕТОВ В УСЛОВИЯХ КСЕНОБИОТИЧЕСКОГО ВОЗДЕЙСТВИЯ

Цивилева О.М.1, Панкратов А.Н.2, Юррасов Н.А.2, Любунь Е.В.1

1ФГБУН Институт биохимии и физиологии растений и микроорганизмов РАН, Саратов, Россия, tsivileva@ibppm.ru
2ФГБОУ ВО «Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского», Саратов, Россия, PankratovAN@info.sgu.ru

Аннотация. Предпринято изучение биопродукции фенольных соединений и определение антиоксидантного статуса культур некоторых грибов-базидиомицетов, выращенных с добавлением экзогенных фенолов и органических соединений микроэлементов (селена и металлов(II)) в среду глубинного культивирования. Пероксидное окисление липидов было наименее выражено
в случае использования тирозола как добавки к среде культивирования, что согласуется с выявленной нами ранее ауторегуляторной ролью этого соединения в отношении базидиомицетов. Пара-гидроксифенилуксусная кислота в наиболее значительной степени индуктировала накопление фенолов в мицелии. В качестве биохимического отклика грибных культур на присутствие в составе исходной питательной среды диацетофенононилселенида или аспартатов биометаллов(II) выявлены внеклеточные вещества с двойной связью, не зарегистрированные в случае отсутствия изучаемых добавок.

В литературе накоплен большой экспериментальный материал по антиоксидантной активности производных фенолов различного строения. Было обнаружено, что антиоксидантная активность экстрактов грибов коррелирует с общим содержанием фенольных соединений [1].

Не снижается научный и практический интерес к изучению влияния микроэлементов на физиологические, культуральные, биохимические свойства высших грибов. Он вызван в том числе необходимостью корректного использования различных селенсодержащих биопродуктов из базидиомицетов. Важным направлением развития научных основ культивирования грибов является методология оптимизации минерального питания и доставки микроэлементов в биодоступной органической форме. В этой связи актуальны систематические исследования аминокислотных хелатов биогенных металлов, в частности, аспартатов, которые ранее проведены не были.

Цель работы – определение антиоксидантного статуса и выявление продукции фенолов у грибов-базидиомицетов, выращенных с добавлением экзогенных п-гидроксиароматических веществ и органических соединений микроэлементов в среду глубинного культивирования.

В работе использованы культуры базидиомицетов родов Ganoderma, Grifola, Laetiporus, Lentinula, Pleurotus, полученные из российских и белорусских коллекций высших грибов.

В качестве компонентов сред использовали п-гидроксиароматические соединения, 1,5-дифенилселенопентандион-1,5 (диацетофенононилселенид, препарат ДАФС-25). Аспартаты Cu(II), Mn(II), Fe(II), Zn(II), Co(II) были любезно предоставлены к.х.н. С.П. Ворониным и к.х.н. А.П.
Гуменюком (ЗАО «БиоАмид», Саратов).

Для хромато-масс-спектрометрического исследования (в варианте ГХ-МС) образцы подвергали анализу на газовом хромато-масс-спектроме Trace GC – Trace DSQ (газовый хроматограф Trace GC, соединенный с масс-детектором Trace DSQ) (фирма «ThermoFinnigan», США).

Количественную оценку содержания металла в биопробах проводили методом атомно-абсорбционной спектроскопии на спектрометре iCE 3000 С093500037 v1.30 в Центре коллективного пользования (ЦКП) научным оборудованием в области физико-химической биологии и нанобиотехнологии «Симбиоз» ИБФРМ РАН.

Суммарное содержание фенольных соединений в экстрактах из мицелия изучали, используя культуру без добавок ароматических соединений и с таковыми, 5.0·10⁻⁵ моль/л в воде. Оказалось, что 4-гидроксифенилуксусная кислота в наибольшей степени способствовала накоплению фенольных веществ в мицелии.

Концентрация ТБК-активных продуктов в биообъектах была минимальна в случае использования тирозола как добавки к среде культивирования, что согласуется с выявленной нами ранее ауторегуляторной ролью этого соединения в отношении грибных культур [2]. Также снижало концентрацию ТБК-активных продуктов введение в питательную среду 4-гидроксифенилуксусной кислоты, являющейся продуктом окисления тирозола по спиртовой группе.

При экзогенном введении добавок ароматических соединений в культуральной жидкости детектировали низкомолекулярные внеклеточные соединения, не обнаруженные в экстрактах из мицелия. В составе культуральной жидкости в ряде случаев обнаруживалось соединение 3-метил-1,2-
дигидроксифенол (3-метилрирокатехин), обладающий выраженными антиоксидантными свойствами.

Предпринято определение антиоксидантного статуса глубинных культур некоторых базидиомицетов и выявление их биохимического отклика на присутствие диацилофенонилселенида в среде глубинного культивирования.

Анализ антирадикальной активности экстрактов мицелия показал, что положительное влияние на антирадикальную активность экстрактов и антиоксидантный статус мицелия оказывает 1,5-дифенилселенопентандион-1,5.

Как биохимический отклик грибных культур на присутствие в составе исходной питательной среды препарата ДАФС-25, в среде культивирования появляются вещества с двойной связью, не зарегистрированные в случае отсутствия Se-добавки. Это непределные карбоновые кислоты – 2-бутеновая (кротоновая) кислота и 2-метил-2-пропеновая кислота (Laetiporus sulphureus 120707), ароматические спирты – 1-фенилэтанол (Ganoderma applanatum 0154, Laetiporus sulphureus 120707), ароматические альдегиды – бензальдегид (фенилметаналь) (Laetiporus sulphureus 120707), 2,5-диметилбензальдегид (изоксилальдегид) (Pleurotus ostreatus 69), ароматические кетоны – фенилацетон (Grifola umbellata 1622, Laetiporus sulphureus 120707), ароматические углеводороды – 3-этил-о-ксил (Lentinula edodes 198, Pleurotus ostreatus 69), п-бутилбензол (Pleurotus ostreatus 69), 1,2,4-триметилбензол (Grifola umbellata 1622), кислородсодержащие непределые карбоциклические соединения – 3,5,5-триметил-2-циклогексен-1-он (изофорон) (Lentinula edodes 198, Pleurotus ostreatus 69).

Изучали биохимический отклик глубинных культур базидиомицетов на экзогенное воздействие аспартатов переменновалентных металлов. При характеризации внеклеточных соединений экстракт из питательной среды культивирования с добавкой 10^{-4} моль/л аспартата металла(II) сравнивали с экстрактом из питательной среды культивирования без добавок. Детектировали вещества, не зарегистрированные в случае отсутствия изучаемых добавок. Это ароматический спирт 2-фенилэтанол, a также п-гидроксифенилуксусная кислота, максимальная внеклеточная концентрация которой наблюдалась при интродукции Mn(Asp)_{2}. Данная фенольная кислота в значительной степени способствовала накоплению фенольных веществ в мицелии. Полученные результаты позволяют судить о
том, что аминокислотные хелаты меди, железа и марганца способны служить факторами влияния на продукцию соединений, важных для грибной культуры в адаптационном плане.

Список литературы:

PHENOLIC COMPOUNDS OF XYLOTROPHIC BASIDIOMYCETES IN RESPONSE TO XENOBIOTIC EXPOSURE

Tsivileva O.M.¹, Pankratov A.N.², Yurasov N.A.², Lyubun E.V.¹
¹Institute of Biochemistry and Physiology of Plants and Microorganisms, RAS Saratov, Russia, tsivileva@ibppm.ru
²N.G. Chernyshevskii National Research Saratov State University, Saratov, Russia, PankratovAN@info.sgu.ru

Research into the phenolic compounds bioproduction and the redox status determination with several mushrooms submerged cultures fortified with exogenic phenolics and microelement-(selenium and metals(II))-containing organic species has been attempted. Lipid peroxidation was least developed in the case of tyrosol application as an additive to culture medium, that was in compliance to this compound’s autoregulative role we revealed earlier for basidiomycetes. Para-hydroxyphenylacetic acid induced the phenolics accumulation in mycelia to a considerable degree. Biochemical response of mushroom cultures to the diacetophenonylselenide or biometals(II) aspartates presence in the initial nutrient media occurred to be extracellular double-bonded compounds, which were not registered in the absence of supplements under study.
НОВЫЕ ПРИЗВОДНЫЕ 4,6-ДИ-ТРЕТ.-БУТИЛРЕЗОРЦИНА, СИНТЕЗ, ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА

Чигорина Т.М.¹, Егоров Д.И.¹, Чигорина Е.А.²
¹ФГБОУ ВПО «Северо-Осетинский государственный университет им. К. Л. Хетагурова», Владикавказ, Россия, tchigorina@mail.ru
²ФГУП «Государственный ордена Трудового Красного Знамени НИИ химических реактивов и особо чистых химических веществ «ИРЕА», Москва, Россия

Аннотация. Осуществлен синтез функциональных (металлорганические) производных 4,6-ди-трет.-бутилрезорцина, проведены их фармакологические исследования с целью выявления "соединений-лидеров". Определена антиоксидантная активность соединений.

Развитие концепции о значении свободно-радикальных состояний в биологических системах и их основополагающей роли в регулировании некоторых биохимических процессов привело к широкому использованию пространственно-затрудненных фенолов в различных областях экспериментальной биологии.

В медицинской практике находят широкое применение биологически активные соединения, содержащие ядро резорцина. Представляется интересным исследование новых биологически активных веществ синтетической природы, относящихся к группе пространственно-затрудненных фенолов (ПЗФ), в частности, экраинированных двухатомных фенолов.

В работе осуществлен целенаправленный синтез функциональных (металлорганические) производных 4,6-ди-трет.-бутилрезорцина, проведены фармакологические исследования полученных веществ с целью выявления "соединений-лидеров".

В работах [1-3] показано, что введение атома металла в молекулу 2,6-ди-трет.-бутилфенола является эффективным способом стабилизации феноксильных радикалов. В работе приводятся данные о высокой ингибитирующей активности металлорганических производных пространственно-затрудненных фенолов реакций перекисного окисления липидов
в различных биологических системах.
Различия в степени антимикробной активности ряда пространственно-затрудненных фенолов обусловлены, вероятно, различиями химической структуры этих соединений. Введение одной или двух трет.-бутильных групп в молекулу заметно увеличивает ее липофильность и, по-видимому, за счет увеличения связывания с клеткой происходит увеличение антимикробной активности экранированных фенолов.
Нами прогнозируется для синтезированных производных 4,6-резорцинов сохранение спазмолитических свойств, присущих миотропным спазмолитикам, и приобретение возможности влиять на активность ренин-ангиотензин-альдостероновой системы.
Функциональные производные 4,6-ди-трет.-бутилрезорцина получали реакцией электрофильного замещения, которое протекает по свободному орто-положению и приводит к получению 2-замещенных 4,6-ди-трет.-бутилрезорцин.
Наличие подвижного атома водорода в положении 2 в молекуле 4,6-ди-трет.-бутилрезорцина позволяет ввести его в реакции металягирования непосредственно по этому положению. Реакция уксуснокислого раствора 4,6-ди-трет.-бутилрезорцина с ацетатом ртути (II) приводит к получению меркуратцетата 4,6-ди-трет.-бутилрезорцина, а при действии на ацетоновый раствор последнего водного раствора хлорида калия - к малорастворимому и высокоплавкому меркурхлориду (PSF), (схема 1, 2).

Для предварительной оценки спектра биологической активности прогнозируемых соединений на основе структурных...
формул была использована компьютерная система PASS (Prediction of Activity Spectra for Substance), которая предоставляет возможность оценивать фармакологические эффекты, механизмы действия и специфическую токсичность вещества [4].

Прогноз осуществляется путем "сравнения" структуры предполагаемого химического соединения с базой данных, имеющейся в пакете самой программы (табл. 1).

Таблица 1.
Потенциальная активность синтезированных соединений на основании прогноза PASS

<table>
<thead>
<tr>
<th>Прогнозируемый вид биологической активности</th>
<th>Потенциальная активность синтезированных соединений, Pa, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karдиопротекторная</td>
<td>PSF.1</td>
</tr>
<tr>
<td>Кардиопротекторная</td>
<td>78,6</td>
</tr>
<tr>
<td>Коронарорасширяющая</td>
<td>63,2</td>
</tr>
<tr>
<td>Лечение инфаркта миокарда</td>
<td>59,8</td>
</tr>
<tr>
<td>Вазодилатирующая периферическая</td>
<td>69,2</td>
</tr>
<tr>
<td>Вазодилатирующая центральная</td>
<td>46,5</td>
</tr>
<tr>
<td>Ионотропная</td>
<td>51,2</td>
</tr>
<tr>
<td>Ноотропная</td>
<td>53,0</td>
</tr>
<tr>
<td>Антинейротоксическая</td>
<td>58,4</td>
</tr>
<tr>
<td>Противовоспалительная</td>
<td>36,8</td>
</tr>
<tr>
<td>Антиангинальная</td>
<td>64,2</td>
</tr>
</tbody>
</table>

Антиоксидантную активность исследуемых соединений (PSF. 1, PSF. 2) определяли как электрохимическим методом (на жидкостном хроматографе Цвет-Яуза 01 АА), так и на адреналиновой модели генерации супероксидного анион-радикала.

Сущность амперометрического метода заключается в измерении силы электрического тока, возникающего при окислении молекул антиоксиданта на поверхности рабочего электрода при определенном значении потенциала, которая после усиления преобразуется в цифровой сигнал. Данный сигнал при этом регистрируется в виде дифференциальных выходных кривых.
С помощью специального программного обеспечения производили расчет площадей и/или высот пиков дифференциальных кривых как для растворов анализируемых, так и стандартных соединений, на основании чего рассчитывали антиоксидантную активность исследуемых соединений, эквивалентную таковой для растворов кверцетина. Полученные результаты свидетельствуют о том, что антиоксидантная активность соединения PSF. 1 превышает таковую соединения PSF. 2 и практически эквивалентна таковой для раствора кверцетина.

Таблица 2.

Антиоксидантная активность индивидуальных соединений

<table>
<thead>
<tr>
<th>Название</th>
<th>Структура</th>
<th>Концентрация половинного ингибирования, реакции генерации супероксидного анион-радикала, инициируемого автоокислением адреналина, С1/2 (мкМ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Дибунол</td>
<td></td>
<td>21,2±0,8</td>
</tr>
<tr>
<td>Кверцетин</td>
<td></td>
<td>60,3±0,3</td>
</tr>
<tr>
<td>PSF. 1</td>
<td></td>
<td>59,2±0,7</td>
</tr>
<tr>
<td>PSF. 2</td>
<td></td>
<td>93,6±1,2</td>
</tr>
</tbody>
</table>

Антиоксидантную активность исследуемых соединений определяли in vitro по степени ингибирования процесса генерации супероксидного анион-радикала инициируемого аутоокислением адреналина в щелочной среде.

В эксперименте определяли так называемую концентрацию половинного ингибирования (С1/2), т.е. концентрацию,
вызывающую ингибирование реакции генерации супероксидного анион-радикала в 2 раза. Очевидно, что чем меньше значение С₁/₂, тем выше активность изучаемого соединения (табл. 2).

Из полученных данных следует, что уровень антиоксидантной активности соединения PSF. 1 (С₁/₂ = 59,2±0,7мкМ), превосходит таковой для соединения PSF. 2 (С₁/₂ = 93,6±1,2мкМ) и приблизительно аналогичен уровню антиоксидантной активности кверцетина (С₁/₂ = 60,3±0,3мкМ), что хорошо согласуется с результатами определения антиоксидантной активности амперометрическим методом.

Список литературы:

THE NEW 4,6-DI- TERT-BUTYLRRESORCINOL DERIVATIVES, SYNTHESIS, PHYSICAL AND CHEMICAL PROPERTIES
Chigorina T.M.1, Egorov D.I.1, Chigorina E.A.2
1 North Ossetian State University by the name of K.L.Khetagurov, Vladikavkaz, Russia
2 State Scientific Research Institute of Chemical Reagents and High-Purity Chemical Substances, Moscow, Russia

The paper concerns the organometallic synthesis of the new bioactive derivatives of resorcinol. The antioxidant activity of the substances analyzed was estimated, resorting to an electrochemical method and to adrenaline superoxide anion radical synthesis model. The biochemical "in vitro" study demonstrated, that the antioxidant activity level of the 4,6-di-tert-butylresorcinol derivatives is similar to such level of quercetin.
НОВЫЕ ПЕРСПЕКТИВЫ ПОЛУСИНТЕТИЧЕСКИХ ТЕРПЕНОФЕНОЛОВ

Чукичева И.Ю., Буравлёв Е.В., Дворникова И.А., Федорова И.В., Щукина О.В., Кучин А.В.
ФГБУН Институт химии Коми научного центра Уральского отделения РАН, Сыктывкар, Россия, chukichevaiy@mail.ru

Аннотация. Продемонстрирована перспективность синтеза терпенофенолов и их функциональных производных с целью получения новых фармакологических субстанций, радиопротекторов, антиоксидантов и стабилизаторов широкого спектра назначения, полученные результаты представляют несомненный интерес для дальнейших фундаментальных исследований в области синтеза аналогов природных соединений.

Природные и полусинтетические фенольные соединения представляют собой перспективную платформу для синтеза новых биологически активных веществ, в том числе потенциальных лекарственных кандидатов. Важным и весьма распространенным в природе классом соединений являются терпенофенолы, обладающие различными биологическими свойствами. Разработка подходов к синтезу аналогов природных фенолов, исследование их синтетических возможностей и свойств – актуальное направление исследований.

Введение в структуру фенолов различных функциональных групп способствует появлению новой активности либо к усилению уже известной. Сочетание в одной молекуле нескольких реакционных центров является многообещающим подходом к созданию аналогов природных соединений и новых биологически активных веществ [1].

Ранее нами были разработаны методы селективного получения терпенофенолов с различным строением терпенового заместителя. Показано, что терпенофенолы с изоборнильными фрагментами обладают различными фармакологическими свойствами при низкой токсичности, по антиоксидантной активности превосходят фенолы с tert-бутильными заместителями и представляют интерес для дальнейших исследований [2].

Синтезированы ряды новых О-, N-, S- и Hal-содержащих
функциональных производных изборнилфенолов. С использованием различных биологических и химических модельных систем продемонстрированы возможности функциональных производных изборнилфенолов в качестве новых фармакологических субстанций, радиопротекторов, антиоксидантов и стабилизаторов технического назначения [3]. Работа выполняется при финансовой поддержке программы фундаментальных исследований УрО РАН, проект № 18-3-3-27; проекта РФФИ № 15-29-01220_офи.

Список литературы:
1. Зенков Н.К., Кандалинцева Н.В., Ланкин В.З., Меньщикова Е.Б., Просенко А.Е. Фенольные биоантиоксиданты. Новосибирск: СО РАМН, 2003. 238 с. ;
2. Бурлакова Е.Б. // Рос. хим. журн. 2007. Т Лт. Вып. 1. С. 3;
5. Т. М. Плотникова, Г. А. Чернышева, В. И. Смольякова, П. П. Щетинин, А. В. Кучин, И. Ю. Чукичева, М. Б. Плотников // Биол. эксперим. биол. и мед. 2014. 157. С. 173;
8. Е. В. Буравлев, И. Ю. Чукичева, О. В. Сукрушева, О. Г. Шевченко, А. В. Кучин // Изв. AN. Сер. хим. 2015. № 6. С. 1406;
10.А.В. Кучин, И.Ю. Чукичева // Вопр. радиационной безопасности. 2015. № 3. С. 121;
11. Е.В. Буравлев, И.Ю. Чукичева, О.Г. Шевченко, К.Ю. Супоницкий, А.В. Кучин // Изв. AN. Сер. хим. 2016. № 5. С. 1232;
12. И.Ю. Чукичева, О.В. Сукрушева, О.А. Шумова, Л.И. Мазалецкая, О.Г. Шевченко, А.В. Кучин. Журн. общей химии. 2016. 86(9). С. 1487;
13. И.Ю. Чукичева, О.А. Шумова, О.Г. Шевченко, О.В. Сукрушева, А.В. Кучин // Изв. AN. Серия хим. 2016. № 3. С. 721;
NEW PERSPECTIVES OF SEMI-SYNTHETIC TERPENEPHENOLS

Institute of Chemistry, Komi Scientific Centre, Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia, chukichevaiy@mail.ru

The prospects of the synthesis of terpenephenols and their functional derivatives for the purpose of obtaining new pharmacological substances, radioprotectors, antioxidants and stabilizers of a wide range of applications are demonstrated. The obtained results are of undoubted interest for further fundamental research in the field of synthesis of analogues of natural compounds.
мембранопротекторной и антиоксидантной активности полученных соединений с использованием в качестве тест-объекта эритроцитов крови лабораторных мышей.

Пренилированные производные ароматических соединений являются составной частью биологических объектов и выполняют функцию регулирования жизненных процессов. 2,2-Диметилхромановое кольцо присутствует в многочисленных природных и синтезированных соединениях, которые проявляют различные виды биологической активности, а именно антиоксидантную, противоопухолевую, антигипертензивную, противораковую, антитромботическую и другие [1-7]. Разнообразная биологическая активность соединений, содержащих 2,2-диметилхромановое кольцо означает, что они могут взаимодействовать с широким спектром клеточных мишеней [6]. Поэтому существует значительный интерес к разработке селективных методов синтеза аналогичных соединений.

Ранее нами разработан метод алкилирования фенола терпеновыми спиртами в присутствии органоалюминиевых соединений [8-11]. В результате получена серия аналогов природных фенольных соединений: эфиры хроманового типа, пренилфенолы, диарилалканоиды, содержащие в своей молекуле хромановый эфир и фенольный фрагмент. Кроме того, аналоги природных хроманов получены путем алкилирования фенолов монотерпенами [12, 13].

В настоящей работе изучено алкилирование фенола и двухатомных фенолов (пирокатехин, резорцин и гидрохинон) природным аллильным спиртом – пренолом (3-метил-2-бутен-1-олом). В качестве катализаторов использованы изопропилат алюминия (i-PrO)₃Al и феногл алюминия (PhO)₃Al в катализитических (10 масс%) и эквимолярных количествах при 120 и 160 ºC.

В случае алкилирования фенола пренолом с использованием эквимолярных количеств (PhO)₃Al при 120 и 160 ºC в качестве основного продукта выделен эфир хроманового типа 1 (44-56%). В присутствии катализитических количеств (PhO)₃Al происходит образование продуктов орто- и пара-алкилирования ароматического кольца (60-74%) при полном отсутствии эфиров хроманового типа. Установлено, что эфир 2 с выходом 86 % образуется в присутствии (i-PrO)₃Al (10% от массы
исходного фенола) при 160°C.

Основным продуктом конденсации пирокатехина с пренолом при 120°C в присутствии эквимоллярных количеств (i-PrO)₃Al является 3-пренил-пирокатехин 3 (68%). Каталитическое алкилирование в присутствии (PhO)₃Al при 120°C так же приводит к преимущественному образованию 3-пренил-пирокатехина 3.

Показано, что алкилирование резорцина пренолом независимо от количества используемого (i-PrO)₃Al и температуры реакционной смеси проходит с образованием эфиров хроманового типа 4-7 с общим выходом до 98%. В присутствии катализитических количеств (PhO)₃Al при 120°C в основном образуются эфир хроманового типа 4-7 с общим выходом 67%, повышение температуры реакции до 160°C приводит к преимущественному образованию продуктов С-алкилирования (суммарный выход 59%).

Эфиры хроманового типа 8, 9 и 10 являются основными продуктами реагентного способа алкилирования гидрохинона пренолом в присутствии (i-PrO)₃Al независимо от температуры реакционной смеси. Следует отметить, что при использовании катализитических количеств (i-PrO)₃Al образование хроманов 8-10 не наблюдалось, в качестве основного продукта выделен 2-пренил-1,4-дигидроксибензол (65%).

Проведена первичная оценка токсичности и биологической
активности синтезированных соединений. Мембранопротекторную и антиоксидантную активность оценивали (in vitro) по способности ингибировать H₂O₂-индукированный гемолиз эритроцитов крови, тормозить накопление вторичных продуктов перекисного окисления липидов (ПОЛ) и окисление оксигемоглобина. По комплексу показателей наибольшая активность отмечена для соединения 11. Антирадикальную активность (АРА) – оценивали по их способности взаимодействовать со стабильным хромогенрадикалом 2,2-дифенил-1-пикрилгидразила (ДФПГ). Наибольшая АРА получена для соединений 8 и 12.

Работа выполнена при частичном финансировании программы фундаментальных исследований УрО РАН, проект № 18-3-3-27.

Список литературы
11.И. Ю. Чукичева, И. В. Федорова, А. А. Королева, А. В. Кучин // Химия природ. соедин. 2015. № 6. Р. 909-911.
SYNTHESIS AND PROPERTIES OF ANALOGUES OF NATURAL PHENOLS

Fedorova I.V., Chukicheva I.Yu., Nizovtsev N.A., Korolyova A.A., Chuprova E.A.¹, Shevchenko O.G.², Kutchin A.V.

Institute of Chemistry, Komi Scientific Centre, Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia, fedorova-iv@chemi.komisc.ru

¹Syktyvkar State University Pitirim Sorokin, Syktyvkar, Russia
²Institute of Biology, Komi Scientific Centre, Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia

The prenylphenols and 2,2-dimethylbenzopyranes was synthesized by alkylation of phenol, catechol, resorcinol and hydroquinone by prenol in the presence catalysts – (PhO)₃Al and (i-PrO)₃Al. The toxicity, membrane protective and antioxidant activity of the obtained compounds was assessed using red blood cells of laboratory mice as a test object.

ВЛИЯНИЕ ПОЛЯРНОСТИ СРЕДЫ НА СПЕКТРАЛЬНЫЕ ХАРАКТЕРИСТИКИ ИЗОБОРНИЛФЕНОЛОВ

Швыдкий В.О.¹, Повх А.Ю.¹, Федорова И.В.², Чукичева И.Ю.², Кучин А.В.², Шишкина Л.Н.¹

¹ ФГБУН Институт биохимической физики им. Н.М. Эмануэля РАН, Москва, Россия; slavuta58@gmail.com
² ФГБУН Институт химии Коми научного центра Уральского отделения РАН, Сыктывкар, Россия, info@chemi.komisc.ru

Аннотация. Исследованы спектральные характеристики ряда изоборнилфенолов (ИБФ) в зависимости от полярности среды (гексан, этанол). Показано разрушение внутримолекулярной водородной связи и ассоциатов молекул ИБФ и образование межмолекулярной Н-связи ИБФ с растворителем.

Фенольные антиоксиданты (АО) в виде изоборнилфенолов (ИБФ) находят всё большее применение в качестве ингибиторов и регуляторов окислительных процессов в различных биологических системах и полимерных материалах. Однако физико-химические свойства АО существенно зависят от
полярности среды. В связи с этим, цель работы — исследование спектральных характеристик ИБФ в зависимости от полярности среды в диапазоне концентраций от 2×10⁻⁵ М до 4×10⁻⁴ М. Спектральный анализ проводили на спектрофотометрах фирмы «SHIMADZU» марки UV-250 1PC и UV-1700 PharmaSpec. Структурные формулы изученных ИБФ представлены на рис. 1.

В УФ-спектрах все исследованные ИБФ имеют три полосы поглощения, обусловленные разными переходами. В области 200±5 нм полоса поглощения связана с n→σ* переходами неподеленной электронной пары кислорода гидроксильной группы; в области 215±5 нм и 275±5 нм наблюдаются полосы поглощения, обусловленные π→π* переходами 6 π-электронной системы бензольного кольца [1, 2].

![Структурные формулы ИБФ: 2-изоборнилоксифенол (ТФ-1), 2,6-диизоборнил-4-метилфенол (ТФ-7), 1,3-дигидрокси-4,6-диизоборнилбензол (ТФ-23), 4-гидрокси-2-изоборнилфенол (ТФ-62).](image)

Рис. 1. Структурные формулы ИБФ: 2-изоборнилоксифенол (ТФ-1), 2,6-диизоборнил-4-метилфенол (ТФ-7), 1,3-дигидрокси-4,6-диизоборнилбензол (ТФ-23), 4-гидрокси-2-изоборнилфенол (ТФ-62).

![Зависимость оптической плотности ИБФ ТФ-7 от концентрации при разных длинах волн: 207, 224 и 284 нм.](image)

Рис. 2. Зависимость оптической плотности ИБФ ТФ-7 от концентрации при разных длинах волн: 207, 224 и 284 нм.

Кроме того, поглощение в диапазоне от 260 до 280 нм обусловлено как π→π* переходом неподеленной пары электронов атома кислорода, сопряженного с двойной связью жирнокислотной цепи (-O-CH=С-), так и n→π* переходами
типичными для карбонильной С=О группы [3]. Анализ зависимости поглощения от концентрации ИБФ проводился для каждой из выраженных полос. В исследуемом диапазоне концентраций закон Бугера–Ламберта–Бера более удовлетворительно выполнялся для более длинноволновой части УФ спектра (λ > 220 нм), что видно из данных, представленных на рис. 2 на примере ТФ-7 в этаноле.

Как показано ранее, в молекуле ТФ-1 в неполярном растворителе существует внутримолекулярная водородная связь [4], которая в полярном растворителе разрушается и образуется межмолекулярная Н-связь с этанолом [5]. В работе в качестве полярной среды был использован 90%-ный раствор этанола в дистиллированной воде. Выявленный ранее феномен разрушения внутримолекулярной Н-связи и образования межмолекулярной связи ТФ-1 с этанолом сохраняется, что обусловливает рост коэффициента молярной экстинкции (ε) данного ИБФ в полярной среде (рис. 3).

Рис. 3. Зависимость оптической плотности ТФ-1 от полярности растворителя: 1 – в этаноле, λ=278 нм; 2 – в гексане, λ=276.6 нм

В молекулах ТФ-23 и ТФ-62 присутствуют 2 гидроксильные группы, пространственно не связанных друг с другом, что обусловливает возможность как образования Н-связей с этанолом, так и их димеров в неполярной среде. Результатом является существенный рост ε для данных ИБФ в 90%-ном растворе этанола (см. таблицу). По уменьшению коэффициента молярной экстинкции (ε) изученные ИБФ в зависимости от природы растворителя располагаются в следующих

Таблица 1.

<table>
<thead>
<tr>
<th>ИБФ</th>
<th>Коэффициент молярной экстинкции, M⁻¹ см⁻¹, в гексане</th>
<th>Коэффициент молярной экстинкции, M⁻¹ см⁻¹, в этаноле</th>
</tr>
</thead>
<tbody>
<tr>
<td>ТФ-1</td>
<td>3020±42, λ=276,6 нм</td>
<td>4961±92, λ=277,6 нм</td>
</tr>
<tr>
<td>ТФ-7</td>
<td>3389±33, λ=282 нм</td>
<td>3295±18, λ=284,4 нм</td>
</tr>
<tr>
<td>ТФ-23</td>
<td>4753±9, λ=285,5 нм</td>
<td>7696±124, λ=289 нм</td>
</tr>
<tr>
<td>ТФ-62</td>
<td>1505±27, λ=292,8 нм</td>
<td>8318±125, λ=296 нм</td>
</tr>
</tbody>
</table>

Рис. 4. Нормированные спектры [ТФ-62] 1×10⁻⁴М в гексане – 1, в этаноле – 2.

Необходимо отметить также, что при повышении полярности растворителя происходит смещение полосы валентных колебаний OH-группы в сторону частот меньших значений, что характерно для OH-группы, связанной межмолекулярными водородными связями, наиболее выраженное для ИБФ, в молекулах которых присутствуют 2 гидроксильные группы. Остальные ИБФ подвержены сильному влиянию полярного растворителя, что сказывается на значительном увеличении ε и батохромном смещении максимума.
поглощения. Так, коэффициент экстинкции ТФ-62 изменился в 5.5 раз, а сдвиг составил 3.2 нм в сторону длинноволновой области спектра. Типичное влияние растворителей (гексан и этанол) на спектральные характеристики ИБФ на примере ТФ-62 представлено на рис. 4.

Список литературы:
5. Мазалецкая Л.И., Шелудченко Н.И., Луканина Ю.К., Шишкина Л.Н. Влияние полярности среды и водородной связи на реакционную способность о-алкил- и о-алкоксифенолов в различных модельных системах // Химическая физика. 2013. Т. 32, № 3. С. 31-34.

INFLUENCE OF THE POLARITY OF THE MEDIUM ON SPECTRAL CHARACTERISTICS OF ISOBORNYLPHENOLS

Shvydkiy V.O.¹, Povh A.Yu.¹, Fedorova I.V.², Chukicheva I.Yu.², Kutchin A.V.², Shishkina L.N.¹
¹Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia, slavuta58@gmail.com
²Institute of Chemistry, Komi Scientific Centre, Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia, info@chemi.komisc.ru

The spectral characteristics of several isobornylphenols depending on the polarity of the medium (hexane, ethanol) were studied. In the polar medium disrupting the intramolecular H-bond and associates of isobornylphenols (IBP) and forming the intermolecular H-bond between IBP and the solvent were found.
АННОТАЦИЯ. Обобщение собственных и литературных данных позволило сделать заключение, что биологическая эффективность фенольных АО существенно зависит от их способности образовывать комплексы с природными фосфолипидами. Это обусловливает необходимость использования различных методов для изучения механизма их ингибитирующей эффективности в сложных системах.

Эффективными регуляторами процессов окисления в пищевых, косметических, технических жирах и маслах, полимерных материалах и биологических системах разной степени сложности и иерархии являются антиоксиданты (АО), преимущественно представленные фенольными соединениями [1–3]. Однако при изучении механизма их действия в различных системах были выявлены целый ряд особенностей [1, 2], которые необходимо учитывать при отборе наиболее перспективных для использования в различных областях жизнедеятельности человека в зависимости от цели и задач практики.

Обобщение полученных экспериментальных данных позволило сделать вывод, что эффективность АО существенно зависит от их способности взаимодействовать со структурными компонентами клеточных мембран — фосфолипидами (ФЛ). При этом было обнаружено, что ингибитующая эффективность природных, полусинтетических и синтетических фенольных АО обусловлена не только их концентрацией и физико-химическими свойствами или скоростью инициирования окислительных процессов в системе, но и природой ФЛ [4–13]. Возможно, это обусловлено совокупностью ряда факторов. Во-первых, участием самих ФЛ в окислительных процессах в качестве субстратов окисления, что в настоящее время подтверждено многочисленными экспериментальными данными. Во-вторых,
способностью АО оказывать влияния на структурное состояние фосфолипидного бислоя, что подтверждено изменениями как микровязкостью различных областей мембран в присутствии АО в системах in vitro и in vivo [14–17], так и размера микрет в смесях ФЛ с АО в процессе самопроизвольной агрегации природных ФЛ в неполярных растворителях [13, 18, 19]. Полагаем, что это связано не только с асимметричным распределением различных фракций ФЛ в модельных и биологических мембранах: более насыщенные холинсодержащие ФЛ – сфингомиelin (СМ) и фосфатидилхолин (ФХ) – преимущественно локализуются во внешнем слое мембран, а менее насыщенные аминофосфолипиды, среди которых фосфатидилэтаноламин (ФЭ) – во внутреннем [20]. Важную роль во взаимодействии АО с ФЛ играет способность АО образовывать комплексы с ФЛ, что было подтверждено спектрофотометрически при изучении физико-химических свойств различных АО в смесях с ФЛ [7, 8, 10, 11, 13, 21–27].

Сравнительный анализ ИК-спектров смесей фенольных АО с ФЛ относительно спектров индивидуальных компонентов показал, что в комплексообразовании принимают участие ОН-группы АО и полярные группировки ФЛ, в том числе карбонильные группы сложноэфирных связей и азотсодержащий фрагмент полярной головки ФЛ, а наличие комплексов зафиксировано в средах с разной полярностью [13, 23–25]. Анализ УФ- и ИК-спектров дигидрокверцетина и лецитина и их смесей в 90%-ном водном растворе этанола также подтвердил способность этого флавоноида разрушать межмолекулярные водородные связи лецитина с растворителем и образовывать комплекс с ФЛ.

Однако процесс комплексообразования, как и его влияние на ингибирующие эффективность АО зависят и от природы ФЛ, и от структуры и свойств фенольного АО. Так, по уменьшению интенсивности полосы валентных колебаний гидроксильной группы АО в смесях с ФЛ (растворитель этанол), независимо от структуры изученных полусинтетических АО - изоборнилфенолов, препараты природных ФЛ располагались в следующей последовательности: СМ > лецитин > кефалин [13]. При этом наиболее высокая доля ФЛ выявлена именно в комплексах со СМ. Столь выраженный эффект комплексообразования в смесях АО со СМ, вероятно, обусловлен его структурой. СМ в отличие от ФХ (основная
фракция лецитина) и ФЭ (основная фракция кефалина) имеет сфингозиновый, а не глицериновый остов, что обусловливает наличие дополнительной полярной группировки, которая может принимать участие в комплексообразовании с фенольными АО.

Влияние комплексообразования ФЛ с фенольными АО на ингибирующие эффективность последних имеет сложный характер. Во-первых, масштаб ингибирования при наличии в модельной системе ФЛ существенно зависит от скорости зарождения радикалов, степени окисленности субстрата, полярности и структурированности среды [7–11, 26, 27] и соотношения концентраций АО и ФЛ [6]. Во-вторых, эффект зависит от природы АО. Так, лецитин уменьшал антиоксидантную эффективность флавоноидов и при инициированном, и при автоокислении, в то время как при инициированном окислении метилолеата данный ФЛ либо не влиял на эффективность ингибирования α-токоферола (аддитивность), либо приводил к увеличению эффекта (синергизм) [9]. Вклад побочных реакций АО, в которых они могут принимать участие в процессе окисления, также снижает или практически не влияет на эффективность ингибирования смесей лецитина с изоборнилфенолами [10]. В-третьих, выявлено, что образующийся комплекс ФЛ с АО характеризуется реакционной способностью, отличной от исходного АО как в реакциях ингибирования, так и в побочных реакциях при ингибировании процессов окисления [7–11].

Следовательно, биологическая эффективность фенольных АО существенно зависит от их способности образовывать комплексы с фосфолипидами, что обусловливает необходимость использования различных методов для изучения механизма их ингибирующей эффективности в сложных системах.

Список литературы

8. Мазалецкая Л.И., Шелудченко Н.И., Шишкина Л.Н. Роль азотсодержащего фрагмента фосфатидилхолинов в механизме ингибитирующего действия их смесей с природными и синтетическими антиоксидантами // Нефтехимия. 2008. Т. 48. № 2. С. 105-111.

9. Мазалецкая Л.И., Шелудченко Н.И., Шишкина Л.Н. Влияние лецитина на эффективность антиоксидантного действия флавоноидов и α-токоферола // Прикл. биохимия и микробиология. 2010. Т. 46, № 2. С. 148-152.

14. Бурлакова Е.Б., Голощапов А.Н. Спиновые зонды и метки в изучении мембран нормальных и опухолевых клеток // Метод
16. Бинюков В.И., Алексеева О.М., Миль Е.М., Фаттахов С.Г., Голощапов А.Н., Бурлакова Е.Б., Коновалов А.И. Изучение влияния фенозана, ИХФАН-10 и мелафена на эритроциты in vivo методом атомно-силовой микроскопии // Докл. AN. 2011. Т. 441. № 1. С. 114-117.
The generalization of the own and literature data allows us to conclude that the biological efficiency of the phenolic antioxidants substantially depends on their ability to form complexes with the natural phospholipids. This is due to a necessity of using the different methods for the investigation of their inhibitory efficiency mechanism in the complex systems.

COMPLEXATION OF PHENOLIC ANTIOXIDANTS WITH NATURAL PHOSPHOLIPIDS

Shishkina L.N., Mazaletskaia L.I., Lukanina Yu.K., Sheludchenko N.I.
Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow, Russia; shishkina@sky.chph.ras.ru

The generalization of the own and literature data allows us to conclude that the biological efficiency of the phenolic antioxidants substantially depends on their ability to form complexes with the natural phospholipids. This is due to a necessity of using the different methods for the investigation of their inhibitory efficiency mechanism in the complex systems.

НОВЫЕ МОЛЕКУЛЯРНЫЕ КОМПЛЕКСЫ САЛИЦИЛОВОЙ КИСЛОТЫ

Яковишин Л.А., Гришковец В.И., Корж Е.Н.
1 ФГАОУ ВО «Севастопольский государственный университет», Севастополь, Россия, chemsevntu@rambler.ru
2 ФГАОУ ВО «Крымский федеральный университет имени В.И. Вернадского», Симферополь, Россия

Аннотация. Получены новые молекулярные комплексы состава 1:1, включающие салициловую кислоту и тритерпеновые гликозиды глицирам, α-хедерин и
хедерасапонин С. Комплексообразование изучено методами электронной и ИК-Фурье-спектроскопии, а также методом изомолярных серий.

Снижение терапевтических доз и побочных эффектов, повышение растворимости и биодоступности лекарственных веществ может быть достигнуто за счет их молекулярного комплексообразования с растительными тритерпеновыми сапонинами [1–3]. Нами получены новые молекулярные комплексы состава 1:1, включающие салициловую кислоту и тритерпеновые гликозиды: моноаммонийную соль глициррициновой кислоты (3-O-β-D-глюкуронопиранозил-(1→2)-O-β-D-глюкуронопиранозида глицирретиновой кислоты, глицирам), α-хедерин (3-O-α-L-рамногликозид-(1→2)-O-α-L-арабиногликозид хедерагенина) и хедерасапонин C (3-O-α-L-рамногликозид-(1→2)-O-α-L-арабиногликозид-28-O-α-L-рамногликозид-(1→4)-O-β-D-глюкогликозид хедерагенина).

Комплексообразование исследовано методом электронной спектроскопии. Методом изомолярных серий показано, что в водных растворах при рН 7,2 и 20 °C между гликозидами и салициловой кислотой образуются молекулярные комплексы состава 1:1. Такой состав наиболее характерен для комплексов сапонинов с лекарственными веществами и биомолекулами [3]. Характер межмолекулярных взаимодействий подтвержден ИК-Фурье-спектроскопией. Полученные комплексы могут быть перспективны для разработки фармацевтических композиций антисептического действия.

Список литературы
NEW MOLECULAR COMPLEXES OF SALICYLIC ACID
Yakovishin L.A.¹, Grishkovets V.I.², Korzh E.N.¹
¹Sevastopol State University, Sevastopol, Russia, chemsevntu@rambler.ru
²V.I. Vernadsky Crimean Federal University, Simferopol, Russia

New molecular complexes in the 1:1 molar ratio of salicylic acid with triterpene glycosides glycyram, α-hederin and hederasaponin C have been prepared. The complexation has been investigated by electronic and FT-IR spectroscopy as well as by the method of isomolar series.
Распространение фенольных соединений в растениях и их биологическая активность
DETERMINATION OF PHENOLIC COMPOUNDS OF VERBASCUM GLOMERATUM BOISS. EXTRACT

Aydin C., Rakhimzhanova A., Kilincarslan O., Mammadov R.
Pamukkale University, Science and Art Faculty, Department of Biology, Denizli, Turkey, rmammad@yahoo.com

Verbascum L. is the largest genus of the family Scrophulariaceae, with about 2500 species worldwide (1). The generic name of Verbascum is believed to be a corruption of barbascum, from the Latin barba, meaning a beard, referring to the shaggy appearance of the genus. The genus Verbascum is represented by 232 species, 196 of which are endemic, in the flora of Turkey (2).

Verbascum L. species have been used since ancient times in traditional medicine thanks to their bioactive compounds. Verbascum species have numerous medicinal properties. Various preparations of some species of this genus have been used as expectorant and mucolytic, as well as sudorific, sedative and constipate in traditional Turkish medicine (3).

In this study phenolic compounds of ethanol extract of V. glomeratum was evaluated by HPLC. 15 standards (gallic acid, 3,4-dihydroxy benzoic acid, 4-dihydroxy benzoic acid, chlorogenic acid, 2,5-dihydroxy benzoic acid, vanilic acid, caffeic acid, p-coumaric acid, ferulic acid, rutin, ellagic acid, cinnamic acid, quercetin and epicatechin) were used determining phenolic characterization.

According to result of HPLC analysis, gallic acid (18.11 µg/g), 3,4 dihydroxy benzoic acid (52.23 µg/g), chlorogenic acid (66.19 µg/g), 4-hydroxy benzoic acid (337.65 µg/g), 2,5-dihydroxy benzoic acid (2544.96 µg/g), vanilic acid (1276.14 µg/g), caffeic acid (17029.78 µg/g), p-coumaric acid (0.34 µg/g), ferulic acid (30.73 µg/g), rutin (97.88 µg/g), ellagic acid (182.94 µg/g), cinnamic acid (359.21 µg/g), quercetin (60.45 µg/g), and epicatechin (2742.09 µg/g) were the most abundant phenolic constituents in the extracts and were readily identified by comparison with authentic standards.

Consequently this phenolic compounds can be isolated and may be used in pharmacological areas.

References:

DETERMINATION OF ANTIOXIDANT CAPACITY AND TOTAL FLAVONOID AMOUNT OF ACETONIC AND ETHANOLIC EXTRACT OF ANDRICUS QUERCUSTOZAE

Mammadov R., Katılmış Y., Azmaz M., Kilinçarslan Ö.
Pamukkale University, Science & Art Faculty, Department of Biology, Denizli, Turkey, rmammad@yahoo.com

The Quercus infectoria (Fagaceae), the oak tree is widely distributed throughout the Western provinces of Iran and is an important source of wood and fibers. Q. infectoria Olivier is a small tree native of Greece, Asia, and Iran. The galls arise on branches of this tree as a result of an attack by the gall-wasp [1, 2]. The galls can be seen as abnormal growth caused by an increase in the number (hyperplasia) or size (hypertrophy) of plant cells formed as a response to the insect's stimulus caused by egg-laying, larvae, or nymph feeding. Some galls have many medicinal properties such as astringent, antibacterial, antifungal, antiviral, antidiabetic, local anesthetic, larvicidal, and anti-inflammatory activities [3, 4].

Andricus quercustozae (Bosc, 1792) is a widely distributed oak gall wasp species extending from Morocco through Turkey to Iran [5]. In this study, A. Quercustozae asexual gall samples are collected from Denizli, Turkey and then, extract of A. quercustozae is prepared with ethanol and acetone using method of Mammadov ve diğ. 2011 [6]. The antioxidant activity and total flavonoid amount of ethanolic and acetonic extract of A. quercustozae were determined. CUPRAC assay and Phosphomolibdenum method was used to determine
antioxidant activity, Total flavonoid content of extract was carried out as described by Arvouet Grand et al. with some modifications [7].

According to our results, while acetonic extract (257,688±5,66 mgAE/g) has highest antioxidant activity with phosphomolibdenum assay, ethanolic extract (244,81±2,43 mgTEAC/g) more higher in CUPRAC method. Also, acetonic extract of A. quercustozae give that high total flavonoid content as 45.83±1.57 mgQE/g. Consequently, this study is shown that A. quercustozae can be used potential antioxidant source and may be used in biological activity researches as material.

References:
СРАВНИТЕЛЬНАЯ ОЦЕНКА КОЛИЧЕСТВЕННОГО СОДЕРЖАНИЯ НЕКОТОРЫХ БАВ В ДВУХ ВИДАХ СЫРЬЯ КИПРЕЯ УЗКОЛИСТНОГО

Асадуллина Д.Д., Кудашкина Н.В., Хафизов С.Р., Ахмадуллина Г.Х.
ФГБОУ ВО БГМУ Минздрава РФ, Уфа, Россия, dilara.asadullina@yandex.ru

Аннотация. Проведена сравнительная оценка содержания биологически активных веществ в двух видах сырья травы иван-чая (ферментированного и неферментированного), заготовленного на территории Республики Башкортостан. Делается вывод о том, ферментация способствует сохранению исходных полезных веществ в растительном материале, превращению основных групп биологически активных веществ в более легко усвояемые и извлекаемые формы.

Актуальной проблемой в последние годы остаётся поиск новых перспективных лекарственных растений, доступных и широко распространенных на территории РФ [1]. Несомненный интерес в этом отношении представляют виды, применяемые в народной медицине. К таким видам относится кипрей узколистный (Chamerion angustifolium (L.) Holub). Это растение издавна применялось как антиоксидантное, общеукрепляющее, противовоспалительное и поливитаминное средство [2]. В настоящее время возродилась традиция приготовления копорского чая, то есть идет активное осваивание производства ферментированного иван-чая. Поскольку иван-чай широко распространен на территории России, обладает ценными фармакологическими свойствами, введение его в научную медицину и разработка на его основе фитопрепаратов представляется целесообразным.

Целью настоящей работы являлась сравнительная оценка количественного содержания биологически активных веществ в двух видах сырья травы иван-чая (ферментированного и неферментированного), заготовленного на территории Республики Башкортостан.

Для сравнительного анализа использовали надземную часть иван-чая, собранного в период цветения в Бирском районе Республики Башкортостан в 2017 г. и ферментированный иван-чай, изготовленный в "Макаровском лесхозе" Ишимбайского

Таблица 1. Биологически активные вещества иван-чая

<table>
<thead>
<tr>
<th>Биологически активные вещества, %</th>
<th>Ферментированный иван-чай</th>
<th>Не ферментированный иван-чай</th>
</tr>
</thead>
<tbody>
<tr>
<td>flavonoиды</td>
<td>2,268±0,054651</td>
<td>1,671±0,022311</td>
</tr>
<tr>
<td>дубильные вещества (перманганатометрия)</td>
<td>9,338133±0,857332</td>
<td>8,205667±0,851615</td>
</tr>
<tr>
<td>дубильные вещества (СФМ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>общее количество</td>
<td>9,133895±0,006</td>
<td>5,133922±0,003</td>
</tr>
<tr>
<td>осаждённые раствором осаждения</td>
<td>6,381960±0,001</td>
<td>7,332311±0,001</td>
</tr>
<tr>
<td>свободные органические кислоты</td>
<td>7,691333±1,135491</td>
<td>5,747667±0,689259</td>
</tr>
</tbody>
</table>

Как видно из результатов, приведённых в таблице 1, количественное содержание БАВ в ферментированном иван-чае
преобладает над их содержанием в сырье почти в 1,3 раза. Это объясняется процессами, происходящими в процессе ферментации, когда трудно экстрагируемые вещества переходят в водорастворимые формы, из которых их легче извлечь.

С учётом вышесказанного, можно предположить, что ферментация кипрея узколистного способствует сохранению исходных полезных веществ, превращению основных групп биологически активных веществ в более легко усвояемые и извлекаемые формы, и вследствие этого, обеспечивает более выраженный фармакологический эффект.

Список литературы:
6. Самылина И.А., Абоянц Р.К., Гринько Е.Н. Способ определения дубильных веществ в растительном сырье.— Патент РФ №2439568,2012

COMPARATIVE ANALYSIS OF QUANTITATIVE CONTENT OF BAS IN TWO SPECIES OF RAW MATERIAL OF THE WILLOW-HERB

Federal State Budget Educational Institution higher education "Bashkir State Medical University" Ministry of Health of the Russian Federation, Ufa, Russia
Search of the new perspective herbs available and widespread in the territory of the Russian Federation [1] remains a current problem in recent years.

The types applied in traditional medicine in this regard are of undoubted interest. The willow-herb narrow-leaved belongs to such types (Chamerion angustifolium (L.) Holub). This plant was long since applied as the antioxidant, all-strengthening, anti-inflammatory and polyvitaminic means [2]. Now the tradition of preparation of koporsky tea has revived, that is there is active mastering of production of the fermented ivan-tea. As ivan-tea is widespread in the territory of Russia, has valuable pharmacological properties, his introduction to scientific medicine and development on its basis of phytomedicines are advisable.

СОДЕРЖАНИЕ
ФЕНОЛЬНЫХ СОЕДИНЕНИЙ В ПЛОДАХ НЕКОТОРЫХ СУБТРОПИЧЕСКИХ КУЛЬТУР (ХУРМА ВОСТОЧНАЯ, ФЕЙХОА)

Базба Э.Г.1, Белоус О.Г.2,3, Омаров М.Д.2, Омарова З.М.2
1НИИ сельского хозяйства АНА, Сухум, Республика Абхазия, kochurina.abkh@mail.ru
2ФГБУН «Всероссийский НИИ цветоводства и субтропических культур», Сочи, Россия
3Сочинский институт моды, бизнеса и права, Сочи, Россия, oksana191962@mail.ru

Аннотация. Представлены данные по содержанию фенольных соединений в плодах хурмы восточной и фейхоа из коллекции НИИ сельского хозяйства Академии наук Абхазии. Ягоды фейхоа более богаты фенольными веществами (3,34%-5,07%), чем плоды хурмы восточной (1,67%-3,65%). Статистический анализ выявил наличие зависимости и высокое варьирование признака по годам (фейхоа – 52%, хурма восточная - 64%) в связи с влиянием таких аббийотических факторов, как температура (r = 0,87…0,88) и влажность воздуха, количество осадков (r = 0,68…0,60). Хурма восточная является культурой более пластичной в отношении накопления фенольных соединений, чем фейхоа. Существенным в накоплении фенольных соединений является фактор «генотипические
особенности сортов» \((HCP_{0.05} = 1.06...1.32) \), что позволяет подобрать ассортивмент, характеризуемый оптимальным содержанием фенольных соединений.

Большинство культур, выращиваемых как в частных садах, так и в промышленных масштабах в республике Абхазия относятся к интродуцентам из стран с тропическим и субтропическим климатом. Важнейшими из них являются цитрусовые, хурма, чай, фейхоа, лавр, инжир и некоторые другие вечнозеленые и листопадные растения. Плоды субтропических культур, особенно хурмы восточной и фейхоа, отличаются относительно высоким содержанием дубильных веществ (до 25%).

Хурма \((Diospyros) \) принадлежит к самым морозостойким субтропическим листопадным культурам \([1, 3, 9]\). Для субтропического растениеводства наиболее существенное значение имеют три вида хурмы: хурма кавказская \((Diospyros lotus L.) \), хурма виргинская \((Diospyros virginiana L.) \) их используют в качестве подвоя и хурма восточная \((Diospyros kaki L.) \) - для производства продукции \([3, 10]\). В Абхазии, как и в субтропиках Российской Федерации (Черноморское побережье Краснодарского края, Республике Дагестан и Крым), наиболее популярна у потребителей и производителей - хурма восточная \((Diospyros kaki L.) \). Все сорта хурмы восточной (их более 2000), отличающиеся высокими хозяйствственно-ценными признаками, по качеству плодов разделяют на три группы: терпкие (константные), нетерпкие и варьирующие (корольковые). Наиболее популярны сорта, имеющие практическое значение, такие как Hiakume, Zenji-Maru (группа варьирующих), Hachia, Seedles (константные), Djiro, XX Century, Fuyu (группа нетерпких) \([4, 7, 10]\). Терпкий вкус плодов хурмы обусловлен наличием в них фенольных соединений. Причем, в незрелых плодах содержание дубильных веществ достигает 25%, по мере созревания их количество постепенно уменьшается в среднем до 0,48 - 0,81\% \([8]\).

Плоды другой распространенной в Абхазии культуры фейхоа \((Feijoa sellowiana Berg.) \), также содержат большое количество биоактивных соединений, обладающих противоопухолевой, антиоксидантной, противовирусной, противовоспалительной, антидиабетической и пробиотической активностью \([11]\). Также в плодах выявлено большое количество
полифенолов с преобладанием катехинов и лейкоантоцианов, которые обуславливают Р - витаминную активность плодов, придавая им особый неповторимый вкус [6]. Фейхоа активно культивируется в качестве сельскохозяйственной культуры в странах с умеренным и субтропическим климатом [5, 11].

Исследования проводились в период с 2011 по 2017 гг. Нами были исследованы 5 сортов хурмы восточной относящихся к разным группам (Hachia, Hiakume, Djiro, Kostata, Aizu-Mishirazu) и 5 сортов фейхоа (Superba, Астара, Сачаглы, Sidling, Гиркан) коллекции НИИ сельского хозяйства Академии наук Абхазии. Цель наших исследований - оценка пластичности разных сортов хурмы восточной и фейхоа по накоплению биологически активных веществ. Фенольные соединения определяли с использованием методики, изложенной в Методах биохимического исследования растений [2]. Обработку экспериментальных данных проводили дисперсионным анализом (ANOVA) в программе STATGRAPHICS Centurion XV.

Рис. 1. Содержание фенольных соединений в плодах по годам.

В результате многолетних исследований, нами получены сравнительные данные по содержанию фенольных соединений в плодах хурмы восточной и фейхоа. Следует отметить, что ягоды фейхоа более богаты фенольными веществами, чем плоды хурмы восточной (рис. 1), причем, варирование признака по годам довольно высокое: у фейхоа - 52, у хурмы восточной 64%.

Построение корреляционной матрицы показало значимую зависимость содержания фенольных соединений в плодах данных субтропических культур от гидротермических факторов (табл. 1). Наибольшее влияние на количество фенольных соединений оказывают такие факторы, как температура и
влажность воздуха, причем, зависимость носит прямой характер: чем выше данные показатели, тем больше фенольных веществ в плодах. В то время как при увеличении количества осадков, синтез фенольных соединений снижается.

Таблица 1.

Коэффициенты парной корреляции между гидротермическими факторами и содержанием фенольных соединений

<table>
<thead>
<tr>
<th>Параметры</th>
<th>Температура, °C</th>
<th>Количество осадков, мм</th>
<th>Относительная влажность воздуха, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Фенольные соединения в плодах хурмы восточной</td>
<td>0,88</td>
<td>-0,48</td>
<td>0,68</td>
</tr>
<tr>
<td>Фенольные соединения в плодах фейхоа</td>
<td>0,87</td>
<td>-0,52</td>
<td>0,60</td>
</tr>
</tbody>
</table>

Рис. 2. Содержание фенольных соединений в плодах фейхоа (НСР_{05} = 1,06).

Не последнюю роль играет и такой фактор, как генотипические особенности сортов (рис. 2, 3). На графиках представлены сорта фейхоа и хурмы восточной, отличающихся более стабильным по годам содержанием фенольных соединений. Как видно из рис. 2, наибольшее количество дубильных веществ находится в ягодах фейхоа сорта Sidling (5,07%), в то время как в плодах сорта Сачаглы данный показатель почти в два раза меньше (3,34%). Варьирование фенольных соединений за семь лет составило около 38%. Различия, обусловленные генотипическими особенностями сортов, существенные.
Рис. 3. Содержание фенольных соединений в плодах хурмы восточной (НСР₀₅ = 1,32).

У хурмы наибольшим содержанием дубильных веществ характеризуется сорт Kostata (3,65%) и Aizu-Mishirazu (3,50%), а наименьшее количество отмечено в плодах сортов Djiro (1,67%) (рис. 3). В отличие от сортов фейхоа, вариабельность по годам у данных сортов хурмы восточной несколько выше – 40%, что характеризует эту культуру, как более пластичную в отношении накопления фенольных соединений. Отличия между сортами хурмы восточной в накоплении плодами дубильных веществ существенна.

В последнее время субтропические плоды привлекают пристальное внимание в связи с высоким содержанием в них многих биологически активных веществ из группы антиоксидантных [7, 8, 10]. В этом отношении хурма и фейхоа не на последнем месте, в их плодах содержится большое количество витаминов, микро- и макроэлементов [3]. В этом списке и дубильные вещества. Как показали наши исследования, синтез фенольных соединений почти в равной степени зависит от гидротермических факторов и генотипических особенностей. Причем, у сортов варьирование признака по годам различно, что позволяет подобрать ассортимент, характеризуемый оптимальным содержанием фенольных соединений.

Список литературы:
CONTENTS OF PHENOLIC COMPOUNDS IN THE FRUITS OF SOME SUBTROPICAL CROPS (PERSIMMON, FEIJOA)

Bazba E.G.¹, Belous O.G.²,³, Omarov M.D.², Omarova Z.M.²

¹Scientific research Institute of agriculture AAS, Sukhum, Abkhazia Republic, kochurina.abkh@mail.ru
²Federal State Budgetary Scientific Institution “Russian Research Institute of Floriculture and Subtropical Crops”;
³Sochi Institute of Design, Business and Low Sochi, Russia, oksana191962@mail.ru

Data on the content of phenolic compounds in the fruits of Eastern persimmon and feijoa from the collection of the agriculture Institute of Abkhazia Academy of Sciences are presented. Berries feijoa have more of
phenolic substances (3.34%...5.07%) than the persimmon fruits (1.67%...3.65%). Statistical analysis was revealed the presence of dependence and high variation of the parameters by year (feijoa – 52%, persimmon - 64%) due to the influence of abiotic factors such as temperature (r = 0.87...0.88), air humidity and precipitation (r = 0.68...0.60). The persimmon is a culture more flexible in relation to the accumulation of phenolic compounds than feijoa. Factor of «genotypic characteristics of the varieties» are significantly influenced accumulation of phenolic compounds (LSD_{05} = 1.06...1.32) that allows to choose a varieties, characterized by the optimum content of phenolic compounds.

О ФЕНОЛЬНЫХ СОЕДИНЕНИЯХ МИРТА ОБЫКНОВЕННОГО MYRTUS COMMUNIS L.

Бакова Е.Ю., Палий А.Е., Бакова Н.Н.
ФГБУН «НБС – ННЦ», Ялта, Россия, tkdizain@yandex.ru

Аннотация. Проведено исследование состава и содержания фенольных соединений в сухих листьях и 70%-ном этанольном экстракте из листьев Myrtus communis L. Растительное сырье мирта содержит высокие концентрации фенольных веществ, среди которых идентифицированы фенолькарбоновые кислоты и флавоноиды. Основными фенольными компонентами являются (+)-D-катехин, мирциетин-3-О-рамнозид и мирциетин-3-О-галактозид. Массовые доли основных компонентов в получаемых экстрактах не зависят от способов их извлечения и могут служить одним из критериев для стандартизации растительного сырья мирта.

Разработка препаратов природного происхождения и биологически активных добавок является одним из приоритетных направлений современной фармации. Для ускорения внедрения натуральных препаратов предполагается расширение ассортимента, используемого растительного лекарственного сырья и получение на его основе лекарственных средств.

Мирт обыкновенный (Myrtus communis L.) был известен как лекарственное растение еще в Древней Греции, где применялись мази, порошки, отвары из плодов и листьев для лечения ран, нарывов, ожогов, гнойных воспалений, туберкулезе, дизентерии
Несмотря на то, что в Никитском саду изучался биохимический состав более 20 морфологических форм мирта, сведений о качественном и количественном содержании фенольных соединений в листьях недостаточно для проведения стандартизации сырья и продуктов его переработки.

Цель работы – определить состав и содержание фенольных соединений в сухих листьях и водно-спиртовом экстракте из листвьев Myrtus communis L. для определения возможностей стандартизации растительного сырья данной культуры.

Объектом исследования являлись морфологически зрелые высушенные листья, собранные в период плодоношения мирта на производственном участке сектора по переработке растительного сырья в октябре 2017г. Образцы сырья мирта измельчали до размера частиц, проходящих сквозь сито с диаметром отверстий 1 мм. Измельченное сырье 1,0 г. кипятили в 30 см³ 90%-ного этилового спирта, содержащего 0,5% концентрированной серной кислоты, на кипящей водяной бане с обратным холодильником в течение 30 мин. Надосадочную жидкость сливали в мерную колбу вместимостью 100 см³ и экстракцию повторяли еще раз. Объединенную смесь охладили, фильтровали и доводили объем до 100 см³ 90%-ным этанолом [2]. Этилолый экстракт готовили следующим образом: экстракцию проводили 70%-ным этиловым спиртом (при соотношении сырья и экстрагента – 1 : 5) и настаиванием в течение 10 суток при комнатной температуре.

Общее содержание фенольных соединений определялось спектрофотометрически методом Фолина-Чокальтеу [3]. Исследование качественного состава фенольного комплекса проводили на хроматографе фирмы Agilent Technologies (модель 1100), укомплектованным проточным вакуумным дегазатором G1379A, 4-х канальными насосом градиента низкого давления G13111A, автоматическим инжектором G1313А, термостатом колонок G13116A, диодноматричным детектором G1316A. Для проведения анализа была использована хроматографическая колонка размером 2,1 × 150 мм, заполненная октадецилсульфратом, зернением 3,5 мкм, «ZORBAX- SB C-18. Идентификацию фенольных соединений производили по временам удерживания стандартов и спектральным характеристикам [4, 5, 6, 7].

В результате проведенных исследований по методу Фолина Чокальтеу установлено, что в сухих листьях мирта общее
содержание суммы фенольных соединений составляет 5,7 г/дм³, а в 70%-ном этанольном экстракте – 13,9 г/дм³. Подобные различия связаны с использованием разных режимов экстрагирования веществ из растительного сырья.

Таблица 1.
Фенольные соединения листьев мирта

<table>
<thead>
<tr>
<th>Компонент</th>
<th>Время удерживания, мин.</th>
<th>Сухой лист мира, мг/100г</th>
<th>70 %-ный этанольный экстракт, мг/дм³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Галловая кислота</td>
<td>4.48</td>
<td>117,43</td>
<td>48,79</td>
</tr>
<tr>
<td>Эллаговая кислота</td>
<td>20.57</td>
<td>72,57</td>
<td>104,92</td>
</tr>
<tr>
<td>(+) D-Катехин</td>
<td>11.32</td>
<td>1094,39</td>
<td>1455,56</td>
</tr>
<tr>
<td>EGCG- Эпигаллокатехин-3-О-галлат</td>
<td>13.68</td>
<td>62,73</td>
<td>91,02</td>
</tr>
<tr>
<td>EGC- Эпигаллокатехин</td>
<td>14.54</td>
<td>303,05</td>
<td>609,22</td>
</tr>
<tr>
<td>EG-Эпикатехингаллат</td>
<td>16.51</td>
<td>13,74</td>
<td>13,63</td>
</tr>
<tr>
<td>Флавоноид-1</td>
<td>16.99</td>
<td>138,13</td>
<td>182,48</td>
</tr>
<tr>
<td>Мирицетин-3-О-галактозид</td>
<td>18.07</td>
<td>624,00</td>
<td>775,59</td>
</tr>
<tr>
<td>Флавоноид-2</td>
<td>18.57</td>
<td>54,88</td>
<td>63.68</td>
</tr>
<tr>
<td>Мирицетин-3-О-рамнозид</td>
<td>19.14</td>
<td>1043,29</td>
<td>1265,48</td>
</tr>
<tr>
<td>Флавоноид-3</td>
<td>19.73</td>
<td>106,61</td>
<td>119,93</td>
</tr>
<tr>
<td>Флавоноид-4</td>
<td>20.96</td>
<td>21,56</td>
<td>33,36</td>
</tr>
<tr>
<td>Флавоноид-5</td>
<td>21.18</td>
<td>49,68</td>
<td>57,76</td>
</tr>
<tr>
<td>Кверцетин</td>
<td>23.21</td>
<td>2,03</td>
<td>3,79</td>
</tr>
<tr>
<td>Сумма полифенолов методом ВЭЖХ мг/дм³</td>
<td>-</td>
<td>3704,09</td>
<td>4825,21</td>
</tr>
</tbody>
</table>
Компонентный состав сухих листьев и 70%-ного этанольного экстракта, определенный с помощью метода высокоэффективной жидкостной хроматографии, совпадает (табл. 1). Всего в листьях и экстракте выявлено 14 соединений фенольной природы, из них 9 идентифицировано. Фенольные вещества мирта представлены фенолкарбоновыми кислотами (галловой и эллаговой) и флавоноидами (катехин и его производные, кверцетин и гликозиды мирицетина). Массовая доля галловой и эллаговой кислот в сухих листьях (5,1%) выше, чем в 70%-ном этанольном экстракте (3,3%), а массовая доля флавоноидов – ниже (84,9% и 87,3% соответственно).

Основными компонентами как листьев, так и этанольного экстракта являются: (+) D-катехин, мирицетин-3-O-рамнозид и мирицетин-3-O-галактозид. Установлено, что соотношение основных компонентов в общей сумме фенольных соединений, определенных с помощью метода высокоэффективной жидкостной хроматографии, отличается незначительно. Так, массовая доля (+) D-катахина в листьях составляет 29,5%, в экстракте – 30,2%; мирицетин-3-O-рамнозида – 28,2% и 26,2%; мирицетин-3-O-галактозида – 16,8% и 16,1% соответственно.

Известно, что производные катехина, мирицетин-3-O-рамнозид и мирицетин-3-O-галактозид являются очень сильными антиоксидантами, по своей активности они превосходят витамины С и Е [8, 9]. Так как (+)-D-катехин, мирицетин-3-O-рамнозид и мирицетин-3-O-галактозид – основные фенольные соединения мирта, и их массовые доли относительно общего содержания фенольных веществ имеют близкие значения при различных способах экстракции, то содержание этих соединений в растительном сырье мирта может служить в качестве критерия для его стандартизации.

Установлено, что растительное сырье мирта содержит высокие концентрации фенольных веществ, среди которых идентифицированы фенолкарбоновые кислоты и флавоноиды. Основными фенольными компонентами являются (+)-D-катехин, мирицетин-3-O-рамнозид и мирицетин-3-O-галактозид. Массовые доли основных компонентов в получаемых экстрактах не зависят от способов их извлечения и могут служить одним из критериев для стандартизации растительного сырья мирта.
Список литературы

ABOUT PHENOLIC COMPOUNDS OF WOOD MYRTLE
Myrtus communis L.
Bakova E.Y., Paliy A.E., Bakova N.N.
FSFIS “NBG – NSC”, Yalta, Russia, tkdizain@yandex.ru

The research of composition and content of phenolic compounds in dry leaves and in hydroalcoholic extract of leaves of Myrtus communis L. has been conducted. Myrtle plant product consists of such high-concentratied phenolic substances, as identified phenolcarboxylic acids and flavonoids. The main phenolic compounds are (+)-D-catechin, myricetin-3-O-rhamnoside and myricetin-3-O-galactoside. The weight fractions of main components in obtained extracts do not depend on the ways of extraction and they can serve as one of the criterion for standardization of myrtle plant product.
ФЕНОЛЬНЫЕ СОЕДИНЕНИЯ ЯГОД ТРЕХ ВИДОВ РАСТЕНИЙ РОДА VACCINIUM L.

Белова Е.А.¹, Тритэк В.С.², Шульгау З.Т.³, Гуляев А.Е.¹, Коваленко Л.В.¹, Дренин А.А.¹, Ботиров Э.Х.¹

¹ БУ ВО Ханты-Мансийского автономного округа – Югры «Сургутский государственный университет, Сургут, Россия, botuirov-nepi@mail.ru
² «National Laboratory Astana», Назарбаев Университет, Астана, Казахстан
³ Национальный центр биотехнологии, Астана, Казахстан

Аннотация. Исследовали состав фенольных соединений водно-спиртовых экстрактов ягод клюквы, черники и брусники. Установили повышение их концентрации в ряду: клюква – брусника – черника.

Многочисленными исследованиями установлено, что диетическое потребление ягод может иметь положительное воздействие на здоровье человека [1-3]. При этом небольшие дикорастущие северные ягоды считаются одним из самых богатых источников природных антиоксидантов, ответственных за большинство положительных терапевтических эффектов [4-7]. Эти вещества в основном представлены витамином С и полифенолами, такими как антоцианы, фенольные кислоты, флавоны, дубильные вещества. Именно их потребление может быть связано с предотвращением некоторых хронических и дегенеративных заболеваний, ассоциированных с возрастом [8].

Состав полифенолов и количественная характеристика являются высоко изменчивым фактором, зависящими в первую очередь от вида ягод и региона произрастания [9]. В связи с этим, исследование состава полифенолов водно-спиртовых экстрактов клюквы (Vaccinium oxycoccus L.), черники (Vaccinium myrtillus L.) и брусники (Vaccinium vitis-idaea L.), полученных из ягод, собранных в окрестностях города Сургута Ханты-Мансийского автономного округа РФ и служило целью настоящей работы.

Свежие ягоды, собранные в августе-сентябре 2014 года в Сургутском районе Ханты-Мансийского автономного округа в окрестностях д. Сайгатина, экстрагировали 80%-ной водно-спиртовой смесью при комнатной температуре в течение суток.
Экстракт сливали, фильтровали, отгоняли под вакуумом при температуре 65°С. Процедуру экстракции и перегонки повторяли пятикратно. Полученные экстракты объединяли, разводили раствором вода-этанол (1:1).

Анализ содержания фенольных соединений проводился методом ВЭЖХ с использованием хроматографа Agilent 1290 Infinity. Разделение в градиентном режиме осуществлялось на колонке ZORBAX RRHD SB-C18 2.1 × 100 мм, 1.8 мкм. Подвижная фаза состояла из 0,1% водного раствора муравьиной кислоты и ацетонитрила, содержащего муравьиную кислоту в концентрации 0,1%. Регистрация осуществлялась диодно-матричным детектором при 280 нм и 325 нм. Спектр поглощения фиксировался в диапазоне 210—600 нм с шагом 2 нм.

Таблица 1.

<table>
<thead>
<tr>
<th>Антцианы</th>
<th>K</th>
<th>Б</th>
<th>Ч</th>
<th>Антцианы</th>
<th>K</th>
<th>Б</th>
<th>Ч</th>
</tr>
</thead>
<tbody>
<tr>
<td>Дельфинидин-3-O-галактозид</td>
<td>6,3</td>
<td>126</td>
<td>8</td>
<td>Пеонидин-3-O-галактозид</td>
<td>135</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>Дельфинидин-3-O-глюкозид ct</td>
<td>3,8</td>
<td>198</td>
<td>5</td>
<td>Петунидин-3-O-арabinозид</td>
<td>1,3</td>
<td>239</td>
<td></td>
</tr>
<tr>
<td>Цианидин-3-O-галактозид</td>
<td>115</td>
<td>81</td>
<td>8</td>
<td>Пеонидин-3-O-галактозид ct</td>
<td>23</td>
<td>4,0</td>
<td>777</td>
</tr>
<tr>
<td>Дельфинидин-3-O-арabinозид</td>
<td>104</td>
<td>3</td>
<td>104</td>
<td>Мальвидин-3-O-галактозид</td>
<td>1,5</td>
<td>263</td>
<td></td>
</tr>
<tr>
<td>Цианидин-3-O-глюкозид</td>
<td>9,2</td>
<td>64</td>
<td>149</td>
<td>Пеонидин-3-O-арabinозид</td>
<td>70</td>
<td>1,7</td>
<td>98</td>
</tr>
<tr>
<td>Петунидин-3-O-галактозид</td>
<td>379</td>
<td>10</td>
<td>9</td>
<td>Мальвидин-3-O-глюкозид ct</td>
<td>3,5</td>
<td>7,0</td>
<td>1173</td>
</tr>
<tr>
<td>Цианидин-3-O-арabinозид</td>
<td>111</td>
<td>20</td>
<td>111</td>
<td>Мальвидин-3-O-арabinозид</td>
<td>10</td>
<td>3,0</td>
<td>259</td>
</tr>
<tr>
<td>Петунидин-3-O-глюкозид ct</td>
<td>2,0</td>
<td>971</td>
<td>2</td>
<td>Всего</td>
<td>489</td>
<td>102</td>
<td>2</td>
</tr>
</tbody>
</table>

Примечания: K – клюква, B – брусника, Ч – черника; ct - идентификация подтверждена аналитическим стандартом

При разделении антцианов в качестве компонента элюента использовался 5%-ный водный раствор муравьиной кислоты, регистрация проводилась при 520 нм. Идентификация фенольных соединений проводилась в соответствии с временами удерживания и спектрами поглощения.
соответствующих аналитических стандартов. Количественная характеристика содержания индивидуальных ных веществ проводилась с использованием калибровок по соответствующим стандартным образцам. Концентрации антоцианов даны в единицах глюкозидов соответствующих антоцианидинов. Результаты анализа антоцианов экстрактов клюквы, брусники и черники приведены в таблице 1.

Из таблицы видно, что в данном исследовании проявилось характерное для клюквы высокое содержание гликозидов цианидина и пеонидина, особенно их галактозидов и арабинозидов [10]. Антоцианы брусники представлены практически только цианидинами, с преимущественным содержанием галактозида цианидина [11,12]. В чернике в высокой концентрации содержатся пятнадцать антоцианов, причём, в отличие от клюквы, относительные минимумы концен- трации приходятся на галактозиды и арабинозиды пеонидина [10].

В таблице 2 представлены результаты анализа гидроксибензойных кислот, флаван-3-олов, гидроксикоричных кислот и флавонолов.

Из представленных в таблицах 1 и 2 данных видно, что экстракт ягод черники богат антоцианами, экстракт ягод бруски - процианидинами. Аналогичные результаты были получены другими исследователями [13,14]. Из нашего анализа следует, что основным фенольным соединением экстракта ягод клюквы является хлорогеновая кислота. По данным работы [15] в экстрактах дикорастущей на Аляске брусники концентрация хлорогеновой кислоты в 1,5 раза выше чем в клюкве.

Таблица 2.

<table>
<thead>
<tr>
<th>Фенольное соединение</th>
<th>К</th>
<th>Б</th>
<th>Ч</th>
<th>Фенольное соединение</th>
<th>К</th>
<th>Б</th>
<th>Ч</th>
</tr>
</thead>
<tbody>
<tr>
<td>Галловая кислота</td>
<td>173</td>
<td></td>
<td></td>
<td>Кверцетин 3-галактозид</td>
<td>186</td>
<td>36</td>
<td>606</td>
</tr>
<tr>
<td>Протокатеховая кислота</td>
<td>10</td>
<td>26</td>
<td>118</td>
<td>Кверцетин 3-глюкозид</td>
<td>15</td>
<td>6,2</td>
<td>156</td>
</tr>
<tr>
<td>Тирозол</td>
<td>6,4</td>
<td></td>
<td></td>
<td>Процианидин</td>
<td>178</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Гидроксибензойная кислота</td>
<td>~39</td>
<td></td>
<td></td>
<td>Кверцетин 3-ксилозид</td>
<td>24</td>
<td>7,9</td>
<td></td>
</tr>
<tr>
<td>Процианидин В 1</td>
<td>26</td>
<td>195</td>
<td>49</td>
<td>Кверцетин 3-</td>
<td>55</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Состав</td>
<td>Массовая доля в ягодах</td>
<td>Массовая доля в ягодах</td>
<td>Массовая доля в ягодах</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-п-Кумароилхинная кислота*</td>
<td>30</td>
<td>130</td>
<td>Кверцетин 3-арабино-фуранозид</td>
<td>32</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(+)-Катехин</td>
<td>113</td>
<td>438</td>
<td>42</td>
<td>Кемпферол 3-глюкозид</td>
<td></td>
<td>6,6</td>
<td></td>
</tr>
<tr>
<td>Хлорогеновая (5-кофе-илхинная) кислота</td>
<td>533</td>
<td>240</td>
<td>342</td>
<td>Кверцетин-3-рамнозид (кверцитрин)</td>
<td>25</td>
<td>83</td>
<td>7,4</td>
</tr>
<tr>
<td>Процианидин</td>
<td>179</td>
<td>243</td>
<td>16</td>
<td>Мирицитин</td>
<td>9,2</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>транс-Кофейная кислота</td>
<td>4,3</td>
<td>13</td>
<td>4,7</td>
<td>Процианидин</td>
<td>32</td>
<td>203</td>
<td></td>
</tr>
<tr>
<td>Сиреневая кислота</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>9,4</td>
<td>25</td>
<td>26</td>
</tr>
<tr>
<td>Процианидин В 2</td>
<td>13</td>
<td>233</td>
<td>42</td>
<td>Кемпферол</td>
<td></td>
<td>0,7</td>
<td></td>
</tr>
<tr>
<td>(-)-Эпикатехин</td>
<td>20</td>
<td>222</td>
<td>~700</td>
<td>Гидроксисибензойные кислоты</td>
<td>17</td>
<td>65</td>
<td>301</td>
</tr>
<tr>
<td>транс-п-Кумаровая кислота</td>
<td>3,7</td>
<td>119</td>
<td>10</td>
<td>Гидроксикоричные кислоты</td>
<td></td>
<td>575</td>
<td>397</td>
</tr>
<tr>
<td>Мирицитин-глюкозид</td>
<td>168</td>
<td>33</td>
<td></td>
<td>Флавонолы</td>
<td></td>
<td>524</td>
<td>195</td>
</tr>
<tr>
<td>Транс-Феруловая кислота</td>
<td>3,9</td>
<td>24</td>
<td></td>
<td>Флаван-3-олы</td>
<td></td>
<td>535</td>
<td>2039</td>
</tr>
<tr>
<td>Процианидин</td>
<td>152</td>
<td>327</td>
<td></td>
<td>Всего:</td>
<td></td>
<td>1651</td>
<td>2696</td>
</tr>
</tbody>
</table>

Примечания: K – клюква, B – брусника, C – черника; * - курсивом выделены соединения, идентифицированные по соответствию с литературными данными.

Как и другие исследователи, мы можем констатировать рост концентрации полифенолов в ряду: клюква – брусника – черника. Химический состав полифенолов в ягодах Северного Приобья (район Сургута) принципиально не отличаются от состава аналогичных ягод Северной Америки, обнаруженные же количественные различия по отдельным полифенолам вероятно связаны с географическими и местными природными условиями.
Список литературы:
7. Ходаков И.В., Применение вина каберне-совиньон для определения идентификационных характеристик 3-О-глюкозидов антоцианиндов при анализе состава антоцианов в пасте ягод черники //Химия растительного сырья. 2014. № 2. С. 147-154.

PHENOLIC COMPOUNDS FROM BERRIES OF THREE VACCINIUM SPECIES

Belova E.A.¹, Tritek V.S.², Shulcgau Z.T.³, Gulyaev A.E.¹, Kovalenko L.V.¹, Drenin A.A.¹, Botirov E.Kh.¹
¹Surgut State University, Surgut, Russia, botirov-nepi@mail.ru;
²National Laboratory Astana, Nazarbaev University, Astana, Kazakhstan;
³National Biotechnology Center, Astana, Kazakhstan

By HPLC was studied the composition of anthocyanins, hydroxybenzoic and hydroxyl- cinnamic acids, flavonols and their glycosides, flavan-3-tins and procyanidins of water-alcohol extracts of cranberry (Vaccinium oxycoccus L.), bilberry (Vaccinium myrtillus L.) and cowberry (Vaccinium vitis-idaea L.). The results of comparative analysis of polyphenols composition of berries of these plants are presented.

ФЛАВОНОИДЫ РАСТЕНИЙ РОДА SCUTELLARIA: СТРОЕНИЕ, СВОЙСТВА И БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ

Ботиров Э.Х.¹, Каримов А.М.²,³
¹ БУ ВО Ханты-Мансийского автономного округа – Югры «Сургутский государственный университет, Сургут, Россия, botirov-nepi@mail.ru
² Институт химии растительных веществ им. акад. С.Ю. Юнусова, АН РУз, Ташкент, Узбекистан
³ Наманганский государственный университет, Наманган, Узбекистан

Аннотация. На основании анализа литературных данных и собственных исследований флавоноидов растений рода Scutellaria L. (семейство Lamiaceae) выявлены новые препараты адаптогенного, противовоспалительного и
противогипоксического действия, имеющие преимущества перед соответствующими аналогами, используемыми в медицинской практике. Разработаны способы получения суммы флавоноидов из надземных частей растений S. adenostegia и S. comosa.

Растения рода Scutellaria L. (семейство Lamiaceae) на земном шаре представлены 360 видами и широко распространены в умеренных, субтропических и тропических регионах. Многие из них обладают широким спектром биологической активности и используются как в официальной, так и в народной медицине. В научной медицине России настойка корней S. baicalensis применяют в качестве гипотензивного и как седативного средства. Корни S. baicalensis и трава S. barbata включены в фармакопеи Китая и Японии. В Фармакопее США высушенная надземная часть S. lateriflora рекомендуется в качестве успокоительного и спазмолитического средства для лечения эпилепсии, нервного возбуждения, невралгии. Надземная часть S. scordifolia в тибетской медицине применяется при пневмонии, миокардитах, тахикардии, полиартрите, как жаропонижающее, а в народной медицине Бурятии – при почечных и печёночных коликах, малярии, анорексии. В народной медицине Сибири S. galericulata используется при гипертонической болезни, асците, малярии, при кровотечениях и острых респираторных инфекциях [1,2].

Химический состав растений рода Scutellaria разнообразен, и к настоящему времени из видов данного рода выделены флавоноиды, фенилпропаноиды, фенолокислоты, иридоиды, дитерпеноиды клероданового ряда, стероиды, тритерпены, лигнаны, алкалоиды, фитостерины, полисахариды, дубильные вещества, эфирные масла и другие классы природных веществ [1-3]. Флавоноиды Scutellaria представлены флавонами, флаванонами, флавонолами, халконами, изофлавонами, бифлавоноидами и флаволигнанами. К настоящему времени исследованы флавоноиды более 65 видов Scutellaria, из которых выделены и идентифицированы около 330 веществ, в том числе: флавоны – 199, флаваноны – 72, флавонолы - 17, флаваноны – 11, халконы – 11, изофлавоны – 5, флаволигнаны – 7, бифлавоноиды – 5 [4,5]. Среди выделенных соединений доминируют флавоны и флаваноны, что, вероятно, связано с особенностями их биосинтеза. Современные фармакологические исследования подтвердили, что экстракты и индивидуальные
флавоноиды растений рода *Scutellaria* — байкалин, байкалеин, вогонин обладают противоопухолевым, гепатопротекторным, антиоксидантным, противовоспалительным, противосудорожным, антибактериальным и противовирусным действиями [1-4].

Проведен наукометрический анализ данных по степени изученности и хеморазнообразию флавоноидов видов рода *Scutellaria* L. мировой флоры, а также представлена информация о составе флавоноидов 63 видов *Scutellaria*, о распространении в растениях, структуре и источниках получения 327 флавоноидов [4,5].

На территории Узбекистана произрастают 32 вида *Scutellaria* L. (по-узбекски *кукамарон*), некоторые из которых используются в народной медицине для лечения эпилепсии, аллергии, невроза, гипертонии и других заболеваний. Нами изучен состав флавоноидов надземной части и корней 3 видов растений рода *Scutellaria* (*S. adenostegia* Briq., *S. comosa* Juz., *S. intermedia* POPOV), произрастающих в Узбекистане. В таблице приведены перечень изученных растений и названия выделенных из них веществ.

С использованием химических и спектральных методов исследований установлено строение новых, не описанных ранее в литературе соединений 7,2'-тригидроксифлавон 2'-O-β-D-глюкуронопиранозида (1) и 5,7,2'-тригидрокси-8-метоксифлавон 2'-O-β-D-глюкуронопиранозида (2).

Таблица 1.

<table>
<thead>
<tr>
<th>Растение</th>
<th>Выделенные флавоноиды</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scutellaria adenostegia Briq.</td>
<td>Надземная часть: ороксилина А, апигенин, норвогонин, гиспидулин, скутеллареин, скутелларин, кверцетин, норвогонин 7-O-β-D-глюкуронопиранозид, изоскутеллареин 7-O-β-D-глюкуронопиранозид. Корни: (±)-5,2'-дигидрокси-6,7,6'-триметоксифлаванон,</td>
</tr>
</tbody>
</table>
(-)-5,2'-дигидрокси-6,7,8,6'-тетраметоксифлаванон, хризин, вогонин, апигенин, хризин-7-О-β-D-метилглюкуронид, ороксилизод, вогонозид.

Scutellaria comosa Juz.
Надземная часть: гиспидулин, норвогонин 7-О-β-D-глюкопиранозид, скутеллареин-7-О-β-D-глюкопиранозид.
Корни: Хризин, апигенин, вогонин, (±)-5,2'-дигидрокси-6,7,6'-триметоксифлаванон, (-)-5,2'-дигидрокси-6,7,8,6'-тетраметоксифлаванон, хризин 7-О-β-D-метилглюкуронид, ороксилизод.

Scutellaria intermedia Po POV
Надземная часть: Хризин, ороксилин А, 7-О-метилнорвогонин, 5,7,2'-тригидроксифлавон, скутевулин (5,7,2'-тригидроксис-8-метоксифлавон), 2(S)-5,7,2'-тригидроксифлаванон, байкалеин, апигенин, хризин 7-О-β-D-глюкуронид, вогонин 7-О-β-D-глюкуронид, байкалин, 5,7,2'-тригидроксифлавон 2'-О-β-D-глюкуронопиранозид, скутевулин 2'-О-β-D-глюкуронопиранозид.
Корни: вогонин, 5,6-дигидрокси-7-метоксифлавон, пиностробин, гиспидулин, 5,8-дигидрокси-7-метоксифлавон, 5,7,4'-тригидрокси-6-метоксифлаванон (дигидрогиспидулин) 5,6,7,4'-тетрагидроксифлаванон (дигидроскутеллареин), лютеолин, вогонин 7-О-β-D-этилглюкуронид, байкалеин-7-О-β-D-этилглюкуронид.

Фармакологические испытания позволили выявить новые препараты адаптогенного, противовоспалительного и противогипоксического действия, имеющие преимущества перед соответствующими аналогами, используемыми в медицинской практике. Разработаны способы получения суммы флавоноидов из надземных частей растений *S. adenostegia* и *S. comosa*.

Результаты научных исследований будут положены в основу технологических разработок лекарственных препаратов, создаваемых на основе флавоноидов изученных видов *Scutellaria* L.

Список литературы:

5. Гольдберг Е.Д., Дыгай А.М., Литвиненко В.И., Попова Т.П., Суслов Н.И. Шлемник байкальский. Фитохимия и фармакологические свойства. Томск. 1991. 222 с.

8. Оленников Д.Н., Чирикова Н.К., Танхаева Л.М. Фенольные соединения шлемника байкальского (Scutellaria baicalensis Georgi) //Химия расти-тельного сырья. 2009. №4. С. 89–98.

FLAVONOIDS OF PLANTS OF THE GENUS SCUTELLARIA: STRUCTURE, PROPERTIES AND BIOLOGICAL ACTIVITY

Botirov E.Kh.1, Karimov A.M.2,3
1Surgut State University, Surgut, botirov-nepi@mail.ru
Conducted the results of scientometric analysis of data on the level of study of flavonoids of species of the genus Scutellaria L. of the world's flora, and also provides information on the composition of flavonoids 63 species of Scutellaria, the distribution in plants, the structure and sources of 327 flavonoids. Using chemical and spectral methods is established a structure of new flavonoids - 7,2'-trihydroxyflavone 2'-O-β-D-glucuronoside and 5,7,2'-trihydroxy-8-methoxy- flavone 2'-O-β-D-glucuronoside. Pharmacological tests revealed new drugs of adaptive, anti-inflammatory and antihypoxic action.
противовоспалительных, антимикробных, гепатопротекторных, желчегонных, диуретических, спазмолитических и других средств [1].

Целью работы явились исследование фенольных соединений и их антиоксидантной активности травы марьянника серебристоприцветникового.

В качестве объекта исследования заготавливали траву марьянника серебристоприцветникового в период цветения растений в 2016-2017 годах.

Для исследования фенольных соединений готовили водные, водно-спиртовые и хлороформные извлечения из сырья марьянника серебристоприцветникового. Дубильные вещества определяли в водных извлечениях с помощью качественных реакций [2]. Количественный анализ дубильных веществ проводили перманганатометрическим методом, расчет содержания дубильных веществ вели в пересчете на танин [3]. Результаты качественного и количественного анализа дубильных веществ показывают, что в данном сырье содержатся дубильные вещества преимущественно конденсированной группы и их содержание составляет 4,38%.

Исследование гидроксикоричных кислот и флавоноидов проводили в извлечениях, полученных экстракцией спиртом этиловым 70%. Их исследование проводили методами хроматографии на бумаге (бумага FN-5, Filtrak) и в тонких слоях сорбента [4]. Идентификация флавоноидов была проведена по их свечению в УФ-свете, величине Rf, окраске пятен после обработки хроматограмм цирконием хлорокисью, а также сравнением со стандартными образцами флавоноидов [5]. Для количественного определения флавоноидов использовали спектрофотометрический метод, в основе которого лежит реакция комплексообразования флавоноидов с алюминием хлоридом [5]. Результаты качественного анализа флавоноидов показали наличие 6 соединений, среди которых сравнением со стандартными образцами идентифицированы: лютеолин, апигенин, цинарозид и апигенин-7-глюкозид. Преобладающим среди них является цинарозид, что дало нам возможность использовать его для количественного анализа в качестве стандартного образца. При разработке методики изучены и установлены оптимальные параметры экстракции флавоноидов из травы марьянника серебристоприцветникового: степень
измельчения сырья – 1 мм, экстрагент – 50% спирт этиловый, продолжительность экстракции – 45 минут, соотношение сырье и экстрагент 1:100. Расчет содержания флавоноидов вели с применением удельного показателя поглощения цинарозида с алюминия хлоридом, который равен 345. В результате установили, что содержание флавоноидов в сырье марьянника колеблется от 2,52% до 3,03%.

В составе гидроксикоричных кислот обнаружили 4 соединения из которых со стандартными образцами идентифицированы: хlorогеновая, неохlorогеновая и кофейные кислоты.

Фенольные соединения обуславливают антиоксидантную активность лекарственного растительного сырья и вносят существенный вклад в величину суммарного содержания антиоксидантов [6]. В связи с чем определение антиоксидантной активности сырья является показателем его биологической ценности.

Для изучения антиоксидантной активности траву марьянника серебристоприцветникового экстрагировали различными экстрагентами: водой очищенной, спиртом этиловым 96%, водно-спиртовыми смесами в соотношении 1:10, основываясь на ГФ XIII издания [3]. В основе определения антиоксидантной активности лежит химическая реакция между калием перманганатом и веществами восстановительного характера, содержащимися в полученных извлечениях из исследуемого растения [7]. Расчет содержания антиоксидантной активности вели в пересчете на флавоноидные соединения: кверцетин, цинарозид, рутин с ранее установленной антиоксидантной активностью [7].

Для установления зависимости между антиоксидантной активностью и содержанием фенольных соединений определяли содержание флавоноидов и гидроксикоричных кислот. Содержание флавоноидных соединений в полученных извлечениях определяли методом спектрофотометрии, разработанным нами. Содержание суммы гидроксикоричных кислот определяли методом прямой спектрофотометрии при длине волны 328 нм в перерасчете на хлорогеновую кислоту [8].

Результаты проведенных исследований показали, что все полученные нами извлечения обладают антиоксидантной активностью. Изучение антиоксидантной активности показывает различную активность в зависимости от используемого
Экстрагента. Установлено, что максимальной антиоксидантной активностью обладают извлечения, полученные с помощью спирта этилового 30%, показатели антиоксидантной активности у них варьируют от 17,76±0,44 мг/кг (в пересчете на кверцетин), до 29, 93±0,75 мг/кг (в пересчете на рутин). При этом установлено, что при экстракции спиртом этиловым 30% экстрагируется максимальное количество флавоноидов и оно составляет 0,38±0,01%, а содержание суммы гидроксикоричных кислот составляет 0,48±0,02%.

Антиоксидантная активность при использовании в качестве экстрагента воды очищенной значительно выше, чем при использовании спирта этилового 96%, что по-видимому объясняется тем, что водой экстрагируются другие природные антиоксиданты, содержащиеся в траве марьянника серебристоприцветникового, например, полисахариды, аскорбиновая кислота и другие соединения.

Список литературы:
6. Карпова Е.А., Храмова Е.П., Фершалова Т.Д. Флавоноиды и аскорбиновая кислота у некоторых представителей рода Begonia L. // Химия растительного сырья. 2009. № 2. С. 105-110.
8. Бубенчиков Р.А., Гончаров Н.Н. Изучение фенольных соединений травы кульбабы шершавоволосистой (Leontodon hispidus L.) //

STUDY OF PHENOLIC COMPOUNDS OF MELAMPYRUM ARGYROCOMUM AND THEIR ANTIOXIDANT ACTIVITY

Bubenchikov R.A., Apojceva A.S.
FGBOU VO Kursk State Medical University, Kursk, Russia, bubenhikova.ksmu@yandex.ru

As the object of study herbs of Melampyrum argyrocomum was chosen. The presence of tanning agents, flavonoids, and hydroxycinnamic acids has been established in the grass of Melampyrum argyrocomum. Among the flavonoids identified luteolin, apigenin, cinaroside, apigenin-7-glucoside; among the hydroxycinnamic acids: chlorogenic acid, neochlorogenic acid, caffeic acid. The content of tannins was 4.38%, flavonoids - 3.03%. It was found that the maximum antioxidant activity is possessed by water-alcohol extracts obtained by extraction with ethyl alcohol of 30%. At the same time, the maximum number of flavonoids is established.

ИЗЧУЕНИЕ ФЕНОЛЬНЫХ СОЕДИНЕННЫХ ТРАВЫ КОЛОКОЛЬЧИКА КРУГЛОЛИСТНОГО (CAMPRANULA ROTUNDIFOLIA) МЕТОДОМ ВЭЖХ–МСД

Бубенчикова В.Н., Никитин Е.А., Кулик О.Н.
ФГБОУ ВО Курский государственный медицинский университет, Курск, Россия, evgeniy_nikitin_92@mail.ru

Аннотация. Методом ВЭЖХ–МСД изучен качественный и количественный состав фенольных соединений травы колокольчика круглолистного. Идентификацию веществ проводили путем сравнивая со стандартными образцами, количественное определение – методом внешнего стандарта. Установлено наличие 12 веществ фенольной структуры, среди которых 5 являются производными фенолкарбоновых кислот и 7 имеют flavonoидную структуру. Преобладающими среди фенолкарбоновых кислот являются кумаровая, хлорогеновая и феруловая кислоты, среди веществ flavonoидной природы преобладают цинарозид, апигенин и лютеолин–7–0–
генцииобиозид. Впервые для данного вида обнаружены галловая и хлорогеновая кислоты, апигенин и апигенин–7–глюкозид.

Изучение растений отечественной флоры является одним из перспективных направлений в поиске новых источников лекарственного растительного сырья и биологически активных веществ. Ввиду низкой токсичности, хорошей переносимости и возможности сочетания лекарственных растений между собой и лекарственными препаратами без потери эффективности и опасности для организма они нашли широкое применение в практической медицине [1].

Известно, что фенольные соединения облают широким спектром фармакологической активности, которые с успехом применяются как в создание ряда лекарственных препаратов, так и биологически активных добавок на основе натуральных полифенольных соединений.

Одним из растений представляющих интерес в качестве перспективного источника фенольных соединений является колокольчик круглолистный семейства колокольчиковые. В народной медицине известно применение настоя в качестве средства, оказывающего противоэпилептическое, антиатеросклерозное, обезболивающее действие, отвара – в качестве кровоостанавливающего, а так же растение применяется наружно при ангине, ларингите, стоматитах и в лечении кожных заболеваний [2,3,4].

Однако, применение в практической медицине колокольчика круглолистного невозможно из-за отсутствия полноценных данных о детальном составе биологически активных веществ изучаемого вида. Ввиду чего, изучение фенольных соединений травы колокольчика круглолистного методом ВЭЖХ–МСД, являлось целью настоящего исследования.

Объектом исследования являлась трава колокольчика круглолистного, заготовленная в 2016 году в Курской области. Определение фенольных соединений травы колокольчика круглолистного проводили на базе испытательной лаборатории ООО ИЦ «Фармоборона» Москва.

С целью изучения полифенольных соединений готовили водно–спиртовое извлечение следующим образом: 1,068г (точная навеска) измельченного сырья колокольчика круглолистного помещали в круглодонную колбу объемом 100мл,
добавляли 20 мл спирта этиловый 70% и нагревали на кипящей водяной бане под вакуумом, после закипания смеси продолжали экстракцию 1 час. По завершении экстракции, извлечение фильтровали в мерную колбу на 25 мл и доводили объем спиртом этиловым 70% до 25 мл. Вместе с приготовлением рабочего извлечения готовили растворы стандартных веществ.

В процессе разделения веществ использовали хроматографическую колонку EC 150/4.6 Nucleasil 100-5C18 (4,6×150 мм), размер частиц менее 5 мкм. Подвижной фазой выступал раствор 2,3% кислоты уксусной – спирт метиловый (70:30), при скорости подачи элюента 1 мл/мин. Проба вводилась объемом 20 мкл, при комнатной температуре колонки. Диодно – матричный детектор производил детектирование при 280 нм и 340 нм одновременно, при ширине полос 40 нм и контрольной длине волны 560 нм.

Масс – селективный детектор использовался при атмосферном давлении (APCI), сканируя положительные и отрицательные ионы в диапазоне от 100 до 1000 а.е.м.

Сочетание УФ – и масс – селективных детекторов в режиме положительной и отрицательной поляризации (APCI Pos. Scan и APCI Neg. Scan) дает наиболее полную информацию об определяемых в экстракте соединениях.

Полученные данные обрабатывались с помощью программного обеспечения Qualitative Analysis B.07.00 компании Agilent. Идентификацию флавоноидов производили по совпадению времен удерживания, УФ – и масс – спектров индивидуальных соединений с имеющимися стандартными веществами и литературными данными. Количественное определение флавоноидов проводили методом внешнего стандарта [5].

В результате изучения фенольных соединений травы колокольчика круглолистного проанализирована вода –
спиртовая фракция, в которой идентифицировано 12 веществ фенольной природы, среди которых 5 веществ являются производными фенолкарбоновых кислот и 7 веществ определены как вещества flavonoидной природы (таблица 1).

<table>
<thead>
<tr>
<th>Название соединения</th>
<th>Время удерживания, мин</th>
<th>λ max, нм</th>
<th>Содержание, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Галловая кислота</td>
<td>3,347</td>
<td>270</td>
<td>0,007±0,0002</td>
</tr>
<tr>
<td>Хлорогеновая кислота</td>
<td>3,640</td>
<td>243, 300, 325</td>
<td>0,016±0,0006</td>
</tr>
<tr>
<td>Кофейная кислота</td>
<td>7,693</td>
<td>242, 297, 326</td>
<td>0,009±0,0004</td>
</tr>
<tr>
<td>Феруловая кислота</td>
<td>13,053</td>
<td>240, 296, 325</td>
<td>0,014±0,0006</td>
</tr>
<tr>
<td>П-кумаровая кислота</td>
<td>22,880</td>
<td>292, 310</td>
<td>0,019±0,0008</td>
</tr>
<tr>
<td>Лютеолин-7-0-генициобиозид</td>
<td>37,593</td>
<td>256, 266, 352</td>
<td>0,180±0,0074</td>
</tr>
<tr>
<td>Цинарозид</td>
<td>47,453</td>
<td>254, 266, 350</td>
<td>0,440±0,02</td>
</tr>
<tr>
<td>Лютеолин-7–арабоглюкозид</td>
<td>52,980</td>
<td>256, 266, 350</td>
<td>0,170±0,0043</td>
</tr>
<tr>
<td>Лютеолин-7–примверозид</td>
<td>55,647</td>
<td>254, 266, 350</td>
<td>0,085±0,0024</td>
</tr>
<tr>
<td>Лютеолин-7–0–рутинозид</td>
<td>63,987</td>
<td>254, 266, 350</td>
<td>0,040±0,0012</td>
</tr>
<tr>
<td>Апигенин-7–глюкозид</td>
<td>90,833</td>
<td>266, 338</td>
<td>0,001±0,00004</td>
</tr>
<tr>
<td>Апигенин</td>
<td>98,427</td>
<td>266, 336</td>
<td>0,2200±0,0065</td>
</tr>
</tbody>
</table>

Среди идентифицированных фенолкарбоновых кислот преобладают п–кумаровая, хлорогеновая и феруловая кислоты.
из веществ flavonoидной природы преобладают цинарозид, апигенин и лютейлин–7–O–генциобиозид.

Впервые для данного вида обнаружены галловая и хлорогеновая кислоты, апигенин и апигенин–7–глюкозид.

Список литературы.

STUDY OF PHENOLIC COMPOUNDS OF CAMPANULA ROTUNDIFOLIA BY HPLC-MSD METHOD
Bubenchikova V.N., Nikitin E.A., Kulik O.N.
Kursk state medical university, Kursk, Russia

The HPLC-MSD method was used to study the qualitative and quantitative composition of phenolic compounds herb of Campanula rotundifolia. Identification of the substances was carried out by comparing with standard samples, quantitative determination by the external standard method. The presence of 12 substances of phenolic structure is established, among which 5 are derivatives of phenolic carboxylic acids and 7 have a flavonoid structure. The predominant among phenolic carboxylic acids are cumaric, chlorogenic and ferulic acids, among the substances of flavonoid nature, cinaroside, apigenin and luteolin-7-O-gensiobiozide predominate. For the first time, gallic and chlorogenic acids, apigenin and apigenin-7-glucoside were detected for this species.
ИСЛЕДОВАНИЕ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ ТРАВЫ ГОРЛЮХИ ЯСТРЕБИНКОВОЙ

Бубенчикова В.Н., Степнова И.В.
ФГБОУ ВО Курский государственный медицинский университет,
Курск, Россия, bubenhikova.ksmu@yandex.ru

Аннотация. Объектом исследования служила трава горлюхи ястребинковой. В траве горлюхи ястребинковой установлено наличие кумаринов, флавоноидов, дигидроксикоричных кислот. Методом ВЭЖХ-УФ/МС идентифицировано 12 фенольных соединений, среди них фенолокислота: галловая кислота; 4 гидроксикоричных кислоты: п-кумаровая, хлорогеновая, кофейная, феруловая; 5 флавоноидов: лютеолин, цинарозид, апигенин-4'-глюкозид, апигенин-7-глюкозид, кверцимеритрин и 2 кумарина: кумарин, скополетин.

Поиск источников фенольных соединений, обладающих разнообразными видами фармакологической активности является одной из актуальных задач фармации. В основе решения этой проблемы лежит изучение растений, издавна применяющихся в народной медицине. К таким растениям относятся растения семейства астровые и в частности горлюха ястребинковая.

Горлюха ястребинковая используется в медицине с давних времен. Она оказывает диуретическое, обезболивающее, желчегонное, слабительное, мягкительное действие [1]. Экспериментальным путем установлено наличие антиоксидантной, противовоспалительной, антибактериальной и цитотоксической активностей [2].

Однако сведения, касающиеся химического состава горлюхи ястребинковой до начала наших исследований были немногочисленны.

Целью нашей работы явилось изучение фенольных соединений травы горлюхи ястребинковой.

Объектом исследования служила трава горлюхи ястребинковой, заготовленная в 2015-2017 годах в областях Центрального Черноземья. Для анализа фенольных соединений были выделены средние и аналитические пробы сырья.
Первоначально проводили экстракцию фенольных соединений 70 % спиртом этиловым, растворитель отгоняли, очищали от липофильных примесей четыреххлористым углеродом. Очищенное водное извлечение фракционировали методом селективной экстракции: хлороформом, этилацетатом.

Обнаружение кумаринов проводили в хлороформной фракции методом тонкослойной хроматографии на пластинках «Сорбфил» с использованием в качестве подвижной фазы системы растворителей: бензол-этилацетат (2:1) в сравнении с известными образцами кумаринов [3]. Хроматограммы рассматривали в УФ-свете до и после обработки их 10% раствором калия гидроксида в спирте этиловом. Кумарины в траве горлюхи ястребинковой представлены 2 соединениями, которые по хроматографической подвижности и в сравнении со стандартными образцами идентифицированы как скополетин (Rf 0,34) и кумарин (Rf 0,81).

Для исследования состава гидроксикоричных кислот и флавоноидов использовали этилацетатную фракцию и водный остаток. Флавоноидные соединения исследовали методом бумажной хроматографии (бумага марки FN-5-Filtrak) в системе растворителей 15% кислота уксусная, а также методом тонкослойной хроматографии в системе растворителей: этилацетат-кислота муравьиная-вода (70:15:15) [4]. В результате исследования флавоноидов методами бумажной и тонкослойной хроматографии в траве горлюхи ястребинковой обнаружили не менее 4 веществ, отнесенных к флавоноидным соединениям, среди которых идентифицированы агликон - лютеолин (Rf 0,28) и два гликозида: цинарозид (Rf 0,40) и апигенин-4'-глюкозид (Rf 0,64).

Для количественного определения флавоноидов в траве горлюхи ястребинковой модифицирована известная методика, базирующаяся на спектрофотометрическом определении флавоноидов, в основе которого лежит реакция комплексообразования с алюминия хлоридом [5]. Первоначально были установлены оптимальные условия экстракции: экстрагент 70% спирт этilmый, продолжительность экстракции 75 минут, степень измельчения сырья 1 мм, соотношение сырье-экстрагент 1:100.

Измерение вели при длине волны 395 нм; расчет проводили с использованием удельного показателя поглощения цинарозида с алюминия хлоридом, который равен 345.
Разработанной методикой проанализировано сырье горюхь ястребинковой, в результате чего установлено, что содержание флавоноидов колеблется от 0,64±0,02% до 0,96±0,04%.

В составе гидроксикоричных кислот хроматографически установлено наличие 4 соединений (бумажная хроматография, 2% кислота уксусная). Из них вещество с Rf 0,32 в определенной степени достоверности идентифицировано как феруловая кислота, а вещество с Rf 0,58 как хлорогеновая кислота.

Следующим этапом работы было разработка методики количественного определения суммы гидроксикоричных кислот.

Для определения количественного содержания суммы гидроксикоричных кислот в траве горюхь ястребинковой были подобраны следующие условия: степень измельчения сырья 2 мм, экстрагент 50% или 70% спирт этиловый, время экстракции 45 минут, соотношение сырье-экстрагент 1:100.

Расчет содержания суммы гидроксикоричных кислот в сырье вели с применением удельного показателя поглощения хлорогеновой кислоты, который равен 504. Разработанная методика валидирована по показателям: линейность, повторяемость, воспроизводимость, правильность. Результаты количественного анализа гидроксикоричных кислот показали, что их содержание колеблется от 3,55±0,16% до 5,90±0,28%.

Для более детального исследования фенольных соединений и их идентификации проведено их изучение методом ВЭЖХ с диодно-матричным и масс-спектрометрическим детектированием [6]. Для анализа использовали водно-спиртовое извлечение (70% спиртом этиловым), хлороформную и этилацетатную фракции. В результате в траве горюхь ястребинковой установлено 12 фенольных соединений, среди которых идентифицировано 5 фенолкарбоновых кислот, 5 флавоноидных соединений и 2 кумарина. Анализ результатов исследования показал, что фенолкарбоновые кислоты в основном представлены коричными кислотами: п-кумаровой, хлорогеновой, кофейной, феруловой и одна является фенолокислотой: галловая кислота. Наибольшее содержание среди них отмечено для кофейной и феруловой кислот.

Флавоноидные соединения травы горюхь ястребинковой представлены флавонами и флавонолами. К флавонам отнесены 4 соединения, и они разделились на агликоны: лютеолин, а также гликозиды двух агликонов: лютеолина и

Идентифицированные кумарины охарактеризованы как кумарин и скополетин, что подтвердило исследования, проведенные методом ТСХ.

Список литературы:
3. Бубенчиков Р.А., Гончаров Н.Н., Мастихина Ю.А. Фитохимическое изучение травы кульбабы осенний (Leontodon autumnalis L.)/Вопросы обеспечения качества лекарственных средств 2015. № 1. С. 41-43.
6. Какорин П.А., Перова И.Б., Рыбакова Е.Д., Эпбер К.И., Ременская Г.В., Павлова Л.А., Теселкин Ю.О. Изучение биологически активных веществ водных извлечений караганы гривастой (Caragana jubata (Pall.) Poir.)/Химико-фармацевтический журнал. Том 51, № 11, 2017. С. 29-34.

THE STUDY OF PHENOLIC COMPOUNDS OF HERB PÍCRIS HIERACIÓIDES

Bubenchikova V.N., Stepnova I.V.
FGBOU VO Kursk State Medical University, Kursk, Russia, bubenhikova.ksmu@yandex.ru

The object of the study was the grass of the Pícris hieracióides. In the grass Pícris hieracióides the presence coumarins, flavonoids,
dihydroxycinnamic acids. Using HPLC-UV / MS, 12 phenolic compounds were identified, among them 1 phenolic acid: gallic; 4 hydroxycinnamic acids: n-coumaric, chlorogenic, coffee, ferulic; 5 flavonoids: luteolin, cynaroside, apigenin-4'-glucoside, apigenin-7-glucoside, quercimeritrin and 2 coumarins: coumarin, scopoletin.

СОДЕРЖАНИЕ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ
В НЕКОТОРЫХ ОБРАЗЦАХ ВИДОВ
СЕМ. ЯСНОТКОВЫЕ ИЗ ПРИРОДНОЙ ФЛОРЫ
ДАГЕСТАНА

Вагабова Ф.А., Раджабов Г.К.
ФГБУН Горный ботанический сад ДНЦ РАН, Махачкала, Россия, fazina@mail.ru

Аннотация. Впервые во флоре Дагестана изучено суммарное содержание некоторых фенольных соединений в надземной части видов Scutellaria granulosa Juz., Marrubium leonuroides Desr., Clinopodium vulgare L. Спектрофотометрический анализ показал высокое содержание суммы флавоноидов в образцах S. granulose (3,12% – 3,59%) и C. vulgare (2,25%), что дает возможность использовать их в медицине, косметологии, пищевой промышленности в качестве сырья, богатого фенольными соединениями.

Флавоноиды и антоцианы – низкомолекулярные вторичные метаболиты из класса фенольных соединений, которые содержатся в различных органах и тканях сосудистых растений и выполняют огромный спектр функций от мембраностабилизаторов, привлечения опылителей, до антиоксидантов. В связи этим в настоящее время ведется поиск растительных источников, содержащих фенольные соединения. Наибольший интерес при этом вызывает сем. Lamiaceae, представленное многими лекарственными, эфиро-масличными, пряными, прямо-ароматическими и пищевыми видами растений [1, 2].

В ходе проекта «Поиск новых природных растительных источников, богатых флавоноидами, во флоре Дагестана» на
2012-2014 гг., выполняящейся в рамках Программы фундаментальных исследований ОБН РАН «Биологические ресурсы России: динамика в условиях глобальных климатических и антропогенных воздействий» нами изучалось суммарное содержание флавоноидов и антоцианов в надземной части различных видов растений сем. Lamiaceae и Asteraceae флоры Дагестана. В данной статье мы приводим данные по изучению дагестанских образцов видов рода Scutellaria L., рода Marrubium L., рода Clinopodium L.

В природной флоре Дагестана сем. Lamiaceae включает 30 родов Род Scutellaria L. представлен 8 видами, род Marrubium L. – 6 видами, род Clinopodium L. – 2 видами [3].

Шлемник мелкоzerosистый – Scutellaria granulosa Juz. – полкустарник до 20 – 45 см высоты, встречается на сухих склонах, в среднем горном поясе. Эндемик Дагестана [3].

Шандра пустырниковая – Marrubium leonuroides Desr. – многолетник, до 30 – 60 см, встречается во всех районах Кавказа, растет на травянистых склонах, до среднегорного пояса [2, 3]. Используется в качестве медоноса [2].

Виды рода Scutellaria – многолетние, реже однолетние травы, полукустарники или кустарники, которые используются часто как декоративные, лекарственные, красильные растения [6]. Химический состав видов этого рода разнообразен: флавоноиды, фенилпропаноиды, фенолкарбоновые, иридоиды, стероиды, эфиры, масла, полисахариды, алкалоиды, дитерпены и другие природные вещества [6, 7]. Шлемники широко используются в народной медицине тысячелетиями, в научной
медицин экстракты, выделенные из растений шлемника используются в качестве противоопухолевых, гепатопротекторных, антиоксидантных, противовирусных, противовоспалительных, противосудорожных, антибактериальных средств [6].

Таблица 1.
Суммарное содержание флавоноидов и антоцианов в надземной части растений некоторых видов сем. Lamiaceae L., собранных в природных популяциях в 2014 году.

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Виды растений</th>
<th>Место сбора сырья, Высота над ур. моря, м</th>
<th>Суммарное содержание флавоноидов</th>
<th>Суммарное содержание антоцианов</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Marrubium leonuroides Desr.</td>
<td>Окр. с. Марага, Табасаранский р-он, 470 м</td>
<td>0,32±0,02</td>
<td>0,19±0,00</td>
</tr>
<tr>
<td>2</td>
<td>Marrubium leonuroides Desr.</td>
<td>Талгинское ущелье, 580 м</td>
<td>0,55±0,01</td>
<td>0,23±0,00</td>
</tr>
<tr>
<td>3</td>
<td>Scutellria granulosa Juz.</td>
<td>Окр. с. Гергебиль, Эндемик, 565 м</td>
<td>3,12±0,01</td>
<td>0,25±0,00</td>
</tr>
<tr>
<td>4</td>
<td>Scutellria granulosa Juz.</td>
<td>Окр. с. Кегер, 980 м</td>
<td>3,59±0,01</td>
<td>0,22±0,00</td>
</tr>
<tr>
<td>5</td>
<td>Clinopodium vulgare L.</td>
<td>Эрпели-туннель, 690 м</td>
<td>2,25±0,01</td>
<td>0,22±0,00</td>
</tr>
</tbody>
</table>

Сырье для анализа было собрано из природных популяций Дагестана в 2014 в фазу цветения. Надземную часть собранных образцов сушили в хорошо проветриваемых помещениях, в тени, при температуре воздуха согласно методике [8]. Суммарное содержание флавоноидов и антоцианов определяли спектрофотометрически на спектрофотометре СФ-56 (ЛОМО) по стандартной методике с использованием реакции образования комплексных соединений с хлоридом алюминия и комплексных соединений с хлоридом кобальта, соответственно [8]. Статистическую обработку результатов проводили с использованием лицензионной системы обработки данных Statistica 5.5 и пакета программ «MS EXCEL».

Данные, полученные в ходе эксперимента, представлены в таблице. Максимальное содержание суммы флавоноидов отмечается в образцах S. granulosa, что составляет 3,12 – 3,59%, а также в образце C. vulgare – 2,25%.
CONTENTS OF PHENOLIC COMPOUNDS IN SOME SAMPLES OF SEM. LAMIACEAE FROM THE NATURAL FLORA OF DAGHESTAN
Vagabova F.A., Radjabov G.K.
Mountain Botanical Garden of the Russian Academy of Sciences, Makhachkala, Russia, fazina@mail.ru

The total content of some phenolic compounds in the aerial parts of the species *Scutellaria granulosa* Juz., *Marrubium leonuroides* Desr., *Clinopodium vulgare* L. was studied for the first time in the flora of Dagestan. Spectrophotometric analysis showed a high content of flavonoids in *S. granulose* samples (3.12% – 3.59%) and *C. vulgare* (2.25%), which makes it possible to use their medicine, cosmetology, food industry as raw materials rich in phenolic compounds.

АНТИОКСИДАНТНАЯ АКТИВНОСТЬ РАСТЕНИЙ ИЗ РАЗНЫХ ГЕОГРАФИЧЕСКИХ ЗОН

Варданян Л.Р. ¹, Варданян Р.Л. ¹, Денисова Т.Г. ²
¹ Горисский Госуниверситет. Ул. Авангарда, 4. Горис, 3205, Армения, vrazmik@rambler.ru
²ФГБУН Институт проблем химической физики РАН, Россия, denisova@icp.ac.ru

На примере модельной реакции инициированного окисления кумола кинетическим методом исследована антиоксидантная активность этилацетатных экстрактов листьев и цветков из восьми лекарственных растений, произрастающих на территории Черноголовки, Ногинского района Московской области и Горисского района Армении. Определено суммарное содержание антиоксидантов в исследованных экстрактах и их антиокислительная активность, охарактеризованная константой скорости реакции k_7 пероксирадикала с антиоксидантом. Установлено, что среди исследованных экстрактов их максимальное количество содержится в экстракте из листьев смородины. Наиболее высокую антиоксидантную активность проявляют экстракты из листьев смородины, дуба и хрена. Для констант скорости реакции пероксильных радикалов с антиоксидантом определена их температурная зависимость в интервале 328-348 К. Обнаружена корреляционная зависимость между логарифмом предэкспоненциального множителя и энергией активации: $\lg A$ (л/моль·с) = 4.65 + 0.15 E (кДж/моль).
THE AMOUNTS AND REACTIVITY OF ANTIOXIDANTS EXTRACTED FROM PLANTS OF DIFFERENT GEOGRAPHIC REGIONS

Vardanyan L.R.,¹ Vardanyan R.L.,¹ Denisova T.G.²
¹ Goris State University, Republic of Armenia, vrazmik@rambler.ru
² Institute of Problems of Chemical Physics RAS, Moscow Region, Russia, denisova@icp.ac.ru

There were extracted by ethylacetate the nature antioxidants from leaves and flowers of 8 medicinal plants growing around Chernogolovka (Moscow region) and Goris (Armenia). Their antioxidant reactivity were estimated using model reaction of initiated oxidation of cumene. The total amount of each antioxidant was estimated and antioxidant reactivity was characterized by the rate constant k_7 of reaction of antioxidant with peroxy radical. The maximum amount of antioxidant was found in extract from leaves of black currant. The highest antioxidant activity demonstrated extracts from leaves of black currant, common oak, and horseradish. There was found the temperature dependence of rate constant of reaction of antioxidant with peroxy radical inside the interval 328–348 K. The correlation was found between logarithm of preexponential coefficient and activation energy: $\log A (L/mol s) = 4.65 + 0.15 E (kJ/mol)$.
алоэ — вера (Aloe vera L.) с использованием тонкослойной хроматографии и УФ-спектрофотометрии. В результате проведенного качественного анализа обнаружены вещества, которые относятся к антраценпрепроизводным.

Введение. Алоэ древовидное (Aloe arborescens L.) — лекарственное растение, широко применяющееся в медицинской практике, в качестве биостимулирующего и регенерирующего лекарственного средства. Основным действующим веществом является антраценпрепроизводное — алоэ-эмодин [1, 2]. В Государственной фармакопее Российской Федерации XIII издания и ГФ СССР XI издания фармакопейная статья на листья алоэ древовидного отсутствует, соответственно проблемы стандартизации сырья алоэ древовидного до сих пор не решены [3].

В западных странах и США главными препаратами являются гели и соки из мясистых листьев алоэ-вера. В России данное растение применяется только в качестве БАДов и косметических средств [4, 5]. Исходя из этого, актуальной является разработка методик качественного анализа данного лекарственного растительного сырья.

Цель исследования — проведение сравнительного качественного анализа листьев алоэ древовидного (Aloe arborescens L.) и листьев алоэ — вера (Aloe vera L.) с использованием тонкослойной хроматографии и УФ–спектрофотометрии.

Материалы и методы. Регистрацию спектров проводили с помощью спектрофотометра Unico 2800 в диапазоне длин волн 190-700 нм в кюветах с толщиной слоя 10 мм. Для тонкослойно-хромаграфического анализа использовали пластинки «Сорбфил ПТСХ-ПА-УФ» и «Сорбфил ПТСХ-АФ-А-УФ» (Россия). Объектом настоящего исследования служили свежие образцы листьев алоэ-вера и алоэ древовидного, культивированные на кафедре управления и экономики фармации, фармацевтической технологии и фармакognозии Оренбургского государственного медицинского университета (2016 г.).

Результаты исследования и их обсуждение. На стартовую линию хроматограммы наносили полосами извлечение сырья алоэ древовидного и алоэ-вера. Далее хроматограмму элюировали смесью растворителей. Соответственно хроматографическое разделение проводилось в системе
растворителей этилацетат - спирт этиловый 95% - вода (7:2:1). Для обнаружения веществ хроматограмму просматривали в видимом свете, УФ-свете (254 и 366 нм). При просмотре хроматограммы в УФ-спектре при длине волны 254 нм алоэ-эмодин обнаруживается в виде пятна с от светло-желтого до желтого с оранжевым оттенком цвета с Rf 0,7 - 0,9, а алоин - в виде пятна голубого цвета (Rf 0,5 - 0,6).

![Хроматографический профиль сока из листьев алоэ древовидного и листьев алоэ пестрого. I - детекция при длине волны 366 нм; II - детекция при длине волны 254 нм; III - схема хроматограммы. Обозначения: A - сок из листьев алоэ древовидного; B - сок из листьев алоэ - вера; 1 - алоин; 2 - алоэ-эмодин.]

Исследование УФ-спектров водно-спиртовых и щелочно-аммиачных растворов листьев алоэ древовидного и алоэ-вера показало, что максимум поглощения находится в длинноволновой области спектра при длине волны 450±2 нм, что характерно для алоэ-эмодина [6]. Пик при длине волны 450±2 нм свидетельствует о наличии алоэ-эмодина в составе сравниваемых видов растений.
Рис. 2. Электронные спектры исходного раствора (1) и щелочно-аммиачного раствора (2) водно-спиртового извлечения из листьев алоэ древовидного

Рис. 3. Электронные спектры исходного раствора (1) и щелочно-аммиачного раствора (2) водно-спиртового извлечения из листьев алоэ-вера

Выводы. В результате проведения сравнительного качественного анализа листьев алоэ древовидного (Aloe arborescens L.) и листьев алоэ – вера (Aloe vera L.) с использованием тонкослойной хроматографии УФ-спектрофотометрии подтверждено наличие суммы антраценпроизводных, а с помощью тонкослойной хроматографии обнаружены алоин и алоэ-эмодин.

Список литературы.
COMPARATIVE QUALITATIVE ANALYSIS OF LEAVES OF ALOE ARBORESCENS AND LEAVES OF ALOE VERA
Glushchenko S.N., Shmygareva A.A., Kurkin V.A.
OrSMU, Orenburg, Russia, svtlana94g@gmail.com, a.shmygareva@mail.ru, Kurkinvladimir@yandex.ru

A comparative qualitative analysis of the leaves of Aloe arborescens L. and Aloe vera L. leaves using thin layer chromatography and UV spectrophotometry was carried out. As a result of the qualitative analysis, substances that are related to anthracenederivatives were found.

АНТОЦИАНЫ НЕТРАДИЦИОННЫХ РАСТИТЕЛЬНЫХ ИСТОЧНИКОВ

Дейнека В.И., Сидоров А.Н., Кульченко Я.Ю., Дейнека Л.А., Тохтарь В.К., Дроголова Н.А.
ФГАОУВО Белгородский государственный национальный исследовательский университет, Белгород, Россия,
deineka@bsu.edu.ru

Аннотация. Рассматриваются вопросы образования антоцианов в нетрадиционных растительных источниках и возможности их практического использования.

Среди вторичных метаболитов класса flavonoïdы антоцианы занимают особое место благодаря структурным особенностям (существование нескольких pH-зависимых форм), высокой растворимости в воде, высокому антиоксидантному потенциалу и красящим способностям. Это позволяет использовать антоцианы в качестве эффективных и безвредных для организма (кроме индивидуальной непереносимости) растительных красителей для пищевой и фармацевтической промышленности.
Среди множества растений с активным биосинтезом антоцианов обычно обращают внимание на плоды - черники,
аронии мичурина, интенсивно окрашенных сортов винограда, жимолости съедобной, черной смородины, ежевики и т.д. При этом экстракция антоцианов из отходов переработки винограда имеет прямой смысл, а необходимость экстракции антоцианов из плодов черники для приготовления профилактических офтальмологических препаратов уже достаточно условна, поскольку на благоприятный для зрения эффект именно от употребления черничного джема было изначально обращено внимание. Поэтому интенсивно окрашенные от красного до фиолетового цвета плоды могут быть рекомендованы для прямого употребления в пищу без сложных переработок, при которых потери действующих веществ неизбежны по различным причинам. Впрочем, и хранение плодов также имеет свои особенности, без учета которых степень разрушения антоцианов в них при хранении может оказаться очень высокой.

К нетрадиционным источникам антоцианов можно отнести не только несъедобные части растений с высоким естественным уровнем накопления антоцианов, но и потенциально съедобные цветы, листья и даже плоды растений, употребление которых в пищу не характерно для данной местности. В этом случае переработка с экстракцией становятся обязательными процедурами.

Листья растений. Нами были исследованы краснолистные формы растений из коллекции Ботанического сада НИУ БелГУ. Листья листопадных растений относятся к возобновляемым природным источникам антоцианов и других фенольных соединений, отличающихся, к сожалению, низкой востребованностью в перерабатывающей промышленности. Относительно антоцианов листьев иногда можно встретить мнение о том, что спектр антоцианов обычно ограничен наиболее часто синтезируемым циянидин-3-глюкозидом. Однако, такое мнение весьма ошибочно.

Так, например, хорошо известно, что антоцианы плодов растений трибы яблоневые (Maleae) одинаковы для всех видов трибы и представлены производными только циянидина, что указывает на отсутствие (или неактивность) в цепи биосинтеза флавоноиоид-3',5'-гидроксилазы (F3',5'H) и метилтрансферазы (MT) при более высокой активности фермента UDP-Gal:антоцианидин 3-O-галактозилтрансферазы по сравнению с UDP-Glc:антоцианидин-3-O-глюкозилтрансферазы. При этом этот же вариант биосинтеза характерен для красных листьев
декоративных яблонь, рябины обыкновенной *Sorbus aucuparia* и пузыреплодника калинолистного *Physocarpus opulifolius* – в экстрактах обнаруживается доминирующий антоциан – цианидин-3-галактозид при небольших концентрациях двух других, характерных для плодов яблоневых, антоцианов – цианидин-3-глюкозида и цианидин-3-арабинозида. Отметим, что уровень накопления антоцианов в листьях также может быть высоким: у красных листьев рябины обыкновенной концентрация антоцианов достигает 100 мг на 100 г, увеличиваясь примерно вдвое (до 200 мг на 100 г) при переходе к пузыреплоднику калинолистному.

Для косточковых плодов семейства розоцветные накопление цианидин-3-галактозида не характерно – доминирующими, как правило, оказываются 3-глюкозид и 3-рутинозид цианидина с небольшими добавками аналогичных производных пеонидина, что указывает на проявление активности метилтрансферазы. В случае вишни (но не черешни) обнаруживается биосинтез более сложных гликозидов (цианидин-3-глюкозилрутинозида и цианидин-3-софорозида). Но в плодах алычи растопыренной (*Prunus divaricata* Ledeb.) антоциановый состав уникален, объединяя виды, характерные и для семечковых и для косточковых. Это же справедливо и для листьев растения: концентрация антоцианов постепенно уменьшается в ряду цианидин-3-галактозид > цианидин-3-глюкозид > цианидин-3-рутинозид при суммарном уровне накопления антоцианов порядка 340 мг на 100 г (это уже на уровне лучших сортов черной смородины или жимолости). Примерно те же антоцианы обнаруживаются в листьях другого декоративного растения сливы Писсарди (*Prunus cerasifera* Pissardii) при их суммарном уровне накопления около 250 мг на 100 г листьев.

В листьях березы повислой формы краснолистной (*Betula pendula* f. *rubra*), накапливающей порядка 190 мг антоцианов на 100 г свежего материала, видовой состав представлен в основном двумя 3-арабинозидами – дельфинидина и цианидина в сопоставимых количествах. В листьях другого растения семейства березовые - одной из форм лещины (*Corylus avelana* (L.) H. Karst.) уровень накопления антоцианов немного даже превосходит их содержание в листьях березы (более 200 мг на 100 г свежего материала). И антоциановый состав оказывается не очень простым: комплекс включает цианидин-3-арабинозаид и
3-галактозиды цианидина и дельфинидина.

В листьях клена остролистного (Acer platanoides L.) сорта «Кримсон кинг», который выращивается не только в Ботаническом саду НИУ БелГУ, но и в нескольких районах Белгорода, уровень накопления антоцианов колеблется в зависимости от многих факторов – от практически полного отсутствия антоцианов до 0.400 мг на 100 г. Основные компоненты: цианидин-3-глюкозид, и уникальное ацилированное производное – цианидин-3-галлоилглюкозид.

Антоциановый состав листьев краснолистной формы декоративного батата представлен в основном производными цианидин-3-софородид-5-глюкозида, ацилированными пара-гидроксисензойной и кофейной кислотами, включая двойное ацилирование. Концентрация антоцианов в листьях превышает 150 мг на 100 г.

Барбарисы относятся к довольно редким садовым культурам, и особенно это касается краснолистных form данного растения. В принципе к нетрадиционному сырью можно отнести и плоды этого растения, хотя сбор плодов затруднен колючестью веток многих барбарисов, и поэтому плоды барбарисов обычно остаются на зиму на голых ветвях растения. Сопоставление антоциановых комплексов плодов и листьев видов барбариса показало, что если в плодах обычно доминирующим является пеларгонидин-3-глюкозид, то для листьев характерно накопление чаще всего лишь цианидин-3-глюкозида. Но в листьях пурпурнолистной формы барбариса обыкновенного синтезируется весь набор 3-цианидинов шести основных антоцианинов (дельфинидина, петунидина, мальвидина, цианидина и пеонидина при небольшом «остатке» производнях пеларгонидина), что указывает на потенциальную возможность управления биосинтезом ключевых ферментов для получения форм или межвидовых гибридов с измененной схемой биосинтеза антоцианов. И хотя в целом в листьях краснолистных форм растений уровень накопления антоцианов относительно не высок (100 – 200 мг на 100 г), в сушеных листьях пурпурнолистной формы барбариса оттавского найдено более 950 мг антоцианов на 100 г растительного материала.

Антоцианы потенциально интродуцируемых растений. Пурпурная кукуруза интересна не только тем, что большое количество антоцианов накапливается в плодах, со времен ацтеков использовавшихся для приготовления богатого
Parsley «sânberri» (Solanum retroflexum) не стал в РФ столь же популярной осенней ягодой, как в Северной Америке, поэтому может рассматриваться как нетрадиционный источник антоцианов (более 500 мг на 100 г свежих плодов), представленных довольно уникальным основным антоцианом цианидин-3-рутинозид-5-глюкозидом, ацилированным пара-кумаровой кислотой. По нашему опыту только в некоторых растениях семейства Solanaceae обнаруживается такой продукт частичного метилирования в ряду антоцианов дельфинидинового типа – обычно при высокой степени метилирования производным петунидина сопутствуют производные мальвидина в практически статистически определяемых количествах. Пурпурный картофель только начал свою историю на территории РФ. В корнеплодах отечественного сорта «Аметист» с пурпурной мякотью найдено очень высокое содержание антоцианов – более 1 г на 100 г, представленных традиционными для семейства Solanaceae ацилированными пара-кумаровой кислотой 3-рутинозид-5-глюкозидами, но с преобладанием производных мальвидина.

ANTHOCYANINS OF NON COMMON PLANT SOURCES
Deineka V.I., Sidopov A.N., Kulchenko Y.Y., Deineka L.A.,
Tokchtar V.K., Drogolova N.A.
Belgorod National Research University, Belgorod, RF,
deineka@bsu.edu.ru

Attention was paid to noncommon (nondible) plant sources of anthocyanins as alternative to fruit anthocyanin. First type of the sources is
presented by red leaves of decorative trees of collection of Botanical Garden of the University, represented by that of *Sorbus aucuparia*, *Physocarpus opulifolius*, *Prunus divaricate*, *Betula pendula* f. *rubra*, *Corylus avelana* and *Acer platanoides* being annually renewable sources not utilized till now. Especially are discussed the possibility of anthocyanins extraction from nonedible parts of purple corn, as well from fruits of *Solanum retroflexum* and from purple potato tubers being noncommon for RF and from flowers. For all the sources total anthocyanin accumulation was determined and types of anthocyanins were identified by HPLC with spectrophotometric and mass-spectrometric detection.

ФЕНОЛЬНЫЕ СОЕДИНЕНИЯ АРКТИЧЕСКИХ БУРЫХ ВОДОРОСЛЕЙ

Дружинина А.С.1, Боголицын К.Г.1,2, Овчинников Д.В.1, Каплицин П.А.1, Паршина А.Э.1, Шульгина Е.В.1

1 Северный (Арктический) федеральный университет имени М.В. Ломоносова, Архангельск, Россия, annadruzhinina27@yandex.ru
2 Федеральный исследовательский центр комплексного изучения Арктики, Архангельск, Россия, k.bogolitsin@narfu.ru

Аннотация. В работе представлены результаты исследования по выделению, фракционированию и характеристике полифенолов арктических бурых водорослей. Разработана схема селективного извлечения полифенольного комплекса из бурых водорослей. С использованием современных аналитических методов анализа получены новые данные о структуре, функциональной природе и полимолекулярных свойствах флоротаннинов бурых водорослей. Установлена зависимость антиоксидантной активности от молекулярной массы.

Арктические бурые водоросли являются уникальным по составу сырьем для получения целого ряда веществ, обладающих широким спектром потребительских свойств. Наиболее значимыми соединениями, определяющими ярко выраженные антиоксидантные свойства бурых водорослей, являются полифенолы (ПФ), а именно полимеры флороглюцина – флоротаннины [1]. Однако, несмотря на высокую
биологическую активность флоротанинов, используемые технологии переработки водорослей направлены в основном на извлечение полисахаридной составляющей.

На данный момент связь между молекулярной массой и антиоксидантной активностью (АОА) флоротанинов бурых водорослей до сих пор плохо изучена [2-4]. Разделение выделяемых полифенолов по молекулярным массам с последующим масс-спектроскопическим анализом позволит определить относительное содержание мономеров, олигомеров и полимеров в той или иной фракции, даст возможность выявить наиболее активные подфракции, а также, возможно, позволит установить связь между полимолекулярными свойствами флоротанинов и их антиоксидантной активностью.

Рис. 1. Схема выделения полифенолов из бурых водорослей

В связи с этим целью работы является разработка схемы выделения флоротанинов, характеристика состава фракции ПФ и установление связи между полимолекулярными свойствами ПФ и их активностью.

Объектом исследования стали образцы бурых водорослей вида Fucus vesiculosus, отобранные в ходе комплексных научно-исследовательских экспедиций "Арктический Плавучий
Для выделения обогащенного полифенольными компонентами экстракта нами была разработана комплексная схема переработки биомассы бурьих водорослей (рисунок 1). На первом этапе данной схемы происходит отделение липидно-пигментного комплекса путем экстракции водорослей хлороформом.

Таблица 1. Характеристика подфракций полифенольной фракции

<table>
<thead>
<tr>
<th>№</th>
<th>Элюент</th>
<th>Выход ПФ¹, %масс</th>
<th>Содержание ПФ, г ФГЕ/100г экстракта</th>
<th>Mw, Да²</th>
<th>АОА, мг аскорб.к-ты / г экстракта</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>исходная фракция ПФ</td>
<td>-</td>
<td>76,2±3,2</td>
<td>4620±140</td>
<td>553±24</td>
</tr>
<tr>
<td>1</td>
<td>этанол/вода (1:1,5)</td>
<td>32,2±2,3</td>
<td>52,0±2,0</td>
<td>7370±320</td>
<td>317±19</td>
</tr>
<tr>
<td>2</td>
<td>этанол/вода (1:1)</td>
<td>5,7±0,4</td>
<td>85,2±1,5</td>
<td>2050±110</td>
<td>523±33</td>
</tr>
<tr>
<td>3</td>
<td>этанол/вода (2:1)</td>
<td>4,0±0,1</td>
<td>97,0±3,0</td>
<td>2650±150</td>
<td>733±30</td>
</tr>
<tr>
<td>4</td>
<td>этанол/вода (3:1)</td>
<td>3,1±0,3</td>
<td>97,6±1,9</td>
<td>2870±150</td>
<td>698±16</td>
</tr>
<tr>
<td>5</td>
<td>этанол/вода (4:1)</td>
<td>1,1±0,2</td>
<td>96,0±2,1</td>
<td>2820±160</td>
<td>894±40</td>
</tr>
<tr>
<td>6</td>
<td>этанол/вода (5:1)</td>
<td>0,9±0,1</td>
<td>94,5±1,9</td>
<td>2760±120</td>
<td>917±29</td>
</tr>
<tr>
<td>7</td>
<td>этанол</td>
<td>0,4±0,1</td>
<td>91,9±2,7</td>
<td>2610±130</td>
<td>891±28</td>
</tr>
<tr>
<td>8</td>
<td>этанол/ациетон (5:1)</td>
<td>2,3±0,2</td>
<td>94,4±1,8</td>
<td>3030±160</td>
<td>744±38</td>
</tr>
<tr>
<td>9</td>
<td>этанол/ациетон (4:1)</td>
<td>2,8±0,2</td>
<td>97,9±2,6</td>
<td>3660±190</td>
<td>798±16</td>
</tr>
<tr>
<td>10</td>
<td>этанол/ациетон (3:1)</td>
<td>5,7±0,5</td>
<td>95,8±3,0</td>
<td>4470±210</td>
<td>659±35</td>
</tr>
<tr>
<td>11</td>
<td>этанол/ациетон (2:1)</td>
<td>9,2±0,8</td>
<td>92,6±2,5</td>
<td>5670±280</td>
<td>686±21</td>
</tr>
<tr>
<td>12</td>
<td>этанол/ациетон (1:1)</td>
<td>19,3±1,1</td>
<td>97,5±1,4</td>
<td>6770±360</td>
<td>584±22</td>
</tr>
</tbody>
</table>

¹ выход рассчитан в процентах от содержания полифенолов во фракции, взятой для фракционирования
² среднемассовая молекулярная масса

Далее обезжириенные водоросли экстрагируют водой для извлечения гидрофильных веществ. Полученный водный экстракт обрабатывают ионитами с целью удаления минеральной составляющей. В очищенный от солей водный экстракт добавляют этанол и отделяют выпавший осадок полисахаридов. Далее водно-спиртовый экстракт термостатируют при -15 °С и отделяют осадок маннита. Водно-спиртовый экстракт упаривают для удаления этанола,
подкисляют до рН 2 и экстрагируют смесь этилацетат:бутанол. Выделенная органическая фракция содержит 61±3 % полифенолов, селективность извлечения целевого компонента составляет 79±4 %.

Фракционирование полифенолов выполнили методом препаративной хроматографии на колонке, заполненной сорбентом Sephadex LH-20. Характеристика выделенных подфракций, а именно состав элюента, выход полифенолов, содержание полифенолов в подфракции, среднемассовая молекулярная масса и антиоксидантная активность, представлена в таблице 1.

При использовании данной системы элюентов фракции №3-12 в своем составе содержат более 90% полифенолов, вследствие чего являются представительными. Молекулярная масса полифенолов в подфракциях №3-7, элюируемых системой растворителей этанол/вода, незначительно изменяется (от 2610 до 2870 Да), в то время как при использовании системы этанол/ацетон наблюдается значимый рост молекулярной массы от 3030 до 6770 Да.

Таблица 2.

<table>
<thead>
<tr>
<th>t_R, мин</th>
<th>M, Да</th>
<th>Компонент</th>
<th>№ подфракции</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,31; 3,48</td>
<td>498</td>
<td>Тетramer</td>
<td>+</td>
</tr>
<tr>
<td>4,27</td>
<td>374</td>
<td>Тример</td>
<td>+</td>
</tr>
<tr>
<td>5,52</td>
<td>622</td>
<td>Пентамер</td>
<td>+ + + +</td>
</tr>
<tr>
<td>7,34; 7,56</td>
<td>498</td>
<td>Тетramer</td>
<td>+ + +</td>
</tr>
<tr>
<td>9,20; 9,64</td>
<td>746</td>
<td>Гексамер</td>
<td>+ + + + + +</td>
</tr>
<tr>
<td>10,41; 10,54; 10,77</td>
<td>622</td>
<td>Пентамер</td>
<td>+ + + + +</td>
</tr>
<tr>
<td>11,46</td>
<td>870</td>
<td>Гептамер</td>
<td>+ + + + + +</td>
</tr>
<tr>
<td>11,97; 12,17</td>
<td>746</td>
<td>Гексамер</td>
<td>+ + +</td>
</tr>
<tr>
<td>12,60</td>
<td>994</td>
<td>Октамер</td>
<td>+ + + + + +</td>
</tr>
<tr>
<td>12,96</td>
<td>870</td>
<td>Гептамер</td>
<td>+ + +</td>
</tr>
<tr>
<td>14,00</td>
<td>994</td>
<td>Октамер</td>
<td>+ + + +</td>
</tr>
</tbody>
</table>

Методом хромато-масс-спектрометрии установлено наличие в полифенольных фракциях флоротанинов в диапазоне масс от 373 а.е.м. (тримеры) до 994 а.е.м. (октамеры), при этом с увеличением доли органического растворителя элюируются
компоненты с большей молекулярной массой, в частности, в двух последних фракциях, полученных с использованием элюента с высокой долей ацетона, олигомеров не обнаружено (таблица 2).

Изменение компонентного состава полиfenолов в подфракциях приводит к различной АОА подфракций. Так высокая АОА наблюдается при содержании в подфракции пентамеров и гексамеров, тогда как при обнаружении в составе полиfenолов только молекул с массой больше массы пентамера, АОА падает, что может быть связано с экранированием реакционных центров молекул.

Для определения взаимосвязи АОА и полимолекулярных свойств ПФ необходимо усреднить схожие по молекулярным массам подфракции №3-7. Объединенные подфракции имеют среднюю молекулярную массу 2740±140 Да и антиоксидантную активность 827±29 мг аскорб.к-ты/ г экстракта. Зависимость в изменении АОА от молекулярной массы ПФ представлена на рисунке 2, треугольником обозначено среднее значение для подфракций №3-7. Полученная зависимость наблюдается при диапазоне масс от 3000 Да.

Работа выполнена в рамках проектной части государственного задания Министерства образования и науки РФ № 4.3273.2017/4.6 с использованием оборудования ЦКП НО «Артика» Северного (Арктического) федерального университета имени М.В. Ломоносова, уникальный идентификатор RFMEFI59417X0013.
Список литературы.

ФЕНОЛЬНЫЕ СОЕДИНЕНИЯ КОРНЕЙ PODOPHYLLUM PELTATUM L., ИНТРОДУЦИРОВАННОГО В РЕСПУБЛИКЕ БАШКОРТОСТАН

Жигунов О.Ю., Лебедев Я.П., Баширова Р.М.
Ботанический сад-институт УНЦ РАН, Уфа, zhigunov2007@yandex.ru

Аннотация. Изучен состав лигнанов корней Podophyllum peltatum L., интродуцированного в Республике Башкортостан. Установлено, что растения подофиля в условиях Южного Урала накапливают фармакологически ценные соединения – β-пельтатин и подофиллотоксин.

Наименее изученный класс фенольных соединений - лигнаны, общим структурным элементом которых является остаток кониферилового спирта. Особый интерес представляют арилтетралиновые лигнаны Podophyllum peltatum (подофилялл щитовидный). Эти лигнаны - производные подофиллотоксина (PTOX), используют в производстве противоопухолевых и противовирусных препаратов для лечения лимфомы, острого миелолейкоза, а также саркомы Капоши, ассоциированной с ВИЧ-инфекцией [1]. PTOX характеризуются высокой анти-HIV
активностью [2], антимикотической активностью против возбудителей микроспории, трихофитии, возбудителей кандидоза [3]. Доказана их высокая противоямблиозная активность [4].

Производство PTOX из Podophyllum является дорогостоящим, особенно из сырья собранныго в природе, запасы которого ограничены. P. hexandrum является исчезающим видом в западных Гималаях [5]. В соответствии с международной конвенцией «О международной торговле видами дикой фауны и флоры, находящимися под угрозой исчезновения» (CITES) во избежание ущерба популяциям индийского подофила запрещен экспорт дикорастущего сырья. Индийский подофил включен в Красную книгу Индии, Китая.

В настоящее время Россия закупает препараты подофиллотоксина в США, Индии, Китае и странах Европы [5]. В СССР в 60-80-х годах XX века проводились интродукционные исследования представителей рода Podophyllum В нашей стране были интродуцированы P. peltatum и подофиил гималайский P. emodii Wall.. Плантации P. hexandrum и P. peltatum были созданы в Ленинградской, Московской областях, в Крыму, на Кавказе [6,7]. Вместе с тем, ни экспериментов по введению в культуру подофила щитовидного, ни изучения его химического состава в условиях Республики Башкортостан ранее не проводилось.

Учитывая изложенное, нами проведены фитохимические исследования сырья североамериканского вида P. peltatum, интродуцированного на территории Ботанического сада-института УНЦ РАН. Посадочный материал подофила получен в виде корневищ из Главного ботанического сада им. Н.В. Цицина (Москва) в 2007 году. Корни и корневища P. peltatum для химического анализа были заготовлены в третьей декаде сентября 2017 г.

Арилтетралиновые лигнаны были проэкстрагированы метанолом из измельченного сырья в течение суток при температуре 25ºС. Соотношение - сырье: метанол 1:10. Полученные экстракты исследовали методом газовой хроматографии, на хроматографе Trace 1310 ГХ с масс-селективным детектором Thermo ISQ при следующих условиях: начальная температура 70ºС; конечная температура 280ºС; скорость нагрева 10 градусов в минуту; время при начальной температуре 2 минуты; время при конечной температуре 10 минут; - колонка капиллярная TR-5MS 0.25мм x 15 м;
температура испарителя 280°C; газ-носитель – гелий; поток газа 1 мл/мин; величина пробы 1 мкл; масс-селективный детектор работал в режиме электронного удара (70 эВ); регистрация масс-спектров проводилась по полному ионному току в режиме сканирования.

Рис. 1. Масс-спектр β-пельтатина

Рис. 2. Масс-спектр подофиллотоксина
Результаты и обсуждение. Установлено, что в метанольном экстракте определяются четыре пика, соответствующие производным подофилотоксина (рис.1 и рис.2). Доминирующими соединениями оказались β-пельтатин (Rt=22,69) и подофиллотоксин (Rt=27,99).

Известно, что спектр лиганнов является интегральным отражением влияния сложного комплекса экологических факторов на растение в период их развития и роста в дополнение к генетическим факторам. Определенные метаболиты синтезируются только в определенных средах [8]. Очевидно, что для успешного переноса растений-продуцентов биологически активных веществ из одной географической среды в другую необходимо учитывать весь комплекс экологических факторов.

Так, на содержание лиганнов в азиатском виде P. hexandrum влияют такие экологические факторы, как среднегодовое количество осадков, средние температуры июля, безморозный период, продолжительность солнечного сияния, рН почвы, содержание гумуса и доступного калия. Вариабельность содержания лиганнов зависит также от активности эндомицетных организмов Phialocephala fortinii [9]. Содержание в растениях производных РТОХ коррелирует с годовой продолжительностью солнечного сияния и безморозного периода [5].

2017 год был на южном Урале экстремальным, как по режиму инсоляции, так по количеству осадков. Средняя температура июля составляла 19,9ºС, минимальное значение температуры достигало +9ºС. Тем не менее, эксперимент показал, что в условиях РБ сохраняется способность североамериканского вида - подофилла щитовидного к синтезу фармакологически активных лиганнов, что свидетельствует о принципиальной возможности выращивания подофилла щитовидного в медицинских целях.

Список литературы:
PHENOLIC COMPOUNDS OF THE ROOTS **PODOPHYLLUM PELTATUM** L. INTRODUCED IN THE BASHKORTOSTAN REPUBLIC BOTANICAL GARDEN-INSTITUTE OF THE UFA SCIENCE CENTER OF THE RUSSIAN ACADEMY OF SCIENCES, UFA

Zhigunov O.Yu., Lebedev Ya.P., Bashirova R.M.
Botanical garden-institute of the Ufa Science Center RAS, Ufa, Rissia, zhigunov2007@yandex.ru

The composition of lignans of *Podophyllum peltatum* L. roots, introduced in the Bashkortostan Republic is studied. It was established that Mayapple under the conditions of the South Urals accumulate pharmacologically valuable compounds - β-peltatin and podophyllotoxin.
ФЛАВОНОИДЫ НЕКОТОРЫХ ВИДОВ РАСТЕНИЙ РОДОВ LYCHNIS И SILENE

Зибарева Л.Н.1, Филоненко Е.С.1, Храмова Е.П.2
1ФГАОУ ВО «Национальный исследовательский Томский государственный университет», Томск, Россия, zibareva.lara@yandex.ru
2ФГБУН Центральный сибирский ботанический сад СО РАН, Новосибирск, Россия

Виды семейства Caryophyllaceae Juss (гвоздичные) синтезируют разные группы БАВ: фенольные соединения, экдистероиды, тритерпеновые гликозиды и др. Интерес исследователей к этому семейству обусловлен многочисленностью видов, богатым составом экдистероидов и флавоноидов, разнообразием проявляемых биологических активностей. В настоящее время изучены флавоноиды более 230 видов различных родов гвоздичных [1-4]. Изучение ряда видов рода Silene L. [4], показало, что все исследованные растения содержат флавоноиды группы флавона: виценин и его ротационные изомеры, изовитексин, ориентин, гомоориентин и их 8-α, 6-α, и 6-β изомеры, изосапонарин, адонивернит, сапонаретин, витексин и их изомеры.

По всей вероятности, вторичные метаболиты экдистероиды и флавоноиды обуславливают широкий спектр биологической активности экстрактов и комплексов исследованных видов. Ранее установлено, что экстракты и экдистероид 20-гидроксиксиздон Lychnis chalcedonica ограничивают спонтанную агрегацию
эритроцитов, а также остроту проявления синдрома повышенной вязкости крови при ишемии мозга у крыс более эффективно, в сравнении с эталоном пентоксифиллином [5, 6]. Показано, что экстракт Lychnis chalcedonica, проявляет фунгистатическое действие в отношении поверхностных дерматофитов более эффективно, в сравнении с эталонами гризеофульвином, нистатином, нитрофунгином [5]. Выявлена радиопротекторная активность его экстрактов и 20-гидроксиэкдизона при облучении белых мышей [5], противоопухолевое действие экстрактов Lychnis chalcedonica и S. viridiflora и S. colphophylla, снижающего токсическое действие циклофосфана и увеличивающего его антиметастатическую активность [7]. Экстракты Silene использовали в качестве компонентов сборов, проявляющих обезболивающую, противоотечную, противовоспалительную, ранозаживляющую и др. активности [1]. Установлено, что комплекс флавоноидов Lychnis chalcedonica обладает противоазвездневой, гастропротекторной, анальгетической и противовоспалительной активностью [8-11].

Комплексы флавоноидов выделены путем селективной экстракции н-бутиловым спиртом из концентрированного этанольного экстракта. В последующем комплексы флавоноидов подвергали очистке системами органических растворителей. Идентификация комплексов и индивидуальных фенольных соединений, выделенных из надземной части растений, проведена методами ВЭЖХ и УФ-спектроскопии. ВЭЖХ-анализ в образцах растений выполнен на жидкостном хроматографе «Agilent 1200» (Agilent Technologies, США) с диодно-матричным детектором, автосамплером и программным обеспечением
обработки хроматографических данных ChemStation. Разделение проведено на колонках Zorbax SB-C18, 4.6x150 мм, 5 мкм. Подвижная фаза: метанол – 0.1% раствор ортофосфорной кислоты (31:69). Скорость потока элюента 0.25 мл/мин или 1 мл/мин в зависимости от типа колонки. Температура колонки 26 ºС. Объем вводимой пробы 10 мкл. Использовали аналитические длины волн – 254, 270, 290, 340, 360 и 370 нм.

Таблица 1.

<table>
<thead>
<tr>
<th>№ №</th>
<th>Виды</th>
<th>Флавоноиды</th>
<th>Максимумы поглощения, нм</th>
<th>Время удерживания, мин</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lychnis chalcedonica</td>
<td>виценин</td>
<td>270, 330</td>
<td>8,76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>витексин</td>
<td>270, 340</td>
<td>12,54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>неовитексин</td>
<td>271, 335</td>
<td>13,56</td>
</tr>
<tr>
<td>2</td>
<td>Silene roemeri</td>
<td>виценин</td>
<td>270, 330</td>
<td>8,60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>неовитексин</td>
<td>271, 335</td>
<td>13,32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>изовитексин</td>
<td>270, 335</td>
<td>16,43</td>
</tr>
<tr>
<td>3</td>
<td>Silene sendtneri</td>
<td>виценин</td>
<td>270, 330</td>
<td>8,27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>неовитексин</td>
<td>271, 335</td>
<td>12,91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>изовитексин</td>
<td>270, 335</td>
<td>15,94</td>
</tr>
<tr>
<td>4</td>
<td>Silene frivaldszkyana</td>
<td>виценин</td>
<td>270, 330</td>
<td>8,45</td>
</tr>
<tr>
<td>5</td>
<td>Silene colpophylla</td>
<td>виценин</td>
<td>270, 330</td>
<td>8,20</td>
</tr>
<tr>
<td>6</td>
<td>Silene caramanica</td>
<td>виценин</td>
<td>270, 330</td>
<td>8,51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>неовитексин</td>
<td>271, 335</td>
<td>13,11</td>
</tr>
<tr>
<td>7</td>
<td>Silene gigantea</td>
<td>витексин</td>
<td>270, 340</td>
<td>11,3</td>
</tr>
<tr>
<td>8</td>
<td>Silene melzheimeri</td>
<td>виценин</td>
<td>270, 330</td>
<td>8,44</td>
</tr>
<tr>
<td>9</td>
<td>Silene radicosa</td>
<td>виценин</td>
<td>270, 330</td>
<td>8,16</td>
</tr>
<tr>
<td>10</td>
<td>Silene suecica</td>
<td>виценин</td>
<td>270, 330</td>
<td>8,40</td>
</tr>
<tr>
<td>11</td>
<td>S. viridiflora</td>
<td>виценин</td>
<td>270, 330</td>
<td>8,01</td>
</tr>
</tbody>
</table>

Согласно экспериментальным данным (табл.) в исследованных видах родов *Lychnis* и *Silene* обнаружен виценин, за исключением *Silene gigantea*, в *Lychnis chalcedonica* – витексин, неовитексин, в *S. roemeri* и *S. sendtneri* неовитексин изовитексин, *S. gigantea* - витексин.
Список литературы

1. Дармограй В.Н. Фармакогностическое изучение некоторых видов семейства гвоздичных и перспективы использования их в медицинской практике: Дисс. ... д-ра фармац. наук в форме науч. докл. / В.Н. Дармограй. – Рязань, 1996. – 92 с.

2. Дармограй С. В. Фармакогностическое изучение травы волдырника ягодного (Cucubalus baccifer L.) и мягковолосника водяного (Myosoton aquaticum (L.) Moench, Дисс....канд. фармац. Наук. Ярославль, 2013.

10. Зуева Е.П., Суслов Н.И., Поветьева Т.Н., Зибарева Л.Н. и др. Средство, обладающее противовоспалительным и анальгетическим действием. Патент № 2629607. 30.08.2017 Бюл. 25.

From ethanol extracts of 11 species of the family Caryophyllaceae
Lychnis chalcedonica, Silene roemeri, S. sendtneri, S. frivaldszkyana, S. colpophylla, S. caramanica, S. gigantea, S. melzheimeri, S. radicosa, S. suecica, S. viridiflora, introduced in the Siberian Botanical garden of Tomsk state University, complexes and individual C-glycosides have been identified. Some flavonoids - vicenin, neovitexin, isovitexin were identified by high performance liquid chromatography. The spectrum of biological activities of flavonoid complexes of some plant Caryophyllaceae species is analyzed.
антиоксидантную активность фенольных соединений сафлора красильного и их рострегулирующую способность. Кроме того в данной работе, приведены данные по антимикробному и фитотоксичекому действиям экстрактов, что позволяет рекомендовать их в качестве биопестицидов для органического сельского хозяйства.

Проведенный нами в течение трех лет (2015-2017 гг.) мониторинг накопления вторичных метаболитов в различных частях растения, культивируемого на экспериментальных участках института, позволил выявить следующие закономерности. Общее содержание фенольных соединений в семенах, листьях, и цветах варьирует в зависимости от условий культивирования (времени посева – осень или весна; климатических условий сезона; других абиотических (радиации), а также биотических факторов). Так, общее содержание фенольных соединений в листьях сафлора в период его массового цветения варьирует от 2,2 до 3,1 мг/г, а в лепестках от 4,0 до 11,23 мг/г свежего веса. При этом, максимальное содержание полифенолов всегда накапливается в лепестках сафлора красильного, за ними следуют нативные семена, затем
обезжиренные семена, листья и каллус. Несмотря на то, что выявленное содержание фенолов может отличаться по значению в 1,5-2,0 раза, эта последовательность сохраняется. Методом высокоэффективной жидкостной хроматографии нами ранее было показано [10], что фенольный состав листьев и лепестков состоит из группы flavonовых и flavonоловых гликозидов. Как минимум семь пиков на хроматограмах были отнесены к flavonовым и пять – к flavonоловым гликозидам, сумму которых пересчитывали на лютеолин-7-O-гликозид и кверцетин-7-O-гликозид, соответственно. Установлено, что листья в период интенсивного роста растения содержали в 3 раза больше flavonовых и flavonоловых гликозидов, чем листья в период цветения. Благодаря высокому содержанию фенольных компонентов, сафлор красильный обладает широким спектром биологической активности.

Антиоксидантная активность экстрактов из каллуса, семян, листьев и лепестков была определена двумя методами, по способности связывать свободные пероксил и 2,2-дифенил-1-пикрилгидразил радикалы [11,12]. Последовательность убывания антиоксидантной активности по отношению к пероксил радикалам, пересчитанная в эквиваленте галловой кислоты (µM/г сухого остатка экстракта), может быть представлена в следующем виде: нативные семена (75,06 - 94,68) > обезжиренные семена (54,17 - 83,93) > листья (57,50 - 62,25) > цветы (50,65 - 57,65) > каллус (45,44 - 49,51). Для сравнения приведем данные антиоксидантной активности семян пажитника (17,95 µM/g) и расторопши (180,95 µM/g) [13]. Было установлено [12], что на антиоксидантную активность растительных экстрактов также влияют абиотические факторы, в частности время посева (осень, весна) и предварительная обработка семян гамма радиацией.

Рострегулирующая способность экстрактов была протестирована в лабораторных условиях [14]. Сумму flavonoidных соединений выделили из листьев сафлора красильного и изучали их влияние на энергию прорастания, общую всхожесть, длину корешков и проростков на примере семян овощных культур (томатов, огурцов) с низкой жизнеспособностью. Показано, что водные растворы flavonoidов из листьев сафлора в концентрации 0,01% оказывают стимулирующее действие на ростовые процессы начального периода.
Антимикробное действие масляного и спиртового экстрактов из цветов сафлора выявлено по отношению к кишечной палочке, золотистому стафиллококу [15], к бактериям Bacillus cereus и Pseudomonas aeruginosa, дрожжеподобным грибам Candida albicans и Aspergillus carbonarius [16].

Фитотоксический эффект желтого красителя в виде 5% водного экстракта из лепестков сафлора был показан при прорастании семян рапса [17]. Общее содержание фенольных соединений в экстракте (в пересчете на галловую кислоту) было 53 мг/г, что оказывало ингибириующий эффект равный 19%. Показано, что фитотоксический эффект связан с содержанием фенольных соединений. Содержание фенольных соединений имело отрицательную корреляцию с энергией прорастания семян, общей всхожестью, длиной проростков и корешков, свежей и сухой массой проростков и корешков, а также вызывало в саженцах рапса снижение ферментной активности липаз и содержания фотосинтетических пигментов (хлорофилла и каротиноидов) [17].

Таким образом, в зависимости от концентрации фенольных соединений, изолированных из сафлора красильного можно получить различный биологический эффект. При этом необходимо отметить, что экстракты с антимикробным и фитотоксическим действием можно рекомендовать для использования в органическом сельском хозяйстве, в качестве натURALНЫХ средств защиты растений.

Работа была выполнена при финансовой поддержке проекта 6097 (STCU) и проекта FarmersEduca (Visegrad fund).

Список литературы
http://dx.doi.org/10.1155/2014/762397

BIOLOGICAL ACTIVITY OF SAFFLOWER PHENOLIC COMPOUNDS

Ivanova R. A.
Institute of Genetics, Physiology and Plant Protection, Chisinau, Republic of Moldova, ralivanova@yahoo.com

The published data and obtained by our researches regarding the content of phenolic compounds in various parts of safflower as well as the results of testing their biological activity are summarized in this article. The spectrum of biological activity of extracts from safflower is quite wide, diverse and, in our opinion, still needs to be studied. We investigated the antioxidant activity of the phenolic compounds of safflower and their growth regulatory ability. In addition, in this paper it was described the antimicrobial and phytotoxic effects of safflower extracts, which allow them to be recommended as biopesticides for organic farming.

ИССЛЕДОВАНИЕ ФЛАВОНОИДОВ КОРНЕЙ SCUTELLARIA INTERMEDIA POPOV

Каримов А.М., Попков А.С., Остроушко Ю.В., Турсаева Р.И., Ботиров Э.Х.

1 БУ ВО Ханты-Мансийского автономного округа – Югры Сургутский государственный университет, Сургут, Россия, botuirov-nepi@mail.ru
2 Наманганский государственный университет, Наманган, Узбекистан, abdurashidka@mail.ru

Аннотация. Изучали состав и содержание флавонOIDов в корнях растения Scutellaria intermedia Popov (шлемник средний), произрастающего на каменистых, щебнистых склонах, скалах и галечниках Западного Тянь-Шаня и Памиро-Алая. Приводятся данные идентифицированных веществ.

Растения рода Scutellaria L. – шлемник (семейство Lamiaceae) на земном шаре представлены 360 видами [1-3]. Они
используются в научной и народной медицине и являются богатым источником уникальных биологически активных соединений, обладающих ценными фармакологическими свойствами [3-6].

С целью поиска новых биологически активных соединений нами проводятся систематическое исследование flavonoидов растений данного рода [7-10]. Объектом настоящего исследования явились корни растения Scutellaria intermedia Роров (шлемник средний), произрастающей на каменистых, щебнистых склонах, скалах и галечниках Западного Тянь-Шань и Памиро-Алай [1].

Ранее нами из надземной части этого растения были выделены 11 flavоноидов, в том числе 2 новых гликозида - 5,7,2'-тригидроксифлавон 2'-O-β-D-глюкуронопиранозид и скутевулин 2'-O-β-D-глюкуронопиранозид [9,10]. Продолжая данное исследование, из этилацетатной и н-бутанольной фракций 80%-ного спиртового экстракта корней выделили flavоноиды 1-9.

Flavоноиды 1-4 на основании изучения данных спектральных данных и результатов непосредственного сравнения с подлинными образцами идентифицировали с вогонином (5,7-дигидрокси-8-метоксифлавоном), 5,6-дигидрокси-7-метоксифлавоном, гиспидулином (5,7,4'-тригидроксифлавоном) и лютеолином (5,7,3'4'-тетрагидроксифлавоном) соответственно [4-7, 11,12].

Пиностробин (5). C_{16}H_{14}O_{4}, т. пл. 123-125 °C, масс-спектр (m/z, %): M+ 270 (98 %), 193 (72), 167 (18), 166 (62), 149 (100), 105 (62). УФ-спектр в этаноле [λ_{max} 290, 325 (пл.) нм] характерен для 5,7-дизамещенных flavанов [4]. Flavановую природу вещества 2 подтверждается данными спектра ^1H-ЯМР (DMSO-d_{6}, δ, м.д., J/Гц), где проявляются сигналы протонов кольца С при 5.40 (1H, dd, J = 13.0, 3.0 Hz, H-2), 3.06 (1H, dd, J = 16.6, 13.0 Hz, H-3_{акс.}), 2.85 м.д. (1H, dd, J = 16.6, 3.0 Hz, H-3_{экв.}), а также сигналы протонов при 3.95 (3H, с, -OCH_{3}), 6.14 (1H, д, J = 1.8 Hz, H-8), 6.55 (1H, д, J = 1.8 Hz, H-6), 7.39 (3H, м, H-3', 4', 5'), 7.46 (2H, dd, J = 7.8, 1.8 Hz, H-2', 6'). 12, 34 м.д. (1H, с, 5-OH). Приведенные данные показывают, что вещество 2 является 5-гидрокси-7-метоксифлаваноном (пиностробином). Это подтверждено изучением спектра ^13C- ЯМР flavоноида [13].

Дигидрогиспидулин (6). C_{16}H_{14}O_{6}, ESI-MS m/z 303.3 [M+H]^+, т. пл. 228-230 °C, УФ-спектр (λ_{max}, этанол, нм): 293, 331;...
+CH₃COONa 294,330; +NaOH 247,329; +AlCl₃ 225,300, 316,394. ¹H-ЯМР (DMSO-d₆, δ, м.д., J/Гц): 7.30 (2Н, д, J=8.6, Н-2', 6'c), 6.78 (2Н, д, J=8.6, Н-3' 5'), 5.90 (1Н, с, Н-8), 5.40 (1Н, дд, J=13.0, 3.0, Н-2), 3.64 (3Н, с, 6-OCH₃), 3.23 (1Н, дд, J=16.8, 13.0, Н-3а), 2.64 (1Н, дд, J=16.8, 3.0, Н-3с) ¹С-ЯМР (100 МГц, DMSO-d₆, δ, м.д.): 197.1 (C-4), 159.5 (C-9), 158.0 (C-7), 157.7 (C-4'), 155.1 (C-5), 129 (C-6), 128.9 (C-1'), 128.3 (C-2', 6'), 115.1 (C-3', 5'), 101.8 (C-10), 95.0 (C-8), 78.5 (C-2), 60.0 (-OCH₃), 42.0 (C-3). ESI-MS m/z 303.3 [M+H]+. [3-6].

На основании данных УФ-, ¹H-, ¹С- ЯМР спектров соединение 6 идентифицировано как 5,7,4'-тригидрокси-6-метоксифлаванон [4,5].

Дигидроскутеллареин (7). C₁₅H₁₂O₆, ESI-MS m/z 289.3 [M+H]+, т. пл. 221-223 °С. УФ-спектр (λₘₚ, этанол, нм): 295, 360; +CH₃COONa 270,330; +NaOH 320,325. ¹H-ЯМР (DMSO-d₆, δ, м.д., J/Гц): 7.30 (2Н, д, J=8.6, Н-2', 6'c), 6.78 (2Н, д, J=8.6, Н-3' 5'), 5.92 (1Н, с, Н-8), 5.37 (1Н, дд, J=12.6, 3.0, Н-2), 3.21 (1Н, дд, J=17.2, 12.6, Н-3а), 2.65 (1Н, дд, J=17.2, 3.0, Н-3с). ¹С-ЯМР (100 МГц, DMSO-d₆, δ, м.д.): 196.9 (C-4), 157.7 (C-4'), 155.8 (C-7), 155.0 (C-5), 150.2 (C-9), 129.1 (C-1'), 128.9 (C-2', 6'), 128.2 (C-6), 115.1 (C-3', 5'), 95.2 (C-10), 95.0 (C-8), 78.4 (C-2), 42.0 (C-3).

Изучением спектральных данных и сравнением физико-химических свойств с литературными сведениями вещество 7 идентифицировано как 5,6,7,4'-тетрагидрокси-6-метоксифлаванон [4-6].

Вогонин 7-О-β-D-этилглюкуронид (8). C₂₄H₂₄O₁₁, λₘₚ, этанол, 276, 348 нм. В его ¹H ЯМР-спектре (DMSO-d₆, δ, м.д., J/Гц) присутствуют сигналы протонов 5,7,8-тризамещенного флавона [6.71 м.д. (1Н, с, Н-3), 7.04 м.д. (1Н, с, Н-6), 7.61 м.д. (3Н, м, Н-3', 4', 5'), 8.05 м.д. (2Н, м, Н-2', 6')], аномерного протона углеводной
части [5.59 м.д. (1Н, д, J=7.2, H-1")], -O-CH2-CH3 [1,16 м.д. (т, 7,2 Гц, -CH3)], 4,13 м.д. (кв, 7,2 Гц, -OCH2-)>, одной метоксильной и желатной 5-OH групп при 3.90 (3H, c, 8-OCH3) и 12.55 м.д. (1H, c) соответственно.

При кислотном гидролизе соединения 8 получили вогонин и D-глюкурон-новую кислоту. В спектре 13C-ЯМР флавоноида 8 присутствуют сигналы атомов углерода остатка этилглюкуроновой кислоты при 99.7 (С-1"), 72.9 (С-2"), 75.6 (С-3"), 71.2 (С-4"), 75.2 (С-5"), 168.6 (С-6"), 61.4 (OCH2-), 13.9 м.д. (-CH3)[14,15].

Изложенные данные показывают, что флавоноид 8 является 7-O-β-D-этилглюкуронидом вогонина [15]. Это подтверждено получением вогонин-7-O-β-D-глюкуронида [10] в результате гидролиза флавоноида 4 0.5%-ным раствором гидроксида натрия.

Байкалеин-7-O-β-D-этилглюкуронид (9). C23H22O11, λ max 245, 277, 313 нм. УФ-спектр характерен для незамещенных в кольце В производных флавона [4,5]. В 1Н ЯМР-спектре (DMСO-d6, δ, м.д., J/Гц) присутствуют сигналы протонов 5,6,7-тризамещенного флавона [6.98 м.д. (1Н, с, N-3), 7.09 м.д. (1Н, с, N-8), 7.63 м.д. (3Н, м, N-3", 4", 5")], аномерного протона углеводной части [5.24 м.д. (1Н, д, J=7.1, H-1"), O-CH2-CH3 группы [1,19 м.д. (т, 7,2 Гц, -CH3)]; 4,13 м.д. кв, 7,2 Гц, -OCH2-)] и желатной 5-OH группы при 12.56 м.д. (1Н, с, 5-OH). Наличие O-CH2CH3 группы подтверждено также данными спектра 13C ЯМР-спектре (DМСO-d6), где присутствуют сигналы атомов углерода остатка O-этилглюкуроновой кислоты при 14,4 (-CH3). 61,2 (CH2O), 100,5 (С-1"), 73,2 (С-2"), 75,8 (С-3"), 71,7 (С-4") , 75,5 (С-5") , 169,0 (С-6") м.д. [14,15].

В результате кислотного гидролиза соединения 9 получили байкалеин (5,6,7-тригидроксифлавон) и D-глюкуроновую кислоту. Изложенные данные позволяют предполагать, что флавоноид 9 является байкалеин-7-O-β-D-этилглюкуронидом [15]. Это подтверждено получением байкалеин-7-O-β-D-глюкуронида [10] при гидролизе флавоноида 9 0.5%-ным раствором гидроксида натрия.

Метил- и этилглюкурониды флавоноидов часто встречаются в растениях рода Scutellaria [5,6,14].

Вогонин обладает противовоспалительным, антивирусным, противовоспалительным, антитоксическим, дей-ствием [12], установленна противовоспалительная, противовоспалительная...
активность лютеолина [16] и противолейкемическая активность пиностробина [16].

Список литературы:
13. H. D. Smolarz, E. Mendyk, A. Bogucka-Kocka, J. Kocki. Pinostrobin -

A STUDY OF THE FLAVONOIDS OF THE ROOTS OF SCUTELLARIA INTERMEDIA POPOV

Karimov A.M. 2, Popkov A.S. 1, Ostroushko Y.V. 1, Turtaeva R.I. 1, Botirov E.Kh. 1

1Surgut State University, Surgut, Russia, botirov-nepi@mail.ru
2Namangan State University, Namangan, (Republic of Uzbekistan)

From the roots of the *Scutellaria intermedia* Popov of the Lamiaceae family flavonoids wogonin, 5,8-dihydroxy-7-methoxylflavon, hispidulin, pinostrobin, dihydrohispidulin, dihydroscutellarein, luteolin, wogonin 7-O-β-D-ethylglucuronid and baicalein 7-O-β-D-ethylglucuronid were first isolated. The isolated flavonoids were identified based on the results of chemical transformations, IR, UV, 1H, 13C-NMR and mass spectra, direct comparison with samples of flavonoids isolated from other species of *Scutellaria* L.

ЭКЗОМЕТАБОЛИТЫ ЛИСТЬЕВ ПРЕДСТАВИТЕЛЕЙ РОДА BEGONIA И ИХ АНТИМИКРОБНЫЕ СВОЙСТВА

Карпова Е.А., Красников А.А., Фершалова Т.Д.
ФГБУН Центральный сибирский ботанический сад СО РАН,
Новосибирск, Россия, karyevg@mail.ru

Аннотация. Изучена анатомия и морфология трихом листьев *Begonia grandis* Dryand. методами световой и сканирующей электронной микроскопии. Выявлено 2 типа трихом: головчатые с хорошо выраженной ножкой и
многоклеточные удлиненно-пирамидальные. Транспортировка флавоноидов из внутренних структур листа к трихомам происходит по сосудам. Проведена экстракция соединений поверхности листьев ацетоном и этанолом. С помощью метода ВЭЖХ показано, что основными компонентами экссудатов у B. grandis, B. fischeri Schrank и B. malabarica Lam. являются гликозиды флавоноидов и фенолкарбоновые кислоты, доминирующие и в суммарном составе фенольных соединений листьев. Число агликонов в ацетоновых экстрактах экссудатов листьев (ЭС) было выше, чем в этанольных. Выявлены определенные связи между составом фенольных соединений и антимикробными свойствами экстрактов ЭС.

Актуальность изучения экзометаболитов — экссудативных соединений листьев (ЭС), определяется, в первую очередь, их ролью в адаптации растений к условиям произрастания. Для человека они важны также как составляющие антимикробного действия. Состав этих соединений подробно изучен у представителей семейств Asteraceae, Boraginaceae, Lamiaceae и Solanaceae [1]. Однако многие вопросы биологического разнообразия, синтеза и транспорта экзометаболитов в настоящее время не решены. Среди ЭС обнаружены, главным образом, агликоны флавонов, флавонолов и флаванонов, их гидроксипродукты и метиловые эфиры. Выявлены также катехины, дигидрохалконы, гидроксикоричные кислоты и их производные, гликозиды флавоноидов [2-4]. Данные по количественной оценке процессов секреции пока немногочисленны [3-5].

Продукты секреции в обширном семействе Begoniaceae до сих пор не изучались, несмотря на растущий интерес к его представителям как источникам биологически активных соединений. Целью нашей работы является изучение секреторных структур и продуктов секреции у представителей рода Begonia.

Для исследования были использованы образцы листьев растений трех видов различного географического происхождения и таксономической принадлежности: B. grandis Dryand. (секция Diploclinium), B. fischeri Schrank (секция Begonia) и B. malabarica Lam. (секция Haagea). Получены ацетоновый и этанольный экстракты ЭС листьев. Определение состава и содержания
флавоноидов листьев проводили методом ВЭЖХ с помощью хроматографа «Agilent 1200» с диодноматричным детектором. Антимикробную активность ЭС оценивали методом стерильных дисков. Для исследования анатомии и морфологии листьев B. grandis использовали микроскоп Primo Star iLED со светодиодным флуоресцентным осветителем (длина волны 470 нм) с цветной цифровой камерой высокого разрешения AxioCam MRc 5 (5 мегапиксельная матрица) и с программой AxioVision 4.8 для получения, обработки и анализа изображений. Морфология листа и отдельных его структур изучалась с помощью сканирующего электронного микроскопа Hitachi TM-1000 с оригинальным программным обеспечением.

Таблица 1.
Содержание компонентов и фракций в ацетоновом (A) и этанольном (E) экстрактах экссудативных соединений листьев исследованных видов Begonia (мкг/г абсолютно сухой массы)

<table>
<thead>
<tr>
<th>Основные компоненты</th>
<th>Общее содержание фенольных соединений,</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>G</td>
<td>Кверцетин 8,1±0,8 (0,02±0,002)</td>
</tr>
<tr>
<td></td>
<td>18,4±13,2 (0,08±0,02)</td>
</tr>
<tr>
<td>F</td>
<td>Изокверцитрин 3,6±0,5 (0,16±0,03)</td>
</tr>
<tr>
<td></td>
<td>18,72±3,11 (0,16±0,05)</td>
</tr>
<tr>
<td>M</td>
<td>Компонент 1 18,2 ± 1,3 (-)</td>
</tr>
<tr>
<td></td>
<td>62,5±7,6 (1,0±0,1)</td>
</tr>
</tbody>
</table>

Общее содержание флавоноидов

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>10,6±1,1 (0,04±0,01)</td>
<td>3511,4±205,8 (12,5±1,3)</td>
</tr>
<tr>
<td>F</td>
<td>11,73±2,7 (0,27±0,06)</td>
<td>212,8±5,9 (4,81±0,13)</td>
</tr>
<tr>
<td>M</td>
<td>13,5±1,9 (2,1±0,3)</td>
<td>4,0±0,3 (0,6±0,04)</td>
</tr>
</tbody>
</table>

Условные обозначения: G – Begonia grandis, F – B. fischeri, M – B. malabarica; в скобках указана доля компонента в его общем содержании в листьях (%); прочерк – отсутствие расчета для
неидентифицированных компонентов. Компонент 1 – \(t_r = 1.5\) мин, \(\lambda_{\text{max}} = 270\) нм.

На листьях B. grandis были выявлены железистые волоски двух типов: 1) головчатые, представленные головкой (20-30 мкм диаметром) и ножкой (30 мкм длиной); 2) многоклеточные удлиненно-пирамидальные, длиной 400-500 мкм; диаметром у основания 200-400 мкм, в середине – 50-100 мкм. Эти железки иногда расположены сериями по 2-5. Волоски обоих типов содержали флавоноиды, что обнаруживалось по зеленой флуоресценции при окраске с реактивом Вильсона. Флуоресценция наблюдалась также и в сосудах листьев.

Состав ЭС трех исследованных видов был близким по общему спектру, но различался по основным компонентам (таблица 1).

Содержание фенольных соединений в этанольных экстрактах ЭС B. grandis и B. fischeri было в несколько раз выше, чем в ацетоновых. Ацетоновые экстракты ЭС содержали большее число агликонов, чем этанольные. Некоторые компоненты (авикулярин, кемпферол) были найдены только в экссудатах. Этанольный экстракт ЭС листьев B. grandis характеризовался максимальным содержанием фенольных соединений и флавоноидов. В экссудатах листьев B. malabarica доминировали фенолкарбоновые кислоты, в значительном количестве был обнаружен лютеолин и «необычные» флавоноиды.

У B. grandis и B. malabarica характер антимикробных свойств ацетоновых и этанольных экстрактов различался. Ацетоновый экстракт B. grandis не проявил активности в отношении какого-либо из изученных тест-штаммов, а этанольный – ингибировал рост двух тест-микроорганизмов: Staphylococcus aureus и Candida albicans. У B. malabarica оба экстракта, ацетоновый и этанольный, проявили активность в отношении тест-штамма S. aureus. При этом ацетоновый экстракт также ингибировал рост Bacillus subtilis, а этанольный экстракт – рост Escherichia coli. У B. fischeri действие ацетонового и этанольного экстрактов было одинаковым, в отношении только одного микроорганизма B. subtilis.

Таким образом, исследование анатомического строения листьев B. grandis показало наличие признаков транспорта флавоноидов из внутренних структур листа по сосудам к трихомам двух типов. Основными компонентами экссудатов
листьев исследованных видов являются гликозиды флавоноидов и фенолкарбоновые кислоты, превалирующие и в сумме фенольных соединений листьев. Выявлены определенные связи между составом фенольных соединений и антимикробными свойствами экстрактов ЭС.

Работа выполнена в рамках государственного задания Центрального сибирского ботанического сада СО РАН «Оценка морфогенетического потенциала популяций растений Северной Азии экспериментальными методами» № АААА-А17-117012610051-5 с частичной поддержкой гранта РФФИ № 17-44-540601\17 «Оздоровление воздушной среды помещений с помощью экзометаболитов растений из рода Begonia, обладающих выраженной антимикробной активностью». При подготовке публикации использовались материалы биоресурсной научной коллекции ЦСБС СО РАН «Коллекции живых растений в открытом и закрытом грунте», УНУ № USU 440534.

Список литературы

EXOMETABOLITES OF THE LEAVES OF REPRESENTATIVES OF THE GENUS BEGONIA AND ITS ANTIMICROBIAL PROPERTIES
Karpova E.A., Krasnikov A.A., Fershalova T.D.
Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences, Russia, Novosibirsk, karyevg@mail.ru
Anatomy and trichome morphology of *Begonia grandis* Dryander leaves was studied using light and scanning electron microscopy. Two trichome types were found: capitates with well-defined pedicle and multicellular elongate-pyramidal. Flavonoids transport from the internal structures of the leaf to the trichomes occurs through the vessels. Extraction of leaf surface compounds with acetone and ethanol was carried out. Using the HPLC showed that the main constituents of the exudates of *B. grandis*, *B. fischeri* Schrank, and *B. malabarica* Lam. are glycosides of flavonoids and phenolic acids, predominated also in the total phenolic compounds of the leaves. The number of aglycones in the acetone extracts of exudative compounds (ES) was higher than in the ethanol extracts. A definite relationship between the composition of phenolic compounds of ES extracts and their antimicrobial properties are revealed.

ФЕНОЛЬНЫЕ ВЕЩЕСТВА ТРАВЫ КОСМЕИ ДВАЖДЫПЕРИСТОЙ (COSMOS BIPINNATUS)

Копытcko Я.Ф.
ФГБНУ ВИЛАР, Москва, Россия, yanina@kopytko.ru

Аннотация. Космея дваждыперистая (Cosmos bipinnatus Cav., Asteraceae) - перспективное лекарственное растение по составу и содержанию фенольных веществ. Проведено качественное исследование фенольных компонентов в траве космеи методом двухмерной ТСХ в системах н-бутанол – вода - уксусная кислота (4:1:1) и этилацетат-муравьиная кислота (8:1:1), обнаружено 16-20 зон адсорбции, относящиеся к flavonoидам, фенолкарбоновым кислотам и халконам. Методом спектрофотометрии после реакции комплексобразования flavonoидов с алюминия хлоридом осуществлена количественная оценка суммы фенольных веществ в пересчете на лютеолин и абсолютно сухое сырье, которая составила 0,018-0,029%.

Космея дваждыперистая (Cosmos bipinnatus Cav., Asteraceae) широко культивируемое травянистое, однолетнее, декоративное и лекарственное растение. В традиционной медицине Латинской Америки, Азии, Африки космея используется при лечении различных заболеваний, таких как
желтуха, лихорадка, спленомегалия, малярия, заболевания желудка, головная боль, а также как инсектицидное средство [1-3]. Метанольные извлечения из цветков проявляют антиоксидантную активность и антигенотоксический эффект [4, 5]. Водно-метанольные экстракты обладают гепатозащитными свойствами [6]. Экстракт цветков космеи применяется в косметике для отбеливания (осветления) кожи [7], экстракт каллюсовой культуры Cosmos bipinnatus (Product Code AC-687; CAS Number 91722-51-9; ECHA Number 294-450-7) используют в производстве косметических средств в качестве антиоксиданта, смягчающего средства и средства для волос.

Cosmos bipinnatus оставила заметный след в истории исследования растительных фенолов. В 1935 году Т. Nakaoki из космеи был впервые выделен космосиин или 7-О-β-O-глюкопиранозид апигенина (5,7,4'-тригидроксифлавон-7-О-β-глюкопиранозид) [8, 9].

В различных частях трех садовых форм Cosmos bipinnatus, произрастающей в Японии, в 1974 г с помощью бумажной хроматографии и спектрофотометрии обнаружены космосиин, лютеолин-7-глюкуронид, хризоэриол-7-глюкуронид, кемпферол-3-галактозид (трифолин), кверцетин-3-глюкозид (изокверцетрин), кверцетин-3-глюкоглюкуронид (нелумбозид), цианидин-глюкогалактозид (кокоцианидин), бутеин (3,4,2',4'-тетраоксихалкон) кареопсин (бутеин-4'-глюкозид), кофейная и хлорогеновая кислоты [10].

В составе водно-метанольных извлечений из травы космеи дваждыперистой родом из Пакистана методом ВЭЖХ найдены галловая кислота, кверцетин, фенокарбоновые кислоты (кофейная, хлорогеновая, п-кумаровая, синапиновая). Среди этих соединений превалирует хлорогеновая кислота (10,98 ppm) [6]. Общее содержание флавоноидов в надземной части образцов Cosmos bipinnatus из Кореи составило 50.41 мг/г в пересчете на нарингенин [5].

Целью работы было оценить качественный и количественный состав фенольных веществ в водно-спиртовых извлечениях из образцов травы космеи перистой, заготовленных в августе 2017 году из биоколлекции ФГБНУ ВИЛАР и в Боровском районе Калужской обл. Присутствие фенольных веществ подтверждено методом ТСХ. Двухмерная хроматография осуществлялась на пластинках со слоем силикагеля TLC Silica gel 60 F254 (Merck) размером 20×20 см.
Хроматографию восходящим способом осуществляли сначала в системе n-бутанол – вода - уксусная кислота (4:1:1), второе хроматографирование в системе этилацетат-муравьинная кислота-вода (8:1:1). Обнаружение зон адсорбции в УФ-свете с длиной волны 365 нм до и после обработки дифенилборной кислоты 2-аминоэтиловый эфиром – полиэтиленгликолем 400. На хроматограмме спиртовое извлечение из травы обнаружено порядка 16-20 зон адсорбции желтого, голубого и фиолетового цвета, относящиеся к флавонOIDам, халконам и фенолкарбоновым кислотам.

Количественную оценку осуществляли по измерению оптической плотности продуктов реакции комплексообразования флавонOIDов с алюминия хлоридом. Полученный спектр имеет максимум поглощения при 401± 1 нм, который совпадает с таковым спектра комплекса лютеолина с алюминия хлоридом, по этому веществу проведен пересчет содержания суммы фенольных веществ. Методика количественного определения суммы флавонOIDов в пересчете на лютеолин в траве Cosmos bipinnatus: аналитическую пробу сырья измельчают до размера частиц, проходящих сквозь сито с отверстиями диаметром 2 мм. Около 1 г (точная навеска) измельченного сырья помещают в круглодонную колбу со шлифом вместимостью 250 мл, прибавляют 50 мл 70% этанола. Колбу взвешивают с погрешностью ±0,01 г, присоединяют к обратному холодильнику и нагревают на кипящей водяной бане в течение 1 ч. Затем колбу охлаждают до комнатной температуры и взвешивают, при необходимости доводят 70% этанолом до первоначальной массы. Содержимое колбы фильтруют через бумажный складчатый фильтр, отбрасывая первые 20 мл фильтрата (раствор A). В мерную колбу вместимостью 25 мл помещают 1 мл раствора A, 3 мл 2% раствора алюминия хлорида в 70% спирте, доводят 70% этанолом до метки. Через 40 минут измеряют оптическую плотность раствора на спектрофотометре в максимуме поглощения при длине волны 401±1 нм в кювете с толщиной слоя 10 мм. В качестве раствора сравнения используют раствор, состоящий из 1 мл извлечения, 1 капли разведенной уксусной кислоты и доведенный 70% этанолом до метки в мерной колбе на 25 мл.

Параллельно измеряют оптическую плотность 0,04% раствора стандартного образца лютеолина в 70% спирте, приготовленного аналогично испытуемому раствору.
Содержание суммы флавоноидов в пересчете на лютеолин на абсолютно сухое сырье в процентах (X) вычисляют по формуле:

\[X_{\%} = \frac{A \cdot m_0 \cdot 50 \cdot 25 \cdot 100 \cdot 100}{A_0 \cdot m \cdot 25 \cdot 25 \cdot (100 - w)} \]

где \(A_0 \) - оптическая плотность раствора СО лютеолина;
\(A \) - оптическая плотность испытуемого раствора;
\(a_0 \) - масса лютеолина в г,
\(a \) - масса сырья в г,
\(w \) - потеря в массе при высушивании сырья в процентах,
Содержание суммы флавоноидов в пересчете на лютеолин и на абсолютно сухое сырье составило в исследованных образцах сырья 0,018-0,029%.

Список литературы.

PHENOLIC COMPOUNDS OF COSMOS BIPINNATUS HERB
Kopytko Ya.F.
All-Russian Research Institute of Medicinal and Aromatic plants, Moscow, Russia, yanina@kopytko.ru

Garden cosmos (Cosmos bipinnatus Cav., Asteraceae) is a perspective medicinal plant on composition and content of phenolic substances. A qualitative study of phenolic components in herba was carried out by the 2D TLC in n-butanol-water-acetic acid (4:1:1) and ethyl acetate-formic acid-water (8:1:1), as a result of which 16-20 adsorption zones (flavonoids, phenolic acid, and chalkons) were detected. Spectrophotometric assays based on aluminum complex formation used for determination of total flavonoid content was used to quantify the amount of phenolic substances in recalculation for luteolin, and absolutely dry raw materials, which amounted to 0.018-0.029%.

ИССЛЕДОВАНИЕ СОСТАВА ФЕНОЛЬНЫХ ВЕЩЕСТВ ТРАВЫ KNAUTIA ARVENSIS МЕТОДОМ ВЭЖХ

Копытько Я.Ф., Даргаева Т.Д.
ФГБНУ ВИЛАР, Москва, Россия, yanina@kopytko.ru

Аннотация. Проведено качественное и количественное исследование фенольных компонентов в спиртовом извлечении из травы короставника полевого (Knautia arvensis L.) методом ВЭЖХ на колонке Kromasil C18 5мкм 25мм ×4.6мм, элюент метанол - вода - фосфорная кислота (400:600:5). Детектирование в УФ свете при 254 нм. Выявлено наличие четырнадцати пиков веществ на хроматограмме, девять из которых совпадали по времени удерживания с таковыми o-кумаровой, галловой, неохлорогеновой, хлорогеновой, кофейной, изоферуловой, розмариновой кислот, гиперозида и кемпеберола.
Наибольшую долю в совокупности найденных веществ в пробе, определенной методом нормализации пиков, занимают неохлорогеновая и хлорогеновая кислоты (9,99 и 19,19% соответственно). Содержание хлорогеновой кислоты в образцах лекарственного растительного сырья 0,31-0,52%.

Короставник полевой (Knautia arvensis L.) сем. Ворсянковые (Dipsacaceae) является перспективным источником лекарственного растительного сырья по природным ресурсам, возможности культивирования и по значительному содержанию веществ фенольной группы.

Трава короставника в виде настоев, отваров и спиртовой настойки применяется в традиционной медицине как кровоочистительное и для лечения кожных заболеваний, а также как противопаразитарное средство в ветеринарии [1,2]. Выявлена антипротеолитическая, противовоспалительная, отхаркивающая, антимикробная, диуретическая, анальгезирующая и антиоксидантная активность экстрактов травы Knautia arvensis [3, 4].

Химический состав короставника изучен недостаточно. Установлено, что в траве Knautia arvensis содержатся flavonовые гликозиды, фенолкарбоновые кислоты (криттохлорогеновая, хлорогеновая, 2-O-транс-кофеил-гидролимонная, 3,5-О-дикофеил-хинная, 4,5-О-дикофеил-хинная), изовитексин 7-β-D-глюкопиранозид, 7,4′-дигидрокси-5-метоксифлавон-6-C-β-D-глюкопиранозид, терпеноиды, сапонины [3-5].

Целью работы было оценить качественный и количественный состав фенольных веществ в образцах травы короставника, заготовленной в период цветения в 2016 году из биоколлекции ФГБНУ ВИЛАР.

В качестве исследуемого раствора служило спиртоводное извлечение. Около 5 г (точная навеска) лекарственного растительного сырья, измельченного до размера частиц, проходящих через сито 7 мм, помещали в коническую колбу, прибавляли 100 мл спирта этилового 70% и нагревали с обратным холодильником на кипящей водяной бане в течение 1 ч. Затем фильтровали в мерную колбу вместимостью 100 мл, доводили до метки спиртом этиловым 70% до метки и перемешивали.

Исследование состава фенольных соединений
осуществлено методом ВЭЖХ на хроматографе, снабженном изократическим насосом Gilson 305 (Gilson S.A., Франция), инжектором Rheodyne 7125 (Rheodyne, США), колонкой Kromasil C18 5мкм 25мм ×4.6мм. Подвижная фаза метанол - вода - фосфорная кислота концентрированная (400:600:5). Скорость подачи элюента 0,8 мл/мин. Объём пробы – 20 мкл. Детектирование в УФ свете при длине волны 254 нм, обработка результатов исследования с помощью программы Мультихром для «Windows». В качестве стандартных растворов применяли 5% растворы аутентичных веществ (рутина, кверцетина, лютеолина, лютеолин-7-гликозида, галловой кислоты, кофейной кислоты, хлорогеновой кислоты, цикориевой кислоты, коричной кислоты, о-кумаровой, эпигалокатехингаллата, гиперозида, геспередина, апигенина, ферулоевой кислоты, умбеллиферона, эпикатехина, эскулетина, кумарина, дигидрокверцетина, кампферола, метоксикумарина) в этиловом спирте.

Таблица 1.
Содержание фенольных компонентов в спиртовом извлечении из травы Knautia arvensis

<table>
<thead>
<tr>
<th>№</th>
<th>Название вещества</th>
<th>Время, мин</th>
<th>Площадь пика</th>
<th>Содержание, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>О-Кумаровая кислота</td>
<td>3.192</td>
<td>4569.59</td>
<td>6.58</td>
</tr>
<tr>
<td>2</td>
<td>Галловая кислота</td>
<td>3.465</td>
<td>1571.14</td>
<td>2.26</td>
</tr>
<tr>
<td>3</td>
<td>Неизвестное вещество</td>
<td>3.784</td>
<td>6752.09</td>
<td>9.73</td>
</tr>
<tr>
<td>4</td>
<td>Неохлорогеновая кислота</td>
<td>4.701</td>
<td>6932.33</td>
<td>9.99</td>
</tr>
<tr>
<td>5</td>
<td>Хлорогеновая кислота</td>
<td>5.327</td>
<td>13322.20</td>
<td>19.19</td>
</tr>
<tr>
<td>6</td>
<td>Неизвестное вещество</td>
<td>7.997</td>
<td>3424.68</td>
<td>4.93</td>
</tr>
<tr>
<td>7</td>
<td>Кофейная кислота</td>
<td>8.956</td>
<td>1859.89</td>
<td>2.68</td>
</tr>
<tr>
<td>8</td>
<td>Неизвестное вещество</td>
<td>11.16</td>
<td>17606.40</td>
<td>25.36</td>
</tr>
<tr>
<td>9</td>
<td>Изоферуловая кислота</td>
<td>16.69</td>
<td>2727.70</td>
<td>3.93</td>
</tr>
<tr>
<td>10</td>
<td>Неизвестное вещество</td>
<td>18.06</td>
<td>3017.67</td>
<td>4.35</td>
</tr>
<tr>
<td>11</td>
<td>Розмариновая кислота</td>
<td>21.89</td>
<td>1074.49</td>
<td>1.55</td>
</tr>
<tr>
<td>12</td>
<td>Гиперозид</td>
<td>24.47</td>
<td>1189.84</td>
<td>1.71</td>
</tr>
<tr>
<td>13</td>
<td>Неизвестное вещество</td>
<td>31.8</td>
<td>3406.73</td>
<td>4.91</td>
</tr>
<tr>
<td>14</td>
<td>Кемпферол</td>
<td>50.97</td>
<td>1965.52</td>
<td>2.83</td>
</tr>
</tbody>
</table>

В результате исследования было выявлено наличие четырнадцати пиков веществ на хроматограмме, девять из которых совпадали по времени удерживания с таковыми о-кумаровой, галловой, неохлорогеновой, хлорогеновой, кофейной,
изоферуловой и розмариновой кислот. Также найдены пики, соответствующие стандартам гиперозиду и кемпеферолу. Наибольшую долю в совокупности найденных веществ, определенных методом нормализации пиков, в пробе занимают неохлорогеновая и хлорогеновая кислоты (Таблица.1)

Методом ВЭЖХ определено количественное содержание хлорогеновой кислоты, которое составило в образцах лекарственного растительного сырья 0,41-0,65%.

Список литературы.

STUDY OF THE PHENOLIC COMPOUNDS COMPOSITION OF KNAUTIA ARVENSIS HERB BY HPLC

Kopytko Ya.F., Dargayeva T.D.
All-Russian Research Institute of Medicinal and Aromatic plants, Moscow, Russia, yanina@kopytko.ru

A qualitative and quantitative study of the phenolic components in the alcohol extract from the herb of the field scabiosa (Knautia arvensis L.) was carried out by HPLC on a Kromasil C18 column 5 μm 25 mm x 4.6 mm, eluent methanol-water-phosphoric acid (400: 600: 5). Detection UV/254 nm wavelength. The presence of fourteen peaks of substances on the chromatogram was detected, nine of which coincided in the retention time with those of o-kumaric, gallic, neochlorogenic, chlorogenic, caffeic, isoferulic, rosmarinic acids, hyperoside and kaapeferol. The highest proportion in the amount of the substances found in the sample,
determined by the normalized area method, are occupied by neochlorogenic and chlorogenic acids (9.99 and 19.19%, respectively). The content of chlorogenic acid in the samples of medicinal plant raw materials is 0.31-0.52%.

ФЕНОЛЬНЫЕ СОЕДИНЕНИЯ ЭКСТРАКТА АРОНИИ ЧЕРНОПЛОДНОЙ И ЕГО АНТИОКСИДАНТНАЯ АКТИВНОСТЬ

Косман В.М., Пожарицкая О.Н., Шиков А.Н., Дадали Ю.В., Макаров В.Г.
ЗАО «Санкт-Петербургский Институт Фармации», Санкт-Петербург, Россия, kosman.vm@doclinika.ru

Аннотация. Плоды аронии черноплодной являются перспективными источниками БАВ. Показано, что действующими веществами экстракта аронии являются фенольные соединения: фенольные кислоты, флавоноиды и катехины. Для него характерно высокое содержание сахаров и органических кислот, а также высокая антиоксидантная активность. Экстракт плодов аронии черноплодной может быть перспективен для создания препаратов и биологически активных добавок гипотензивного, капилляроукрепляющего действия.

Пищевые растения могут являться источниками биологически активных веществ и быть перспективными для создания лекарственных средств и биологически активных добавок к пище. Поэтому актуальны исследования свойств таких растений, как арония черноплодная. Целью данной работы являлась фитохимическая характеристика и оценка антиоксидантной активности экстракта полученного из этого растений.

Основным действующим началом плодов аронии черноплодной (Aronia melanocarpa (Michx.) Elliot, сем. Розоцветных Rosaceae) считают Р-витаминный комплекс, состоящий из полифенольных соединений: флавоноидов, катехинов и антоцианов; плоды также богаты микроэлементами, витаминами, сахарами и пектиновыми веществами [1].

Свежие плоды и сок используют при гипо- и авитаминозе Р, для лечения гипертонической болезни, отмечено
противовоспалительное, спазмолитическое, антисклеротическое действия. Лечебный эффект аронии связывают с активностью фенольных соединений, проявляющих антиоксидантное действие за счет снижения перекисного окисления липидов и оксидативного стресса, а также способности адсорбирать оксидные радикалы [2]. Антоцианы аронии способствуют выведению кадмия из организма, восстанавливают физиологическую функцию печени и почек [3].

Объектом исследования служил экстракт черноплодной рябины, представлявший собой жидкость темно-бордового цвета, без специфического запаха, с терпким сладковатым вкусом.

Определение титруемой кислотности проводили согласно ГОСТ 25555.0-82, содержание сахаров определяли по ГОСТ 8756.13-87 спектрофотометрическим методом по реакции с железосинеродистым калием, содержание дубильных веществ - методом перманганатометрического титрования (ГФ XIII), суммарное содержание антоцианов определяли спектрофотометрически с использованием удельного показателя поглощения цианидин-3,5-диглюкозида в 1% растворе соляной кислоты (ГФ XIII).

Для анализа флавоноидов и проантоцианидинов их предварительно отделяли от антоцианов экстракцией диэтиловым эфиром из подкисленного раствора с последующей заменой растворителя. Полученное извлечение использовали для определения суммарного содержания флавоноидов спектрофотометрическим методом по реакции с хлоридом алюминия (ГФ XIII) и для анализа индивидуальных соединений методом ОФ ВЭЖХ [4].

Оценка антиоксидантной активности выполнена с радикалом N,N'-дифенил-п-фенилендиамина [5], абсолютные значения антирадикальной активности (ARA) исследуемого образца относили к значению ARA для стандартного антиоксиданта (тролокса).

Количественное определение содержания микро- и макроэлементов в образце экстракта черноплодной рябины проводили методом атомно-абсорбционной спектроскопии. Анализ аминокислотного состава выполнен методом ОФ ВЭЖХ со спектрофотометрическим детектором и предколоночной дериватизацией гидролизата аминокислот диметиламинозазобензол-сульфонилхлоридом [6].

Результаты фитохимической характеристики исследуемого
экстракта аронии черноплодной представлены в таблице.

Полученные данные хорошо согласуются с приведенными выше органолептическими свойствами: сладковатый вкус образца обусловлен достаточно высоким содержанием сахаров — около 20%. Терпкий, дубящий привкус, выраженный для экстракта аронии, связан с присутствием дубильных веществ (около 2%), окраска обусловлена наличием антоцианов (около 0,05-0,1%).

Таблица 1.

Результаты фитохимического анализа экстракта Аронии

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Содержание</th>
</tr>
</thead>
<tbody>
<tr>
<td>Содержание сахаров, %</td>
<td>17,5±2,5</td>
</tr>
<tr>
<td>Титруемая кислотность, %</td>
<td>0,80±0,05</td>
</tr>
<tr>
<td>Содержание дубильных веществ, %</td>
<td>1,9±0,1</td>
</tr>
<tr>
<td>Суммарное содержание антоцианов, %</td>
<td>0,06±0,01</td>
</tr>
<tr>
<td>Суммарное содержание flavonoïdes (СФ), %</td>
<td>0,05±0,01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Индивидуальные фенольные соединения (ВЭЖХ), мкг/г</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Галловая кислота</td>
<td>3,9 ± 0,6</td>
</tr>
<tr>
<td>(+)-Катехин</td>
<td>5,1 ± 1,0</td>
</tr>
<tr>
<td>(-)-Эпикатехин</td>
<td>2,9 ± 0,2</td>
</tr>
<tr>
<td>Кверцетин</td>
<td>170 ± 5</td>
</tr>
<tr>
<td>Суммарное содержание flavonoïdes (ВЭЖХ), %</td>
<td>0,04 ± 0,01</td>
</tr>
</tbody>
</table>

<p>| Макро и микрозлементы, мг/кг: | |
| Железо | 7,9±0,3 |
| Цинк | 4,0±0,2 |
| Медь | 1,8±0,1 |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Селен</td>
<td><2,0</td>
<td></td>
</tr>
<tr>
<td>Марганец</td>
<td>8,0±0,4</td>
<td></td>
</tr>
<tr>
<td>Хром</td>
<td><1,0</td>
<td><1,0</td>
</tr>
<tr>
<td>Никель</td>
<td></td>
<td><0,1 (5,0)*</td>
</tr>
<tr>
<td>Свинец</td>
<td></td>
<td><0,1 (1,0)*</td>
</tr>
<tr>
<td>Кадмий</td>
<td>0,022 ± 0,005 (1,0)*</td>
<td>53±3</td>
</tr>
<tr>
<td>Ртуть</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Натрий</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Калий</td>
<td></td>
<td>5700±50</td>
</tr>
<tr>
<td>Кальций</td>
<td></td>
<td>260±15</td>
</tr>
<tr>
<td>Магний</td>
<td></td>
<td>380±18</td>
</tr>
<tr>
<td>Аминокислоты (суммарно), %</td>
<td>0,21±0,02</td>
<td></td>
</tr>
<tr>
<td>Значение антирадикальной активности:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- грамм тролокса/грамм</td>
<td></td>
<td>0,23 ± 0,04</td>
</tr>
<tr>
<td>- к сухому остатку с учетом содержания общего сахара,</td>
<td></td>
<td>0,72 ± 0,13</td>
</tr>
<tr>
<td>грамм тролокса /грамм</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Примечания:* - в скобках приведены установленные нормы содержания (СанПиН 2.3.2.1078-01, стр. 73, индекс: 1.10.5) для тяжелых металлов в БАД, создаваемых на основе концентратов из экстрактов растений.

Среди обнаруженных соединений преобладающим является кверцетин (около 170 мкг/г); катехин, галловая кислота и эпикатехин присутствуют в приблизительно равных количествах (около 50, 40 и 30 мкг/г соответственно). Значения суммарного содержания флавоноидов, полученные спектрофотометрическим методом и методом ВЭЖХ (по сумме площадей всех пиков, элюируемых после эпикатехина), достаточно близки (около 0,05 и 0,04% соответственно).

Идентифицированные соединения способны выступать в качестве антиоксидантного комплекса природных соединений, защищающего липиды и белки мембран от свободнорадикального повреждения. В таблице приведены значения антирадикальной активности (ARA) образца экстракта и величина ARA в пересчете на сухой остаток и содержание сахаров в образце. Полученные значения величин антирадикальной активности экстракта свидетельствуют о высокой антирадикальной и антиоксидантной активности полифенольных соединений, являющихся значимыми компонентами исследуемого экстракта.
Данные по анализу микро- и макроэлементов (табл.) свидетельствуют о богатстве и разнообразии их качественного и количественного состава в экстракте аронии. По содержанию таких тяжелых металлов как свинец, кадмий и ртуть отсутствует превышение нормативных значений (СанПиН 2.3.2.1078-01.). Содержание аминокислот в экстракте черноплодной рябины незначительно (около 0,2%).

По результатам исследования подтверждено, что плоды аронии черноплодной являются перспективными источниками БАВ. Основными действующими веществами изученного экстракта аронии являются фенольные соединения: фенольные кислоты, флавоноиды и катехины. Также характерно высокое содержание сахаров и органических кислот (титруемая кислотность) и высокая антиоксидантная активность. Изученный экстракт может быть перспективен для создания препаратов и биологически активных добавок гипотензивного, капилляроукрепляющего действия.

Список литературы
PHENOLIC COMPOUNDS FROM ARONIA MELANOCARPA (MICHX.) ELLIOT EXTRACT AND ITS ANTIOXIDANT ACTIVITY

Kosman V.M., Pozharitskaya O.N., Shikov A.N., Dadali Yu.V., Makarov V.G.
Saint-Petersburg Institute of Pharmacy, St-Petersburg, Russia

Foods plants may be a source of biologically active compounds and be perspective to new drugs development. The aim of the present work was in phytochemical characterization of Aronia melanocarpa (Michx.) Elliot extract and evaluation of its antioxidant activity.

Extract was a liquid with dark-red color, without smell and with specific taste. Content of total sugars analyzed by UV-spectroscopy was about 20%, content of total tannis after titration - about 2%, content of total antocyanins after UV-spectroscopy - 0.05-0.1%, content of total acids after titrimetric analysis - about 0.8%. Composition of flavonoids and phenolic acids was analyzed by HPLC-UV, gallic and caffeic acids, catechin and epicatechin, rutin and quercetin were identified. Total antiradical activity estimated with N,N'-diphenyl-p-phenylenediamine was 0.23±0.04 g TROLOX/g.

As a result it was proved that Aronia melanocarpa (Michx.) Elliot fruits are source of important biologically active compounds; phenolic acids, flavonoids and catechins are dominant components of studied extract. Also it is reach by sugars, acids, has high antioxidant activity and may be used for creation of drugs and food additives with hypotonic and cappilaroprotective action.

COСТАВ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ SIBIRAEA ALTAIENSIS (ROSACEAE)

Костикова В.А.1, Храмова Е.П.1, Сыева С.Я.2
1 ФГБУН Центральный сибирский ботанический сад СО РАН, Новосибирск, Россия, serebryakova-va@yandex.ru
2 ФГБНУ Федеральный Алтайский научный центр агробиотехнологий, Барнаул, Россия

Аннотация. Впервые изучен методом ВЭЖХ состав flavonoidов и фенолькарбоновых кислот в листьях Sibiraea altaiensis (Laxm.) Schneid., произрастающей в природных условиях Республики Алтай и в культуре. Состав
фенольных соединений дикорастущих и интродуцированных растений сходен. Хроматографические профили мужских и женских растений практически одинаковы. В водно-этанольных экстрактах из листьев идентифицированы хлорогеновая, кофейная, n-кумаровая, эллаговая, коричная кислоты, кверцетин, гиперозид, изокверцитрин, рутин, авикулярин и астрагалин.

Сибирка алтайская (Sibiraea altaiensis (Laxm.) Schneid. – лиственный двудомный кустарник до 150 см высотой. В России произрастает только на территории Горного Алтая [1]. За пределами России встречается в Казахстане и Китае [2] Сибирка алтайская неприхотлива в условиях культуры и с успехом культивируется в разных районах Сибири как декоративное растение [3].

На Алтае листья S. altaiensis используются как суррогат чая, при лечении инсульта, лихорадки, гепатита. Имеются сведения о наличии в листьях сибирки алтайской урсоловой кислоты, в надземной части – алкалоидов, дубильных веществ, флувонидах, хинонов, в корнях, ветвях и плодах – синильной кислоты [4]. Из надземной части S. altaiensis (= Sibiraea laevigata (L.) Maxim) выделены протокатеховая, 4-гидроксисаспянная, феруловая и кофейная кислоты, гидроксикумарин, эфир фталевой кислоты, лиганы, монотерпены, стерины, обладающие выраженной гиполипидемической, противоопухолевой и антиоксидантной активностью [5]. Фенольный состав S. altaiensis практически не изучен.

Цель работы – сравнительное исследование состава фенольных соединений (ФС), содержащихся в листьях мужских и женских растений Sibiraea altaiensis, в природе и при интродукции методом ВЭЖХ.

Объектом для исследования ФС послужили листья женских и мужских экземпляров S. altaiensis, собранных в 2017 г. в двух природных популяциях Горного Алтая (окр. с. Ело Ондойдского р-на и окр. с. Сугаш Усть-Коксинского р-на) и на интродукционном участке ЦСБС СО РАН (Новосибирск) в фазе образования плодов. Сырье высушивали на воздухе в затенённом месте. После сушки сырьё измельчали до 2 – 3 мм и отбирали репрезентативную пробу.

Для изучения ФС использовали водно-этанольные извлечения (40 % этиловый спирт) из листьев S. altaiensis,
полученные экстракцией на водяной бане. Анализ фенольных соединений выполняли на аналитической ВЭЖХ-системе, состоящей из жидкостного хроматографа «Agilent 1200» (США) с дiode-матричным детектором, автосамплером и программным комплексом для обработки хроматографических данных ChemStation, модифицировав методику T.A. van Beek [6]. Для приготовления стандартных образцов использовали вещества фирмы «Serva», «Sigma-Aldrich» и «Fluka».

Рис. 1. Хроматограмма водно-этанольного извлечения из листьев растений Sibiraea altaimensis (женское растение) при 360 нм: 2 – хлорогеновая кислота (t_R = 3.2 мин), 3 – кофейная кислота (t_R = 5.0 мин), 5 – n-кумаровая (t_R = 7.9 мин), 10 – гиперозид (t_R = 18.1 мин), 11 – изокверцитрин (t_R = 19.1 мин), 12 – рутин (t_R = 20.0 мин), 13 – эллаговая кислота (t_R = 22.0 мин), 15 – авикулярин (t_R = 28.4 мин), 17 – астрагалин (t_R = 32.5 мин), 19 – коричная кислота (t_R = 35.9 мин), 22 – кверцетин (t_R = 40.6 мин), остальные вещества – неидентифицированные компоненты. По оси абсцисс – время удержания, мин; по оси ординат – оптическая плотность.

Исследование состава фенольных соединений показало, что в водно-этанольных извлечениях из листьев S. altaemensis содержится не менее 25 соединений (рис.). Из них на основании УФ-спектров и сопоставления времен удерживания пиков веществ на хроматограммах анализируемых образцов с временами удерживания пиков стандартных образцов идентифицированы 5 кислот – хлорогеновая, кофейная, n-кумаровая, эллаговая и коричная и 6 флавонолов – кверцетин, его гликозиды гиперозид, изокверцетрин, рутин, авикулярин и гликозид кемпферола астрагалин. Остальные компоненты не идентифицированы, но в процессе хроматографирования в режиме «on-line» были зарегистрированы их УФ-спектры.
Неидентифицированные соединения согласно спектральным характеристикам отнесены к флаванонам: компоненты № 2 ($t_R = 18.1$ мин; $\lambda_{\text{max}} = 280, 320$ нм) и № 24 ($t_R = 18.1$ мин; $\lambda_{\text{max}} = 280, 325$ нм), оксибензойным или оксикоричным кислотам: № 4 ($t_R = 5.9$ мин; $\lambda_{\text{max}} = 225, 240$ пл, 295, 330 нм), № 7 ($t_R = 12.8$ мин; $\lambda_{\text{max}} = 240, 300$ пл, 325 нм), флавонолам: № 9 ($t_R = 15.2$ мин; $\lambda_{\text{max}} = 250, 260$ пл, 300 пл, 330 нм), флавонам: № 14 ($t_R = 23.8$ мин; $\lambda_{\text{max}} = 255, 265$ пл, 300 пл, 325 нм) и № 18 ($t_R = 33.5$ мин; $\lambda_{\text{max}} = 250, 270$ пл, 300 пл, 330 нм) [7].

Сравнительный анализ хроматограмм показал, что в целом фенольный состав листьев S. altaiensis из природных и интродуционной популяций схожий. В мужских растениях в миорных количествах содержится соединение № 23 ($t_R = 42.0$ мин), а в женских растениях его нет. В листьях интродуцированных растений имеется дополнительный миорный компонент № 6 ($t_R = 11.8$ мин), который отсутствует в листьях растений из природы. Следует отметить, что в экстрактах из листьев сибирки алтайской нами не обнаружены кемпферол ($t_R = 46.5$ мин), феруловая ($t_R = 2.7$ мин) и протокатеховая ($t_R = 9.9$ мин) кислоты, которые были выделены другими авторами [5].

Таким образом, состав фенольных соединений дикорастущих и интродуцированных растений схожий. Хроматографические профили мужских и женских растений практически одинаковы. Преобладающими веществами в экстрактах из листьев S. altaiensis, произрастающей в природных популяциях, являются гиперозид, эллаговая кислота, флавонол № 9 и фенолокислоты № 7 и № 8, в условиях интродукции дополнительно к вышеперечисленным соединениям — астрагалин и флавон № 14.

Работа выполнена в рамках государственного задания ЦСБС СО РАН № АААА-А17-117012610051-5 по проекту «Оценка морфогенетического потенциала популяций растений Северной Азии экспериментальными методами» и при частичной финансовой поддержке РФФИ грант № 16-44-040204 р_а. При подготовке публикации использовались материалы биоресурсной научной коллекции ЦСБС СО РАН «Коллекция живых растений в открытом и закрытом грунте», УНУ № USU 440534.
THE COMPOSITION OF PHENOLIC COMPOUNDS OF SIBIRAEA ALTAIENSIS (ROSACEAE)

Kostikova V.A., **Khramova E.P.**, **Syeva S.Ya.**

1Central Siberian Botanic Garden, SB RAS, Novosibirsk, Russia, serebryakova-va@yandex.ru
2Federal Altai Scientific Centre of Agro-BioTechnologies, Barnaul, Russia

Phenolic compounds in the leaves of *Sibiraea altaiensis* (Laxm.) Schneid. of male and female plants collected from the natural populations of the Republic of Altai and cultivated at the Central Siberian Botanic Garden were studied by HPLC chromatography method for the first time. As a result of conducted studies it was established that main compounds of leaves of *S. altaiensis* were chlorogenic, caffeic, n-coumaric, ellagic, cinnamic, quercetin, hyperoside, isoquercitrin, rutin, avicularin and astragalin. The composition and total content of phenolic compounds for leaves of the natural and introduced populations were practically the same. Chromatographic profiles of male and female plants are almost identical.
ФЕНОЛЬНЫЕ СОЕДИНЕНИЯ МОЖЖЕВЕЛЬНИКА ОБЫКНОВЕННОГО JUNIPER COMMUNIS L.: МЕТОДЫ ВЫДЕЛЕНИЯ, СОСТАВ

Красикова А.А.1, Боголицын К.Г.1,2, Гусакова М.А.1, Ивахнов А.Д.1,2, Хвиюзов С.С.1
1 ФГБУН ФИЦКИА РАН, Архангельск, Россия, ann.krasikova@gmail.com
2 Северный (Арктический) федеральный университет имени Ломоносова, Архангельск, Россия

Аннотация. Исследовано влияние природы сорастворителя в процессе экстракции бинарным растворителем (сверхкритический СО₂ с сорастворителем) на степень выделения компонентов фенольного ряда из древесины Juniperus communis L. Методом высокоэффективной жидкостной хроматографии проведена идентификация фенольных компонентов в полученных экстрактах. Показано, что применение протонных растворителей способствует извлечению значительно большего количества биологически активных фенольных соединений, таких как феруловая и бензойная кислоты, ванилин, вератрол, эвгенол.

Растительное сырье богато фенольными соединениями, многие из которых обладают антиоксидантными свойствами и биологической активностью. Биологически активные вещества (БАВ) представляют несомненный интерес с точки зрения медицины, что объясняет рост количества разрабатываемых эффективных способов их извлечения из растительного сырья, а также схем их идентификации и количественного определения с привлечением современных методов анализа.

Для производства БАВ большой интерес представляет сверхкритическая флюидная экстракция (СКЭ) диоксидом углерода, как экологически чистый метод, обеспечивающий их мягкое извлечение за счет проникновения сверхкритических флюидов в глубокие слои клеточных стенок растительного сырья. СКЭ обладает рядом преимуществ по сравнению с другими способами экстракции, такими как: отсутствие остаточного растворителя в экстракте, обеспечение быстроты
процесса, высокий выход конечного продукта, хорошее качество целевых продуктов [1]. Для повышения эффективности экстракции часто используют бинарный растворитель СК-CO₂ с сорастворителем, имеющим сродство к извлекаемым компонентам, что позволяет наиболее полно провести их выделение.

В качестве объекта исследований выбран можжевельник обыкновенный Juniperus Communis L. - древесная порода, с давних времен применяющаяся в народной медицине и представляющая интерес для получения БАВ, имеющих широкий спектр антиоксидантного и антимикробного действия [2]. Однако, ввиду того, что для древесины можжевельника характерна высокая плотность и отсутствие смоляных ходов, высока вероятность локализации БАВ непосредственно в жесткой композиции лигноуглеводного комплекса [3]. Именно поэтому, для наиболее полного их извлечения необходимо применение новых эффективных способов экстракции, способствующих проникновению экстрагента вглубь клеточных стенок и разрушению слабых связей лигноуглеводного комплекса.

Таким образом, цель настоящей работы состояла в исследовании влияния природы модифицирующих добавок, входящих в состав бинарного растворителя, на степень выделения компонентов фенольного ряда и состав СК-экстрактов древесины J. communis L.

Материалы и методы. Отбор представительных образцов древесины можжевельника (Juniperus Communis L.) проводился в зоне северной тайги, возраст исследуемых образцов составлял 85±5 лет. Для проведения исследований использовалась нижняя прикорневая часть ствола. Предварительно высушенные до воздушно-сухого состояния образцы измельчались в лабораторной роторной ножевой мельнице ЛМ-201, для исследований использовалась фракция 1-2 мм.

Сверхкритическая флюидная экстракция образцов древесины бинарным растворителем, в состав которого входит сверхкритический СО₂ с сорастворителем, проводилась в установке SFE-5000 (Thar Process, USA). Параметры обработки были подобраны на основании проведенного анализа литературы [4] и имели следующие значения: температура 120 °C, давление 250 атм, время обработки – 1 час, скорость подачи СО₂ - 25 мл/мин, скорость подачи сорастворителя - 5 мл/мин. Экстракция проводилась в динамическом режиме,
соотношение сорастворитель / CO₂=1:5 (об/об). В качестве сорастворителей использовались протонные растворители - этанол и уксусная кислота, и аprotонный растворитель - ДМСО.

Хроматографический анализ модельных соединений, родственных фенолу, выполняли с использованием системы Nexera X2 LC30AD для сверхбыстрой хроматографии (Shimadzu, Япония). Для разделения применяли обращенно-фазовую колонку Nukleodur PolarTec, 150х3,0 мм, 3 мкм (Macherey-Nagel, Германия). В качестве элюента использовали смеси ацетонитрила и высокочистой воды I типа с удельным сопротивлением 18,2 МОм·см. Детектирование осуществляли в диапазоне длин волн 200÷400 нм со спектральным разрешением 1,2 нм.

Результаты и обсуждение. Анализ полученных СКЭ-экстрактов методом ВЭЖХ подтвердил наличие растворенных низкомолекулярных фенольных соединений, среди которых были обнаружены ванилиновая кислота, ванилин, ацетованилон, гваякол, фенол, вератрол и др. (табл.1).

Таблица 1.

Содержание компонентов фенольной природы в экстрактах, мг/л

<table>
<thead>
<tr>
<th></th>
<th>Ванилиновая кислота</th>
<th>Ванилин</th>
<th>Ацетованилон</th>
<th>Гваякол</th>
<th>Фенол</th>
<th>Ферулоловая кислота</th>
<th>Вератрол</th>
<th>Эвгенол</th>
<th>Бензойная кислота</th>
</tr>
</thead>
<tbody>
<tr>
<td>СКЭ с уксусной кислотой</td>
<td>1,79</td>
<td>6,11</td>
<td>1,75</td>
<td>0,82</td>
<td>5,08</td>
<td>2,81</td>
<td>7,60</td>
<td>7,24</td>
<td>1,71</td>
</tr>
<tr>
<td>СКЭ с этанолом</td>
<td>1,24</td>
<td>3,96</td>
<td>0,98</td>
<td>1,15</td>
<td>2,13</td>
<td>9,31</td>
<td>2,60</td>
<td>1,43</td>
<td>9,17</td>
</tr>
<tr>
<td>СКЭ с ДМСО</td>
<td>2,20</td>
<td>2,36</td>
<td>0,24</td>
<td>0,21</td>
<td>0,10</td>
<td>-</td>
<td>0,27</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Как видно из таблицы 1, применение протонных растворителей способствует извлечению значительно большего спектра фенольных соединений, причем СКЭ с этанолом позволяет наиболее полно извлечь феруловую (9,31 мг/л) и
бензойную (9,17 мг/л) кислоты, а максимальное извлечение ванилина (6,11 мг/л), вератрола (7,60 мг/л) и эвгенола (7,24 мг/л) достигается СК-экстракцией с уксусной кислотой. Применение апротонного растворителя ДМСО приводит, главным образом, к экстракции ванилина и ванилиновой кислоты в небольших количествах.

Полученные данным методом фенольные соединения находят широкое применение в медицине. Так, бензойная кислота применяется как наружное антисептическое и противогрибковое средство. Эвгенол как составная часть, входит в состав обезболивающих, биоцидных препаратов и антисептиков. В работах [6,7] были отмечены противоопухолевые, противовоспалительные, кардиопротекторные эффекты вератрола, а также противовоспалительное, антиаллергическое, противоопухолевое, антибактериальное, противовирусное действие ферулоевой кислоты.

Таким образом, проведенные исследования показали, что использование сорастворителей различной природы при сверхкритической экстракции древесины можжевельника позволяет направленно регулировать состав полученных экстрактов в зависимости от поставленных целей и требуемых конечных продуктов.

Список литературы:
4. A.M. Aliev, G.K. Radjabov, A.M. Musaev. Dynamics of supercritical extraction of biologically active substances from Juniper communis var. saxatilis. The journal of supercritical fluids, 2015, Vol.102, р.66-72
7. А.А. Дьяков, В.Н. Перфилова, И.Н. Тюренков.
PHENOLIC COMPOUNDS OF JUNIPER COMMUNIS L.: METHODS OF EXTRACTION, COMPOSITION

Krasikova A.A.¹, Bogolitsyn K.G.¹,², Gusakova M.A.¹, Ivakhnov A.D.¹,², Khviyuzov S.S.¹
¹Federal Centre for Integrated Arctic Research, Arkhangelsk, Russia, ann.krasikova@gmail.com
²Northern (Arctic) Federal University, Arkhangelsk, Russia

The influence of co-solvent nature on the effectiveness of the phenolic components extraction from the juniper wood (Juniperus communis L.) by the binary solvent (supercritical CO₂ with co-solvent) was investigated. The method of high-performance liquid chromatography was used for the identification of the phenolic components in the extracts. It was shown that the application of the protonic co-solvents promotes the extraction of a larger amount of biologically active phenolic compounds, such as ferrulic and benzoic acids, vanillin, veratrol and eugenol.

ИДЕНТИФИКАЦИЯ И БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ ЛИСТЬЕВ ТОЛОКНЯНКИ ОБЫКНОВЕННОЙ [ARCTOSTAPHYLOS UVA-URSI (L.) SPRENG.]

Куркин В.А., Рязанова Т.К., Дубищев А.В., Зайцева Е.Н., Жестков А.В., Лямин А.В.
ФГБОУ ВО Самарский государственный медицинский университет Минздрава России, Самара, Россия, Kurkinvladimir@yandex.ru

Аннотация. Проведено исследование химического состава листьев толокнянки обыкновенной [Arctostaphylos uva-ursi (L.) Spreng.] методом адсорбционной жидкостной колоночной хроматографии. Впервые были выделены и охарактеризованы с помощью ¹H-ЯМР-, ¹³C-ЯМР-, УФ-, ИК-спектроскопии и масс-спектрометрии 1,3,6-тригаллоилглюкоза и этиловый эфир p-дигалловой кислоты, а также известные для этого растения вещества (арбутин, гиперозид, галловая кислота, тетрагаллоилглюкоза). В исследованиях на крысах показана высокая диуретическая
активность 1,3,6-тригаллоилглюкозы, выявлена антибактериальная активность этилового эфира п-дигалловой кислоты в отношении тестовых культур грамположительных и грамотрицательных бактерий.

Листья толокнянки обыкновенной [Arctostaphylos uva-ursi (L.) Spreng.] являются официальным лекарственным растительным сырыем (ЛРС), ведущей группой биологически активных соединений которого являются простые фенолы, из которых наиболее известен арбутин [1]. С наличием арбутина чаще всего связывают эффективность листьев при различных заболеваниях мочевыводящих путей. Тем не менее, литературные данные об антибактериальной и диуретической активности этого соединения остаются противоречивыми [2, 3]. Известно также, что в листьях толокнянки широко представлены другие фенольные соединения, в частности, флавоноиды (гиперозид и др.), кумаринов, фенолкарбоновые кислоты, дубильные вещества и др. [1, 4]. Несмотря на высокую степень изученности химического состава, компонентный состав листьев по-прежнему заслуживает внимания, особенно в отношении производных галловой кислоты. Кроме этого, представляет интерес выделение индивидуальных веществ листьев толокнянки и изучение их специфической фармакологической активности для выявления биологически активных соединений, вносящих вклад в действие исследуемого ЛРС.

В связи с этим целью исследования являлось выделение индивидуальных химических соединений из листьев толокнянки обыкновенной и изучение их специфической фармакологической активности на экспериментальных моделях.

Объектами исследования являлись листья толокнянки обыкновенной, заготовленные в Республике Марий Эл, Волжский район, Волжск, 2017 г., стандартный образец арбутина производства «Sigma-Aldrich» (США) и ЗАО «ВИЛАР» (Россия).

диапазон длин волн от 4000 до 600 см\(^{-1}\) с разрешением в 0,4 см\(^{-1}\).

Для препаративного выделения получали водно-спиртовое извлечение из измельченного сырья толокнянки обыкновенной (экстрагент - 70% этиловый спирт). Полученное извлечение упаривали до одной трети от исходного объема на ротационном испарителе с вакуумным насосом, упаренный экстракт смешивали с силикагелем марки L 40/100 мкм (Чехия) и оставляли досушиваться до сыпучего состояния.

Силикагель с нанесенным суммарным извлечением наслаживали на равное количество чистого силикагеля в хроматографической колонке диаметром 100 мм в виде суспензии в хлороформе. Элюирование осуществляли смесями растворителей хлороформ-спирт этиловый 95% в различных соотношениях (100:0 → 0:100). Контроль за ходом хроматографического разделения осуществляли методом ТСХ в системе растворителей n-бутанол-уксусная кислота-вода (4:1:2) с детектированием при дневном и УФ-свете с длиной волны 254 и 366 нм.

Выделено несколько соединений, структура которых была охарактеризована с помощью комплекса структурных методов анализа (\(^1\)Н-ЯМР, \(^{13}\)С-ЯМР-спектроскопия, масс-спектрометрия). Из них два соединения были впервые выделены из листьев толокнянки обыкновенной (1,3,6-тригаллоилглюкоза, этиловый эфир \(n\)-дигалловой кислоты), остальные вещества известны для этого растения (арбутин, гиперозид, галловая кислота, тетрагаллоилглюкоза).

Проведено сравнительное исследование влияния 1,3,6-тригаллоилглюкозы, арбутина и отвара из листьев толокнянки на выделительную функцию почек у крыс. В качестве препарата сравнения использовали гипотиазид (20 мг/кг). За день до опыта крысы получали внутрижелудочно водную нагрузку в объеме 3% от массы тела. В день эксперимента животным контрольной группы вводилась водная нагрузка; опытным группам при помощи внутрижелудочного зонда вводили либо отвар из листьев толокнянки в дозе 100 мг/кг, либо водные растворы арбутина или 1,3,6-тригаллоилглюкозы – в дозе 10 мг вещества на 1 кг массы животных. В исследовании было 5 групп животных (по 10 крыс в каждой).

В результате исследования диуретической и салуретической активности получено, что отвар толокнянки в дозе 100 мкл/кг и арбутин в дозе 10 мг/кг при однократном...
внутрижелудочном введении за 4 и 24 ч не вызывали достоверных изменений показателей экскреторной функции почек. 1,3,6-тригаллоилглюкоза при однократном внутрижелудочном введении в дозе 10 мг/кг вызывала в течение 4 ч достоверное увеличение диуреза (на 34% по сравнению с контрольной группой) и натрийуреза (на 37%), за 24 ч она значительно увеличивала почечную экскрецию воды (на 75%), натрия (на 46%), калия (на 36%) и креатинина (на 38%). Полученные результаты суточного эксперимента были сопоставимы с данными для гипотиазида.

Изучена антибактериальная и противогрибковая активность изолированных соединений при внутрижелудочном введении при дозе 10 мг/кг. 1,3,6-тригаллоилглюкоза в дозе 10 мг/кг вызывала достоверное увеличение диуреза (на 34% по сравнению с контрольной группой) и натрийуреза (на 37%), за 24 ч она значительно увеличивала почечную экскрецию воды (на 75%), натрия (на 46%), калия (на 36%) и креатинина (на 38%). Полученные результаты суточного эксперимента были сопоставимы с данными для гипотиазида.

Изучена антибактериальная и противогрибковая активность in vitro этилового эфира п-дигалловой кислоты (1 мг/мл) в сравнении с арбутином (1 мг/мл) и отваром из листьев толокнянки 1:10. Определение минимальной ингибиторной концентрации проводили методом двухсерийных разведений в бульоне Мюллера–Хинтона в соответствии с МУ 4.2.1890-04 [5]. В качестве тестовых культур использовали грамположительные бактерии Bacillus cereus и Staphylococcus aureus, грамотрицательные бактерии Escherichia coli и Pseudomonas aeruginosa, дрожжеподобный гриб Candida albicans.

В условиях эксперимента арбутин не проявлял активность в отношении практически всех исследуемых штаммов, за исключением Bacillus cereus. Этиловый эфир п-диагалловокислоты подавлял рост Bacillus cereus (максимальная кратность разведения, при которой сохранялось подавление роста, – 1 : 32), Staphylococcus aureus (1 : 16), Pseudomonas aeruginosa (1 : 16), E. coli (1 : 32). Отвар из листьев толокнянки обыкновенной показывал высокую активность в отношении грамположительных бактерий Bacillus cereus (максимальная кратность разведения, при которой сохранялось подавление роста, – 1 : 64) и Staphylococcus aureus (1 : 128), а также в отношении грамотрицательных микроорганизмов Pseudomonas aeruginosa (1 : 32). И этиловый эфир п-диагалловокислоты, и отвар толокнянки подавляли рост дрожжеподобных грибов Candida albicans.

Таким образом, проведено фитохимическое исследование листьев толокнянки обыкновенной, выделены и охарактеризованы несколько индивидуальных соединений, проведены исследования по изучению их специфической фармакологической активности (диуретической, антибактериальной и противогрибковой).
THE IDENTIFICATION AND BIOLOGICAL ACTIVITY OF PHENOLIC COMPOUNDS OF BEARBERRY LEAVES
[ARCTOSTAPHYLOS UVA-URSI (L.) SPRENG.]

Samara State Medical University, Samara, Russia, Kurkinvladimir@yandex.ru

A study of the chemical composition of bearberry leaves [Arctostaphylos uva-ursi (L.) Spreng.] was carried out by using of the method of adsorption liquid column chromatography. There were isolated for the first time 1,3,6-trigalloyl of glucose and the ethyl ester of p-digallic acid, chemical structure of which was elucidated by means of ¹H-NMR-, ¹³C-NMR-, UV-, IR-spectroscopy, mass spectrometry. From the leaves of this plant there were isolated also gallic acid, tetragalloyl of glucose, arbutin and hyperoside which are known for this plant material. In the studies in rats, the high diuretic activity of 1,3,6-trigalloyl of glucose has been shown, the antibacterial activity of ethyl ester of p-digallic acid against test cultures of gram-positive and gram-negative bacteria has been revealed.
ИЗУЧЕНИЕ ХИМИЧЕСКОГО СОСТАВА МОНАРДЫ ДУДЧАТОЙ (MONARDA FISTULOSA L.), КУЛЬТИВИРУЕМОЙ НА ТЕРРИТОРИИ САМАРСКОЙ ОБЛАСТИ

Лапина А.С., Куркин В.А., Авдеева Е.В., Рязанова Т.К., Варина Н.Р., Рыжов В.М.
ФГБОУ ВО СамГМУ Минздрава России, Самара, nstjlapina@rambler.ru

Аннотация. Работа посвящена вопросам фитохимического изучения травы монарды дудчатой, и в частности, компонентного состава эфирного масла. В результате исследования получено эфирное масло и определен его компонентный состав методом ГХ с масс-селективным детектированием. Обнаружено более 25 компонентов, из которых 16 идентифицировано. Установлено, что по площади пика доминирующим является карвакрол (46,34%) и β-цимен (30,97%), тимол занимает только 1,17%. ТСХ-анализ для извлечений, полученных на 40% спирте этиловом, предложено проводить в системе хлороформ – спирт этиловый (6:1).

Трава монарды дудчатой (Monarda fistulosa L.) является перспективным сырьем для получения лекарственных препаратов, так как обладает целым рядом ценных свойств [1,2,3], в частности, антимикробной и противовоспалительной активностью, что особенно актуально в профилактике и лечении инфекционно-воспалительных заболеваний различной локализации. Имеющиеся данные показывают, что за спектр фармакологической активности видов монарды преимущественно отвечают вещества фенольной природы, представленные в основном flavonoидами, а также монотерпеновыми фенолами (карвакрол, тимол и др.), содержащимися в эфирном масле. Поскольку растение в основном позиционируется как эфиромасличное, а в настоящее время обсуждаются вопросы районирования и масштабирования культивирования монарды дудчатой на территории Европейской части России, первоочередной фитохимической задачей является углубленное изучение состава эфирного масла, тем более, что известно наличие нескольких хеморасс,
отличающихся соотношением карвакрола и тимола [4].
При всем очевидном лекарственном потенциале монарды на сегодняшний день это растение не является официальным ни в нашей стране, ни за рубежом.

Рис.1. Хроматограмма, полученная при ГХ-МС анализе эфирного масла травы монарды дудчатой

Целью исследования являлось изучение химического состава травы монарды дудчатой, выращенной на территории Самарской области (фармакопейный участок Ботанического сада Самарского университета), методами ТСХ и ГХ с масс-

Таблица 1.

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Компонент</th>
<th>RT, мин*</th>
<th>RI</th>
<th>Содержание, в %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>α-пинен</td>
<td>12,288</td>
<td>948</td>
<td>0,32</td>
</tr>
<tr>
<td></td>
<td>1-октен-3-ол</td>
<td>15,709</td>
<td>969</td>
<td>2,52</td>
</tr>
<tr>
<td></td>
<td>β-пинен</td>
<td>16,385</td>
<td>943</td>
<td>0,72</td>
</tr>
<tr>
<td></td>
<td>α-фелландрен</td>
<td>17,021</td>
<td>969</td>
<td>0,25</td>
</tr>
<tr>
<td></td>
<td>α-терпинен</td>
<td>17,907</td>
<td>998</td>
<td>3,55</td>
</tr>
<tr>
<td></td>
<td>β-цимен</td>
<td>18,507</td>
<td>1042</td>
<td>30,97</td>
</tr>
<tr>
<td></td>
<td>D-лимонен</td>
<td>18,746</td>
<td>1018</td>
<td>0,87</td>
</tr>
<tr>
<td></td>
<td>терпинолен</td>
<td>20,972</td>
<td>1052</td>
<td>8,32</td>
</tr>
<tr>
<td></td>
<td>cis-β-терпинеол</td>
<td>21,590</td>
<td>1125</td>
<td>0,42</td>
</tr>
<tr>
<td></td>
<td>терпинен-4-ол</td>
<td>28,783</td>
<td>1137</td>
<td>0,69</td>
</tr>
<tr>
<td></td>
<td>эстрагол</td>
<td>29,960</td>
<td>1172</td>
<td>0,47</td>
</tr>
<tr>
<td></td>
<td>тимол</td>
<td>34,378</td>
<td>1262</td>
<td>1,17</td>
</tr>
<tr>
<td></td>
<td>карвакрол</td>
<td>34,804</td>
<td>1262</td>
<td>6,34</td>
</tr>
<tr>
<td></td>
<td>карисофиллен</td>
<td>38,901</td>
<td>1494</td>
<td>0,21</td>
</tr>
<tr>
<td></td>
<td>β-кубебен</td>
<td>40,994</td>
<td>1339</td>
<td>0,92</td>
</tr>
<tr>
<td></td>
<td>δ-кадинен</td>
<td>42,364</td>
<td>1469</td>
<td>0,22</td>
</tr>
</tbody>
</table>

*Примечание: RT – время удерживания; RI – индекс удерживания

Для идентификации компонентов определяли линейные индексы удерживания, сопоставляя полученные результаты и
полные масс-спектры с библиотечными (библиотеки масс-спектров «NIST 2.0») и с литературными данными. Рассматривались только компоненты, определяемые по библиотеке с вероятностью более 90%. Количественный анализ проводили по площадям соответствующих пиков на хроматограмме, построенной по полному ионному току (рис.1).

В результате проведенного исследования определен компонентный состав эфирного масла, при этом обнаружено более 25 компонентов, из них 16 компонентов идентифицировано, среди которых по площади пиков доминирует карвакрол (46,34%), β-цимен (30,97%) и терпинолен (8,32%), также в заметном количестве обнаруживается α-терпинен, 1-октен-3-ол, а тимол занимает только 1,17%, что, по-видимому, связано с климатическими факторами района заготовки. Результаты исследований представлены средними значениями из трех определений в таблице 1.

Кроме того, в предложенных условиях хроматографирования нами было проведено количественное определение содержания тимола в эфирном масле с использованием стандартного образца (Sigma-Aldrich), которое составило 8,14 мг/мл в эфирном масле, содержание компонента в сырье составило 13,57 мг/100 г.

Для уточнения хроматографического поведения нативного комплекса фенольных и терпеноидных соединений в условиях ТСХ-анализа, что важно на этапе скрининговых исследований, а также для решения вопросов определения подлинности сырья растения, дополнительно проведены исследования для ряда извлечений в различных системах растворителей. Показано, что эффективное разделение терпеноидной составляющей и доминирующих флавоноидов достигается извлечением 40% спиртом этиловым в системе хлороформ — спирт этиловый (6:1) с использованием пластинок «Сорбфил ПТСХ-АФ-А-УФ».

Полученные данные, на наш взгляд, показывают актуальность дальнейших исследований травы монарды дудчатой в качестве перспективного источника биологически активных соединений, и показывают целесообразность культивирования растения на территории Самарской области.

Список литературы:
1. Жилякова Е.Т., Новиков О.О., Науменко Е.Н., Кузьмичева О.А., Бочарова К.А., Титарева Л.В. Исследование антимикробной и
THE RESEARCH OF THE CHEMICAL COMPOSITION OF MONARDA FISTULOSA L. CULTIVATED ON THE TERRITORY OF THE SAMARA REGION
Lapina A.S.1, Kurkin V.A.1, Avdeeva E.V.1, Ryazanova T.K.1, Varina N.R.1, Ryzhov V.M.1
1Samara State Medical University, Samara, Russia

In the paper is described the problems of the phytochemical research of the herb of the Monarda fistulosa, in particular, the composition of components of essential oil. As a result of the study the essential oil was obtained and its components were determined by the GC method with mass-selective detection. More than 25 components were detected, of which 16 were identified. There was found that carvacrol (46,34%) and β-cymene (30,97%) were dominated by the areas of the peaks, the thymol was only 1,17%.

The TLC analysis of the extracts which were obtained with 40% ethanol was proposed to carried out in the solvent system of chloroform-ethanol (6:1).
ФЕНОЛЬНЫЕ СОЕДИНЕНИЯ ВЕРОНИКИ ЛЕКАРСТВЕННОЙ И ИХ БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ

Мащенко Н.Е.1, Боровская А.Д.1, Гурев А.С.2
1 Институт генетики, физиологии и защиты растений, Кишинев, Молдова, mne4747@mail.ru
2 Технический Университет, Кишинев, Молдова, angelagurev@gmail.com

Аннотация. Показана рострегулирующая активность фенольных гликозидов, извлеченных из Вероники лекарственной, при предпосевной обработке гороха растворами указанных соединений. Отмечено положительное их влияние на начальное развитие данной культуры, повышение энергии прорастания и общей всхожести, а также стимулирование роста зародышевого корешка и проростка.

В последнее время в сельскохозяйственном производстве предпринимаются успешные попытки использовать вторичные метаболиты высших растений в качестве регуляторов роста и развития, индукторов устойчивости к неблагоприятным условиям внешней среды, фунгицидов и пр. [1]. Следует отметить, что зачастую одно и то же соединение или комплекс соединений оказывают на растение диаметрально противоположный эффект, зависящий от срока и способа применения, а также, и главным образом, от используемой концентрации [2]. Целью наших исследований являлось определение возможности применения биологически активных веществ из Вероники лекарственной (Veronica officinalis L.) в качестве регуляторов роста и развития сельскохозяйственных культур, и в частности, бобовых, поскольку зернобобовые культуры являются важным источником растительного белка. Одним из резервов увеличения производства гороха является повышение коэффициента использования биологического потенциала районированных сортов за счет улучшения качества посевного материала, чему в значительной степени способствует применение ростактивирующих веществ [3].

Известны функции фенольных соединений в растениях: это
вещества, активно участвующие в различных метаболических процессах [4]. В том числе они принимают участие в фотосинтезе, вовлечены в регуляцию процессов прорастания семян. Нами же была поставлена задача - изучить влияние фенольных гликозидов в качестве стимуляторов роста гороха при экзогенном их применении. Исходным сырьем для получения указанных веществ была выбрана Вероника лекарственная.

Различные виды Вероники (сем. Scrophulariaceae) привлекательны для более детального их изучения благодаря широкому спектру биологического действия, повсеместному распространению многих из них, а также дешифровке получаемых из них препаратов. Высокий уровень их физиологической активности обеспечивают вещества вторичного синтеза (БАВ), которые растения вырабатывают в процессе роста [5]. V. officinalis - широко распространенное на территории Молдовы лекарственное растение, используется в традиционной и народной медицине благодаря эффективности препаратов на ее основе [6].

Для получения биологически активных веществ надземную часть Вероники лекарственной, собранной в период цветения, после измельчения экстрагировали 40%-ным водным этанолом при нагревании до полного извлечения БАВ из сырья. Экстракты упаривали на роторном испарителе до водного остатка, который последовательно обрабатывали хлороформом и бутанолом-1. Бутанольные вытяжки хроматографировали на колонках с сепадексом и силикагелем. Фракции, содержащие flavonoидные гликозиды, (названные нами верофозиды), объединяли, упаривали до сухого остатка, анализировали при помощи характерных качественных реакций, хроматографическими (тонкослойная, бумажная, ВЭЖХ) и спектральными методами. Установили наличие 4 мажорных соединений: 6-гидроксилютеолин-7-0-глюкопиранозида, цинарозида, апигенин-7-0-глюкопиранозида и апигенин-7-O-глюкуронида. Эти данные несколько отличаются от имеющихся в литературе [7], однако известно, что содержание БАВов в растениях зависит от многих факторов, включая генетические особенности, условия произрастания, степень зрелости и пр.

Рострегулирующие свойства верофозидов определяли при лабораторном тестировании, в котором учитывали их влияние на энергию прорастания, общую всхожесть, длину зародышевого корешка и проростка гороха. Согласно общепринятой методике
Семена замачивали в водных растворах верофозидов на 24 часа (диапазон концентраций 0,0001...0,1%) и проращивали в растильнях при температуре 200С. Известно, что густота всходов определяется в значительной степени всхожестью семян, а высокая энергия прорастания позволяет получить дружные и ровные всходы [9]. Использование биологически активных веществ из Вероники неоднозначно отразилось на показателях всхожести гороха. Максимальные их значения получены в вариантах замачивания в 0,01%-ном растворе верофозидов: повышение энергии прорастания на 8,8%, а общей всхожести - на 8,6% по сравнению с контролем (замачивание в воде). Однако при использовании 0,1%-ного раствора наблюдалось значительное ингибирование данных признаков (таб. 1).

Таблица 1. Влияние фенольных соединений из Вероники лекарственной на всхожесть гороха

<table>
<thead>
<tr>
<th>Название биорегулятора</th>
<th>Концентрация, %</th>
<th>Энергия прорастания</th>
<th>Общая всхожесть</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>% к контролю</td>
<td>%</td>
</tr>
<tr>
<td>Контроль</td>
<td>42,0±4,0</td>
<td>52,5±3,8</td>
<td></td>
</tr>
<tr>
<td>Веорофозиды</td>
<td>0,0001</td>
<td>40,2±3,0</td>
<td>-4,3</td>
</tr>
<tr>
<td></td>
<td>0,001</td>
<td>41,8±4,2</td>
<td>-0,5</td>
</tr>
<tr>
<td></td>
<td>0,01</td>
<td>45,7±4,0</td>
<td>8,8</td>
</tr>
<tr>
<td></td>
<td>0,1</td>
<td>36,3±5,6</td>
<td>-13,6</td>
</tr>
</tbody>
</table>

Лимитирующими факторами процесса прорастания семян бобовых являются влага и тепло. Благодаря мощно развитой корневой системе растения могут обеспечить себя влагой, извлекая ее из более глубоких слоев почвы. Поэтому стимулирование ростового процесса семян в фазу появления первичного корешка и формирующегося проростка имеет для бобовых ключевое значение [10].

На рисунке 1 показано влияние предпосевной обработки гороха растворами фенольных соединений из Вероники на длину зародышевого корешка. Положительные результаты получены во всех опытных вариантах, а использование 0,1%-ного раствора позволило превысить контроль на 22,4%.

Стимулирующий эффект отмечен и при изучении влияния верофозидов на длину проростка гороха (рис. 1). Использование
растворов 0,0001% и 0,1% способствовало увеличению длины проростков гороха более чем на 10% по сравнению с контролем.

Рис. 1. Влияние фенольных соединений из Вероники лекарственной на длину зародышевого корешка и проростка гороха.

Полученные результаты свидетельствуют о рострегулирующей активности фенольных гликозидов из V. officinalis при экзогенном их применении, поскольку предпосевная обработка гороха растворами указанных соединений оказала положительное влияние на начальное развитие данной культуры, способствовала повышению энергии прорастания и общей всхожести, а также стимулировала рост зародышевого корешка и проростка.

Список литературы.
2. Şubina Victoria, Maşcenco Natalia, Borovskaia Alla, Gurev Anjela, Roşca Ilie. Efectul fungicidic al glicoizidelor din Veronica officinalis. MD 8782 din 2017.07.11
3. Хилкова Н. Л., Прудникова Е. Г., Ермакова Л. А. Индуцирование устойчивости у гороха биофлавоноидами культурных растений. / Современные наукоемкие технологии. 2009. № 9. С. 126-126

10.Амелин А. В. Особенности начального роста у разных сортотипов сои. / Вестник Орел ГАУ. – Орел, №6 (27), 2010, с. 131-134

PHENOLIC COMPOUNDS OF VERONICA OFFICINALIS (L) AND COMPOUNDS AND THEIR BIOLOGICAL ACTIVITY

Maschenko N.,1 Borovskaia A.,1 Gurev A.2
1Institute of Genetics, Physiology, and Plant Protection, Kishinev, Moldova, mne4747@mail.ru.
2Technical University, Kishinev, Moldova, angelagurev@gmail.com

On the example of beans, the possibilities of using biologically active substances from Veronica officinalis L. are determine as regulators of growth and development of agricultural crops. The obtained results testify to the growth regulating activity of phenolic glycosides from V. officinalis in exogenous application, have a positive effect on the development of this
culture, contribute to an increase in germination energy and general germination, and also stimulate the growth of the rootlet.

СОСТАВ, СОДЕРЖАНИЕ И БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ, ОПРЕДЕЛЯЮЩИХ ПОТЕНЦИАЛ ИСПОЛЬЗОВАНИЯ СЫРЬЯ ИНВАЗИОННЫХ РАСТЕНИЙ BIDENS FRONDOSUS L.

Молчан О.В.1, Скуратович Т.А.1, Джус М.А.2, Голенченко С.Г.2, Шабуня П.С.3, Фатыхова С.А.3

1ГНУ Институт экспериментальной ботаники им. В.Ф. Купревича НАН
Беларуси, Минск, Беларусь, olga_molchan@mail.ru
2Белорусский государственный университет, Минск, Беларусь;
3ГНУ Институт биоорганической химии НАН Беларуси, Минск, Беларусь

Аннотация. В качестве основных соединений листьев, соцветий и травы B. frondosus идентифицированы цинарозид и хлорогеновая кислота. Состав и содержание фенольных соединений в органах B. frondosus варьирует для растений разных локалитетов и определяется, условиями произрастания. Водные и этанольные экстракты B. frondosus оказывают ингибитирующее действие на прорастание семян, проявляют антибактериальную активность относительно Staphylococcus aureus и Enterococcus faecali, а также фунгистатическую – для фитопатогенов Fusarium avenaceum и Colletotrichum gloeosporioides. Биологическая активность коррелирует с содержанием фенольных соединений в экстрактах.

Bidens frondosus L. (череда олиственная), вид североамериканского происхождения, входит в список 50 самых распространенных инвазионных видов Европы [1], включен в «Черную книгу» России [2]. В местах своего вторичного ареала B. frondosus вытесняет аборигенные виды. Предполагается активная гибридизация B. frondosus с дикорастущими представителями рода. С 1955 г. вид получил широкое распространение в Беларуси и сегодня представляет серьезную
угрозу природным фитоценозам. Представители рода Bidens известны в мире как лекарственные растения [3], например, B. tripartitus L. (череда трехраздельная) включена в ГФ РБ и России. В связи с сокращением ареала аборигенного вида, представляет интерес исследование биологической активности инвазионного вида B. frondosus, как перспективного источника фармацевтического сырья. Однако, химический состав, фармакологический и биологический потенциал B. frondosus изучены недостаточно. Известно, что в пределах первичного ареала B. frondosus используют при лечении легочных, сердечных и мочеполовых заболеваний. Листья и соцветия этого вида содержат значительное количество flavonoидов, каротиноидов и других соединений с антиоксидантной активностью [4]. Цель данной работы – изучение состава и содержания фенольных соединений, биологической активности и потенциала использования растений, инвазионного для Беларуси вида B. frondosus, собранных в различных частях ареала.

Растения B.frondosus собирали в фазу бутонизации и начала цветения на территории различных регионов Беларуси, высушивали, измельчали и экстрагировали водой или водными растворами этанола различной концентрации. Суммы фенольных соединений (ФС), flavonoидов и антирадикальную активность определяли спектрофотометрически с использованием общепринятых методов. Фенольные кислоты, flavonoиды и агликоны фенольных соединений анализировали с помощью обратно-фазовой ВЭЖХ с диодно-матричным и масс-селективным детекторами. Для расчета концентраций фенольных кислот, flavonoидов и агликонов использовали хроматограммы, зарегистрированные при длине волны 330, 270 и 370 нм, соответственно. В качестве основных тест-объектов для оценки антибактериальной активности служили условные патогены человека Staphylococcus aureus (ATCC® 6538P™; ATCC® 25923™), Enterococcus faecalis (ATCC® 29212™). Посев микроорганизмов для формирования бактериального газона проводили методом Дригальского, выявление антибактериальной активности - методом лунок. Для определения фунгицидной активности методом агаровых блоков использовали фитопатогенные грибы Fusarium avenaceum, Colletotrichum gloeosporioides, Botrytis ceneria.

Содержание сумм фенольных соединений (ФС) и
флавоноидов в различных органах *B. frondosus* варьировало для растений, собранных в разных локалитетах. Обнаруженные различия, предположительно, определяются условиями произрастания. Сумма ФС в траве *B. frondosus* составляет от 60,41 ± 1,35 до 156,52 ± 0,81 мг/г. Флавоноиды в общей сумме ФС в траве *B. frondosus* занимают примерно 30-50%. Максимальное содержание ФС и флавоноидов - в листьях (образец с максимальным содержанием – 212,76 ± 2,697 и 85,54 ± 6,46 мг/г, соответственно), на втором месте – соцветия. В качестве основных ФС *B.frondosus* идентифицированы цинарозид (лютеолин-7-глюкозид) и хлорогеновая кислота (табл. 1).

Таблица 1.

<table>
<thead>
<tr>
<th>Объект</th>
<th>хлорогеновая кислота</th>
<th>Кофейная кислота (производ.)</th>
<th>цинарозид</th>
<th>флавано-мареин</th>
<th>дигидроксифлавон</th>
<th>мирицетингек-созид</th>
</tr>
</thead>
<tbody>
<tr>
<td>Листья</td>
<td>10,28±0,20</td>
<td>4,21±0,02, 5,85±0,01</td>
<td>21,23±0,17</td>
<td>3,56±0,08</td>
<td>3,92±0,15</td>
<td>3,53±0,17</td>
</tr>
<tr>
<td>Соцветия</td>
<td>3,82±0,02</td>
<td>0,22±0,01, 0,23±0,01</td>
<td>7,07±0,25</td>
<td>2,57±0,07</td>
<td>0,97±0,03</td>
<td>0,68±0,02</td>
</tr>
<tr>
<td>Стебли</td>
<td>0,97±0,02</td>
<td>0,04±0,01, _</td>
<td>5,59±0,27</td>
<td>0,46±0,00</td>
<td>0,52±0,01</td>
<td>0,62±0,02</td>
</tr>
<tr>
<td>Корни</td>
<td>0,42±0,04</td>
<td>_</td>
<td>1,26±0,06</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>Трава</td>
<td>9,636±0,02</td>
<td>1,59±0,02, 1,51±0,01</td>
<td>15,46±0,13</td>
<td>2,80±0,01</td>
<td>1,64±0,04</td>
<td>2,03±0,01</td>
</tr>
</tbody>
</table>

С помощью стандартов были определены количественно флаваноидные агликоны - кверцетин (1,93±0,02 мг/г) и кемпферол (0,85±0,01мг/г). Еще четыре основных агликона были предположительно идентифицированы как лютеолин (4,77±0,04мг/г), оканин (3,57±0,07мг/г), 4-метоксидигидроксифлавон (1,04±0,04мг/г) и апигенин (0,49±0,01мг/г) по масс-, УФ-спектрам и сравнению с литературными данными. Их содержание определяли в пересчете на кверцетин. Таким образом, состав ФС *B. frondosus* является весьма близким к *B. tripartitus*. Наличие цинарозида и лютеолина в высокой концентрации делает перспективным использование *B. frondosus* для фармацевтических целей [3].

Установлено фунгистатическое действие экстрактов листьев *B.frondosus* по отношению к *Fusarium avenaceum u Colletotrichum*.
gloeosporioides (площадь колоний снижалась в среднем на 60 %), и менее эффективное - по отношению к Botrytis cinerea. Показано влияние экстрактов на рост культур бактерий Staphylococcus aureus (рис. 1) и Enterococcus faecalis.

Рис. 1. Антибактериальная активность экстрактов листьев B.frondosus в отношении Staphylococcus aureus 6538

При максимальной антибактериальной активности экстрактов площадь зоны задержки роста S. aureus (6538; 25923) и E. faecalis составляла 4,5; 2,0 и 13,8 см², соответственно. Максимальное содержание ФС и антирадикальная активность были характерны для варианта с наибольшей антибактериальной и фунгистатической активностью. Также установлено ингибирующее действие экстрактов на прорастание семян ячменя. Вероятно, существенное влияние на проявление антибактериальной и фунгистатической активности экстрактов листьев Bidens frondosus L. оказывают ФС.

Таким образом, промышленная эксплуатация зарослей Bidens frondosus L. после предварительной оценки запасов, химического состава и создания рекомендаций по заготовке сырья, позволит целенаправленно регулировать дальнейшее распространение данного вида в природных фитоценозах и создавать новые препараты сельскохозяйственного и фармацевтического назначения.
Список литературы

COMPOSITION, CONTENT AND BIOLOGICAL ACTIVITY OF PHENOLIC COMPOUNDS, DETERMINING THE POTENTIAL OF USE OF INVASIVE PLANTS BIDENS FRONDOSUS L.

Molchan O.V.¹, Skuratovich T.A.¹, Juice M.A.², Golenchenko S.G.², Shabunya P.S.³, Fatykhava S.A.³
¹ Institute of Experimental Botany. V.F. Kuprevich National Academy of Sciences of Belarus", Minsk, Republic of Belarus, olga_molchan@mail.ru
² Belarusian State University, Minsk, Republic of Belarus;
³ Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Minsk, Republic of Belarus

Cynaroside and chlorogenic acid have been identified as the main compounds of B. frondosus. The composition and content of phenolic compounds in various organs of B. frondosus varied for plants of different localities and was depended from the growth conditions. It has been established that aqueous and ethanol extracts of B. frondosus had inhibitory effect on seed germination, showed antibacterial activity against Staphylococcus aureus and Enterococcus faecali, and had fungistatic effect on phytopathogens Fusarium avenaceum and Colletotrichum gloeosporioides. Biological activity correlated with the content of phenolic compounds in extracts.
ИССЛЕДОВАНИЯ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ ТРАВЫ БЕССМЕРТНИКА ПРИЦВЕТНИКОВОГО

Москаленко А.Н.1, Попова Н.В.1, Литвиненко В.И.2
1Национальный фармацевтический университет, Харьков, Украина
bromatology@nuph.edu.ua
2Государственный центр лекарственных средств и медицинской продукции, Харьков, Украина

Аннотация. Важным направлением научных исследований является увеличение растительной сырьевой базы для фармацевтической промышленности. Особое внимание уделяется лекарственным растениям, содержащим флавоноиды и другие фенольные соединения, при этом имеющие обширную сырьёву базу и потенциально могут представлять интерес для научного изучения. В данной статье представлены результаты предварительного хроматографического и УФ-спектрального исследования фенольных соединений в траве бессмертника прицветникового. Были выделены и идентифицированы: три флавона - лютеолин, изо-ориентин, цинарозид, три аурона - брактеин, цернулозид, аурозидин, также была идентифицирована кофейная кислота. Предварительные результаты исследований свидетельствуют, что трава бессмертника прицветникового является перспективным сырьем для создания на его основе лекарственных препаратов и диетических добавок.

Бессмертник прицветниковый (Helichrysum bracteatum) - травянистое, многолетнее растение, относящееся к роду Цмин (Helichrysum), семейства Астровые, (сложноцветные, (Asteraceae)) [1]. Естественным ареалом обитания бессмертника прицветникового является Австралия, где он распространен по всей территории континентальной части материка. Произрастает на песчаных, супесчаных и каменистых почвах [2]. Бессмертник прицветниковый широко культивируется во всех странах Европейского Союза, а также в Украине. Растение широко используется во флористике и в ландшафтном дизайне. Имея большую сырьёву базу, бессмертник прицветниковый является перспективным лекарственным растением для изучения фитохимического состава.
Целью работы является исследование состава фенольных соединений в траве бессмертника прицветникового.

В качестве объекта исследования использовали траву бессмертника прицветникового, которая была собрана в 2017 г. в период с июля по сентябрь на фармакопейном участке ботанического сада НФаУ.

Хроматографический анализ проводили с использованием бумажной и тонкослойной хроматографии. Для этого использовали хроматографическую бумагу «Filtrak» различных номеров, хроматографические пластинки «Silufol», «Sorbfil» и «Merck». В качестве материала для анализа использовался спиртовой экстракт травы (экстракция проводилась 70% спиртом, в соотношении (1:5)). При проведении хроматографии использовались следующие системы растворителей: 2%, 15% и 30% уксусная кислота, бутанол-укусная кислота-вода (4: 1: 2, 4: 1: 5), хлороформ - метанол- вода 24: 14: 3. Также с помощью хроматографии исследовали кислотный гидролизат спиртового экстракта травы для определения агликонов и углеводной части гликозидов. Для идентификации флавоноидов в УФ – свете использовали такие реактивы: раствор аммиака, 10% раствор гидроксида натрия, 2% раствор хлористого циркония. На основании хроматографического и УФ-спектроскопического анализа и в сравнении с достоверными образцами удалось идентифицировать ряд фенольных соединений, характеристика которых приведена в таблице 1. Вещества идентифицировали по показателям Rf и хроматографической характеристике, (флуоресценции, окраске пятен до и после обработки реактивами, хроматографической подвижности), в сравнении с достоверными образцами. А также по УФ-спектрофотометрической характеристике, таблица 1. [3, 4, 5, 6].

Для количественной оценки содержания суммы фенольных соединений был предложен метод прямой УФ-спектрофотометрии в пересчете на лютеолин.

Таблица 1.

<table>
<thead>
<tr>
<th>Фенольное соединение</th>
<th>УФ спектральная характеристика, λнм</th>
</tr>
</thead>
<tbody>
<tr>
<td>Лютеолин</td>
<td>метанольный раствор</td>
</tr>
<tr>
<td>Состав</td>
<td>Условия</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5, 7, 3′, 4′-тетрагидроксифлавон</td>
<td>+натрия ацетат</td>
</tr>
<tr>
<td></td>
<td>+натрия ацетат +борная к-та</td>
</tr>
<tr>
<td></td>
<td>+натрия метилат</td>
</tr>
<tr>
<td></td>
<td>+хлорид алюминия</td>
</tr>
<tr>
<td></td>
<td>+хлорид алюминия+HCl</td>
</tr>
<tr>
<td>Изо-ориентин 6 – C – β – D – глукопиранозил-лютеолин</td>
<td>метанольный раствор</td>
</tr>
<tr>
<td></td>
<td>+натрия ацетат</td>
</tr>
<tr>
<td></td>
<td>+натрия ацетат +борная кислота</td>
</tr>
<tr>
<td></td>
<td>+натрия метилат</td>
</tr>
<tr>
<td></td>
<td>+хлорид алюминия</td>
</tr>
<tr>
<td></td>
<td>+хлорид алюминия +HCl</td>
</tr>
<tr>
<td>Цинарозид лютеолин-7 - O - β - D - глукозид</td>
<td>метанольный раствор</td>
</tr>
<tr>
<td></td>
<td>+натрия ацетат</td>
</tr>
<tr>
<td></td>
<td>+натрия ацетат +борная кислота</td>
</tr>
<tr>
<td></td>
<td>+натрия метилат</td>
</tr>
<tr>
<td></td>
<td>+хлорид алюминия</td>
</tr>
<tr>
<td></td>
<td>+хлорид алюминия +HCl</td>
</tr>
<tr>
<td>Брактеин 6, 3′, 4′ 5′-тетрагидрокси – 4 – O - β – D – глукопиранозилаурон</td>
<td>метанольный раствор</td>
</tr>
<tr>
<td></td>
<td>+натрия ацетат</td>
</tr>
<tr>
<td></td>
<td>+натрия ацетат +борная кислота</td>
</tr>
<tr>
<td></td>
<td>+натрия метилат</td>
</tr>
<tr>
<td></td>
<td>+хлорид алюминия</td>
</tr>
<tr>
<td></td>
<td>+хлорид алюминия+HCl</td>
</tr>
<tr>
<td>Цернулозид 6, 3′, 4′ - тетрагидрокси – 4 – O - β – D – глукопиранозилаурон</td>
<td>метанольный раствор</td>
</tr>
<tr>
<td></td>
<td>+натрия ацетат</td>
</tr>
<tr>
<td></td>
<td>+натрия ацетат +борная кислота</td>
</tr>
<tr>
<td></td>
<td>+натрия метилат</td>
</tr>
<tr>
<td></td>
<td>+хлорид алюминия</td>
</tr>
<tr>
<td></td>
<td>+хлорид алюминия +HCl</td>
</tr>
<tr>
<td>Ауреузидин 4, 6, 3′, 4′ - тетра-</td>
<td>метанольный раствор</td>
</tr>
<tr>
<td></td>
<td>+натрия ацетат</td>
</tr>
</tbody>
</table>
Основные результаты. Впервые было проведено изучение фенольных соединений травы бессмертника прицветникового. В результате фитохимических исследований в траве бессмертника прицветникового были выделены и идентифицированы следующие фенольные соединения: флавоны - лютеолин, изо-ориентин, лютеолин-7-O-β-D-глюкуронозид, ауроны – брактеин, цернулозид, аурозидин. Также была обнаружена 3, 4 - дигидроксикоричная кислота.

Предварительные результаты исследований свидетельствуют, что трава бессмертника прицветникового является перспективным сырьем для создания на его основе лекарственных препаратов и диетических добавок.

гидроксиаурон +нatriя ацетат +борная кислота	275, 332пл, 432
+хлорид алюминия	295, 343, 490
+хлорид алюминия +HCl	233пл, 315, 448
Кофейная кислота метанольный раствор	235пл, 288, 315
3, 4 – дигидроксикоричная кислота +натрия гидроксид	306пл, 334
+хлорид алюминия	234пл, 265, 320, 360
+хлорид алюминия +HCl	306, 334

Список литературы:
RESEARCH OF PHENOLIC COMPOUNDS OF THE IMMORTELLE HERBS
Moskalenko A.N.¹, Popova N.V.¹, Litvinenko V.I.²
¹National University of Pharmacy, Kharkov, Ukraine; bromatology@nuph.edu.ua
²State Center of Medicines and Medical Products, Kharkov, Ukraine

An important direction of scientific research is to increase the material plant base for the pharmaceutical industry. Special attention is focused on medicinal plants containing flavonoids and other phenolic compounds, and which have an large resource base and potentially may be of interest for scientific study. This article represents the results of preliminary phytochemical analysis of phenolic compounds in the immortelle herb. Three flavonoids - luteolin, iso-orientine, cynaroside and three aurons - bracteine, cernuloside, aurozidine were isolated and identified. In addition, caffeic acid was found. Preliminary research results indicate that the immortelle herb is a promising for the creation of medicines and dietary supplements on its basis.

ФЕНОЛЬНЫЕ СОЕДИНЕНИЯ РАСТИТЕЛЬНЫХ ЧАЕВ. ИХ РОЛЬ В ОПРЕДЕЛЕНИИ АНТИОКСИДАНТНОЙ АКТИВНОСТИ
Олейниц Е.Ю., Дейнека В.И.
ФГАО УВО Белгородский государственный национальный исследовательский университет, Белгород, Россия, 812887@bsu.edu.ru

Аннотация. Многие растения семейства мальвовые (Malvaceae) широко используются в качестве декоративных растений благодаря яркой окраске цветков. При этом окраска цветков от красных до черных указывает на биосинтез антоцианов, поэтому цветки некоторых из них можно отнести к нетрадиционным (несъедобным) источникам антоцианов. Были определены антоциановые комплексы цветков некоторых гибискусов, а для напитков, приготовленных из двух видов гибискусов, были сопоставлены антиоксидантные свойства и уровень накопления антоцианов.
Для исследования антоцианов цветков были выбраны традиционные для нашего региона:
- двухлетние растения штокроза, *Alcea rosea* L., высокий уровень накопления антоцианов в цветках которых подтверждается существованием сортов этого растений с почти черными цветками (сорта «Шоколад», «Черный вихрь» и др.);
- комнатное растение известное под названием роза китайская, к розе на самом деле не имеющее отношения, гибискус китайский *Hibiscus rosa-sinensis* L.;
- растение гибискус сирийский *Hibiscus syriacus* L. (цветы привезены из Сочи);
- растение гибискус болотный *Hibiscus moscheutos* L. (цветы привезены из Сочи).

При проведенном исследовании оказалось, что все четыре растения накапливают различный набор антоцианов, не совпадающий по видовому составу также и с антоцианами бутонов гибискуса суданского, образованного в основном дельфинидин-3-самбубиозидом и цианидин-3-самбубиозидом.

Антоцианы цветков гибискуса розы китайской. Антоциановый комплекс образован только одним веществом с \(\lambda_{\text{max}} = 517 \) нм, практически полностью совпадающий со спектром цианидин-3-глюкозида, записанного в тех же условиях. По данным масс-спектрометрического анализа, отношения масс-заряд \((M/z = 611.3)\) этого вещества соответствует цианидин-3-дигексозиду. По совпадению удерживания этого вещества с основным антоцианом малины красной можно предположить, что это цианидин-3-софорозид.

Антоцианы цветков гибискуса травянистого. В экстракте цветков этого растения, отличающихся очень большим размером (при выращивании в Краснодарском крае), обнаруживается также только одно соединение, но с иным спектром \((\lambda_{\text{max}} = 518 \) нм), максимум абсорбции в котором смешен батохромно на 1 нм, что согласуется с присоединением по положению 2" цианидин-3-глюкозида ксилозильного радикала с образованием цианидин-3-самбубиозида. В меньшем количестве обнаружен цианидин-3-глюкозид.

Антоцианы цветков гибискуса сирийского. В экстракте цветков гибискуса сирийского присутствует целая серия пиков. Пять из них по удерживанию можно отнести к 3-глюкозидам:
дельфинидин-3-глюкозид; цианидин-3-глюкозид; петунидин-3-глюкозид; пеонидин-3-глюкозид и мальвидин-3-глюкозид, что подтверждается характеристикским изменением параметров спектров в этом ряду: обнаруживается тройка спектров с последовательным батохромным сдвигом вследствие последовательного метилирования ОН-групп кольца В в ряду - 3-глюкозиды дельфинидина, петунидина и мальвидина; и еще один двойной, не различающихся по электронным спектрам 3-глюкозидов цианидина и пеонидина. В этой паре по непонятным причинам метилирование гидроксильной группы кольца В не приводит к сдвигу спектра. Другие 5 компонентов по результатам масс-спектрометрического детектирования определены как малонированые производные тех же антоцианов, т.е. 3-глюкозидов.

Антоцианы цветков мальвы розовой (штокрозы). В экстракте цветков этого растения найден самый богатый спектр антоцианов, который на самом деле легко поддается идентификации с учетом выполненных выше исследований. Так, во-первых, в экстракте цветков данного вида, как и в экстракте цветков гибискуса суданского, обнаруживаются пять 3-глюкозидов тех же антоцианидинов. Во вторых, присутствует еще одна группа пиков, - 3-рутинозидов. В-третьих, еще одна группа пиков по росту удерживания и по сохранению параметров электронных спектров может быть отнесена к 3-глюкозидам, ацилированным малоновой кислотой (в положение 6 – отнесение выполнено по сопоставлению с удерживанием компонентов антоциановых комплексов пурпурной кукурузы).

Таким образом, накопление антоцианов характерно для цветков многих видов растений семейства мальвовые. В этом отношении наиболее известным объектом являются сушеные цветки гибискуса суданского (чай каркаде), основные благоприятные для здоровья человека компоненты которого – антоцианы. Но и другие растения вида также могут накапливать большое (судя по темной окраске) количество антоцианов, к которым относится и издавна популярное в России декоративное растение – так называемая незрелая роза китайская (Hibiscus rosa-sinensis).

Для сопоставления свойств напитков, приготовленных из сушеных лепестков (или бутонов) двух указанных гибискусов были приготовлены настоя в кипящей воде из одинаковых навесок воздушно сухого сырья. Затем в полученных настоях
определяли концентрацию антоцианов и исследовали цветки по реакции с реактивом Фолина-Чокальтеу.

Реактив Фолина-Чокальтеу принят в лабораторной практике всего мира для определения полифенольных соединений. Но на самом деле, это глубокое заблуждение, поскольку реактив чувствителен не только к названным соединениям, но и к множеству других, к которым относятся, например, аскорбиновая кислота, некоторые аминокислоты и белки их содержащие и множество других веществ с восстановительной активностью. Иначе говоря, метод с использованием данного реактива — оценка восстановительной активности растительного материала или экстракта на его основе. Т.е. метод позволяет оценить наиболее активную часть антиоксидантных свойств. При этом результат чаще всего выражают в эквивалентах некоторого вещества сравнения, причем выбор такого никак не обосновывается.

Окислительно-восстановительная реакция между окислителем (оксидантом) и восстановителем (antityоксидантом) может проходить быстро или медленно, в одну или в несколько стадий. Превращение антиоксиданта в продукт, уже не способный продолжить инактивацию оксиданта — наиболее простой случай. К таким антиоксиданам относится аскорбиновая кислота и Тролокс, для которых характерна отдача двух электронов. Это подсказывает простое выражение антиоксидантных свойств — в числе моль электронов, способных быть переданных компонентам исследуемого экстракта. Но чаще продукт окисления также обладает антиоксидантной активностью, и не только первый продукт, но и второй и т.д. В этом случае измеряемое свойство раствора (например, интенсивность окраски раствора дифенилпикрилгидразином) за разумное время не выходит на истинное плато, - именно в таком случае антиоксидантное свойство (которое уже разумно обозначить, как антиоксидантная емкость) можно выражать в единицах концентрации вещества сравнения.

Для процессов, протекающих быстро, а антоцианов относятся к соединениям, восстанавливаемым с высокой скоростью, удобно использовать аскорбиновую кислоту в качестве вещества сравнения. В итоге было установлено, что в напитках концентрация антоцианов составила (4.8 ± 0.7)·10⁻⁵ и (3.9 ± 0.3)·10⁻⁵ моль/л, для напитков из (I, Hibiscus rosa-chinensis) (II, Hibiscus sabdariffa), соответственно. Это полностью
соответствует изменению антиоксиданой активности напитков, измеренной реактивом Фолина-Чокальтеу: т.е. их восстановительная активность, выраженная в г/л аскорбиновой кислоты (0.025 ± 0.002 и 0.013 ± 0.002 для напитков I и II, соответственно) пропорциональны концентрации антоцианов, как основных фенольных водорастворимых антиоксидантов. Впрочем, в напитке каркаде, судя по соотношению найденных показателей, имеются еще вещества, вносящие заметный вклад в суммарную антиоксидантную активность.

PHENOLICS OF PLANT INFUSIONS: THEIR ROLE IN ANTIOXIDANT ACTIVITY

Oleinits E.Y., Deineka V.I.
Belgorod State National Research University, Belgorod, Russia, 812887@bsu.edu.ru

Many plants of the Malvaceae family are widely used as ornamental plants due to the bright coloration of flowers. In this case, the color of flowers from red to black indicates the biosynthesis of anthocyanins, so the flowers of some of them can be regarded to as non-traditional (inedible) sources of anthocyanins. Anthocyanins of some hibiscus flowers were determined by RP HPLC and antioxidant power of two plant infusions was compared by Folin-Chokalteu method.

БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ РАСТЕНИЙ РОДА AGASTACHE J.CLAYTON EX GRONOV.

Поливанова О.Б., Череднichenko M.Yu.
ФГБОУ ВО Российский государственный аграрный университет – МСХА имени К.А. Тимирязева, Москва, Россия, polivanovaoks@gmail.com

Аннотация. Растения рода Agastache привлекают внимание исследователей из-за многообразия содержащихся в них фенольных соединений и их биологической активности. Наиболее ценными вторичными метаболитами Agastache фенольной природы являются производные кофейной кислоты, прежде всего, розмариновая кислота и флавоноиды, такие как акацетин и тилианин. Розмариновая
кислота обладает антиоксидантной активностью и улучшает когнитивные функции. Agastache rugosa является одним из лидеров по содержанию этого вещества в культуре клеток и тканей. Тилианин обладает кардиоваскулярным и противовоспалительным эффектом, а также оказывает антидиабетическое и антигиперлипидемическое действие. Акацетин из Agastache mexicana демонстрирует болеутоляющий эффект. Представители рода также являются источником новых фенольных соединений с предполагаемой биологической активностью.

Вторичные метаболиты растений, такие как алкалоиды, терпеноиды и фенолы, играют различные функциональные роли, способствующие выживанию и распространению растений. Данные группы веществ действуют как защита от фитофагов, вирусов, как инструмент конкурентной борьбы, защитный механизм против абдитивных факторов или как сигнал для опыления. Фенолы растений заслуживают особыого внимания среди многообразия вторичных метаболитов, так как обладают различными физическими, химическими и биологическими свойствами, связанными с фенольной функциональной группой [1].

Семейство Lamiaceae Mart. (Яснотковые) насчитывает 7136 видов, объединенных в 236 родов [2]. Виды сем. Яснотковые имеют большое экономическое значение, так как содержат широкий спектр активных компонентов, применяемых в пищевой, косметической, фармацевтической промышленности и в качестве пестицидов. В настоящее время наряду с широко известными родами, такими как мята (Mentha L.), лаванда (Lavandula L.), базилик (Ocimum L.), шалфей (Salvia L.) и др., популярным объектом исследований являются растения рода Многоколосник (Agastache J.Clayton ex Gronov.). Род насчитывает более 20 видов многолетних лекарственных и ароматических растений, обладающих обширным метаболическим профилем фенольных соединений.

Наиболее распространенными фенольными метаболитами среди представителей рода Agastache являются предшественники кофейной кислоты, среди которых значимыми являются розмариновая кислота и некоторые гликозилированные флавоноиды [3]. Розмариновая кислота является одним из вторичных метаболитов, получаемых в культуре клеток и тканей.
в чрезвычайно больших количествах, до 19 % сухой массы клетки [4]. Agastache rugosa является одним из лидеров по содержанию розмариновой кислоты в суспензионной культуре (1,5 % сухой массы) [5] и в культуре бородатых корней (11,6 %) [6]. Большое количество розмариновой кислоты содержится также в соцветиях (48,43 мг/г), корнях (30,97 мг/г) и листьях (22,14 мг/г) A. rugosa [7].

Розмариновая кислота обладает антивирусной, антибактериальной, цитотоксической, противовоспалительной и, прежде всего, антиоксидантной активностью. Антиоксидантная активность розмариновой кислоты связана со стабилизацией мембран и препятствием к распространению свободных радикалов, что способствует защите мембран от окислительных повреждений. Розмариновая кислота значительно снижала производство активных форм кислорода и уменьшала выброс интерлейкина-6, предотвращая повреждение кератиноцитов человека УФ-излучением [4]. Имеются данные о положительном влиянии розмариновой кислоты на когнитивные функции. Она ингибитирует образование β-амилоидных агрегатов, что делает ее потенциальным средством профилактики болезни Альцгеймера [8]. Небольшие количества розмариновой кислоты также увеличивают способность нейронов противостоять инсульту [4].

Наиболее типичным флавоном для представителей Agastache является акацетин (5,7-дигидрокси-4’-метоксифлавон), а гликозидом — тилианин (акацетин-7-O-β-D-глюкопиранозид). Данные вещества представлены в надземных частях и корнях A. rugosa и A. mexicana [7]. С действием тилианина связывают кардиоваскулярный и противовоспалительный эффект экстрактов A. mexicana. Тилианин также может оказывать антидиабетическое и антигиперлипидемическое действие. При добавлении в диету крыс тилианина, полученного из экстракта A. mexicana, у животных наблюдалось снижение уровня глюкозы, триглицеридов и холестерина в крови, а также экспрессии интерлейкинов [9]. С действием акацетина связывают болеутоляющую активность метанольных экстрактов A. mexicana [10].

Растения рода Agastache являются источников новых уникальных флавоноидов, таких как изоагастахозид (2’’-O-ацетил-7-β-D-глюкопираноксилокси-5-гидрокси-4’’-метоксифлавон), агастахин (ди-(6’’-акацетин-7-гликозил)малонат), акацетин 7-O-β-(6’’-(E)-кротонил

Список литературы.
Plants of *Agastache* genus attract attention of researchers because of variety phenolic compounds and their biological activity. The most valuable phenolic secondary metabolites of *Agastache* are derivatives of caffeic acid, especially rosmarinic acid and flavonoids, such as acacetin and tyliamine. Rosmarinic acid has antioxidant activity and improves cognitive function. *Agastache rugosa* is one of the leaders in the content of this substance in plant tissue and cell culture. Tiliain has cardiovascular, anti-inflammatory, antidiabetic and antihyperlipidemic effect. Acacetin from *Agastache mexicana* shows analgesic effect. The genus representatives are also a source of new phenolic compounds with expected biological activity.
помощью УЭЖХ-МСВР. Показано, что основными компонентами их фенольных комплексов являлись проантоцианидинги.

Лапчатка белая (Potentilla alba) принадлежит к многочисленному роду Potentilla, который включает в себя около 500 видов растений [1]. Препараты из лапчатки белой широко используются при лечении различных нарушений функции щитовидной железы (гипертиреоз, гипотиреоз), а также при заболеваниях печени, сердечно-сосудистой системы и желудочно-кишечного тракта [2].

При изучении химического состава лапчатки белой, в корнях обнаружены фитостерины, терпеноиды, сапонины, фенолкарбоновые кислоты, флавонOIDы, гидролизуемые дубильные вещества и проантоцианидинги [3-11].

Проантоцианидинги – это конденсированные дубильные вещества производные флаван-3-олов (катехина, эпикатехина, галлокатехина, эпигаллокатехина). В растениях они представлены двумя типами структур – «А» и «Б». Проантоцианидинги типа «А» состоят из флаван-3-олов, связанных между собой через C4-С6' или C4-С8' атомы углерода, а типы «Б» имеют дополнительную эфирную связь C2-О-С7' [12].

Изучению проантоцианидинов у разных видов Potentilla, уделялось значительное внимание [13-16]. Применение современных методов анализа, таких как ульTRA-эффективная жидкостная хроматография (УЭЖХ) и масс-спектрометрия высокого разрешения (МСВР), значительно расширяет возможности изучения этого класса фенольных соединений.

В связи с этим, целью исследования было изучение состава проантоцианидинов в извлечении из свежих корней и корневищ лапчатки белой с помощью УЭЖХ-МСВР.

Объектом исследования были растения лапчатки белой (Potentilla alba L.), выращенные на экспериментальных полях ВИЛАР-центра (Москва). Корни и корневища были собраны с 10 растений лапчатки белой и отмыты от земли. Образцы свежих корней и корневищ каждого растения весом 75-170 мг помещали в пробирки на 2 мл, добавляли 1 мл ацетона и измельчали на шаровой мельнице ММ 220 (RetschGmbH&Co.KG) в течение 3 минут при частоте 20 Гц с одним металлическим шариком диаметром 5 мм. Экстракт отделяли центрифугированием при
20000 \times g в течение 10 минут и экстракцию повторяли еще два раза с 1 мл 80%-ного водного ацетона при комнатной температуре и постоянном перемешивании (Vortex, Genie 2) в течение 15 минут. Объединенные экстракты упаривали досуха в концентраторе (Eppendorf, Concentrator plus) при 45 °C и хранили при -20 °C. Параллельно были собраны образцы для определения сухой массы корней и корневищ.

Образцы сухого экстракта растворяли в 1 мл воды в течение 15 минут при комнатной температуре и постоянном перемешивании (VORTEX Genie 2, Scientific Industries), центрифугировали и очищали фильтрованием (фильтр Clean 2, 0.2 µm). 0,2 мл водного экстракта метаболитов разбавляли водой в 5 раз и использовали для анализа с помощью ультраэффективной жидкостной хроматографической системы (УЭЖХ, Acquity UPLC® 2.9.0, Waters Corporation, Milford, США), которая включала автосамплер, насос и фотодиодный детектор (190-500 нм). Использовали колонку Acquity UPLC® BEH Phenyl (2,1 × 100 мм, 1,7 мкм, Waters Corporation, Wexford, Ireland). В градиентной программе использовали 0,1% муравьиную кислоту (А) и ацетонитрил (Б): 0-0,5 мин, 0,1% Б в А; 0,5-7,0 мин, 0,1-90,0% Б в А (линейный градиент); 7,0-9,5 мин, промывка и стабилизация колонки. Скорость потока элюента - 0,5 мл/мин, объем введённого образца - 5 µл. УЭЖХ система была объединена с масс-спектрометром Thermo Scientific QExactive Orbitrap 2.5, оснащенным источником нагретой электрораспылительной ионизации (HESI). Масс-спектrometer работал в отрицательном режиме ионизации, ионы сканировались в диапазоне 150-2000 Да. Условия HESI были следующими: скорость потока газа была установлена равной 60, расход вспомогательного газа 20, напряжение распыления при 3 кВ, температура капилляра при 380 °C и уровень RF S-линзы при 60,0. Настройки для полного режима сканирования: микросканы 1, разрешение 140000, цель АРУ 3 × 106 и максимум 200 мс. Инструмент управлялся программным обеспечением Thermo Xcalibur 3.0.63. Все растворители получены от Sigma-Aldrich.

Результаты и их обсуждение. При анализе УФ и масс-спектрометрических данных метаболитов корней и корневищ лапчатки белой были идентифицированы 34 фенольных соединения (таблица). Обнаружены мономеры флаван-3-ола (+) - катехин и (+)-эпикатехин (соединения № 4 и 5; m/z фрагмент

Таблица 1.

<table>
<thead>
<tr>
<th>Номер</th>
<th>Время, мин</th>
<th>УФ максимум, нм</th>
<th>Масс-спектрометрические данные: m/z фрагмент</th>
<th>Моноизотопная масса</th>
<th>Фенольное соединение</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>([M-H]^-) [2M-H]^- [3M-H]^-) Дополнительные m/z значения</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2,182</td>
<td>279,0</td>
<td>315,071 9 [631,149 9] 9</td>
<td>316,079 4</td>
<td>Гликозид галловой кислоты</td>
</tr>
<tr>
<td>2</td>
<td>3,310</td>
<td>281,5; 312,3</td>
<td>265,035 2 [531,078 1]</td>
<td>266,042 7</td>
<td>р-Кумароил-винная кислота, изомер 1</td>
</tr>
<tr>
<td>3</td>
<td>3,363</td>
<td>279,1; 312,6</td>
<td>265,035 4 [531,078 4]</td>
<td>266,042 7</td>
<td>р-Кумароил-винная кислота, изомер 2</td>
</tr>
</tbody>
</table>

Мономеры флаван-3-ола и их гликозиды

<table>
<thead>
<tr>
<th>Номер</th>
<th>Время, мин</th>
<th>УФ максимум, нм</th>
<th>Масс-спектрометрические данные: m/z фрагмент</th>
<th>Моноизотопная масса</th>
<th>Фенольное соединение</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2,919</td>
<td>278,6</td>
<td>289,071 6 [579,149 9] 9</td>
<td>290,079 0</td>
<td>(+)-Катехин</td>
</tr>
<tr>
<td>5</td>
<td>3,363</td>
<td>279,1</td>
<td>289,071 7 [579,149 6] 3</td>
<td>290,079 0</td>
<td>(+)-Эпикатехин</td>
</tr>
<tr>
<td></td>
<td>Масса</td>
<td>Масса</td>
<td>Масса</td>
<td>Масса</td>
<td>Масса</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>6</td>
<td>2,42</td>
<td>277,8</td>
<td>451,123</td>
<td>903,258</td>
<td>1355,38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[M-6-гексоза]</td>
</tr>
<tr>
<td>7</td>
<td>2,706</td>
<td>278,9</td>
<td>451,123</td>
<td>903,252</td>
<td>1355,38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[M+FA-H]</td>
</tr>
</tbody>
</table>

Проантоцианидин олигомеры типа "Б"

<table>
<thead>
<tr>
<th></th>
<th>Масса</th>
<th>Масса</th>
<th>Масса</th>
<th>Масса</th>
<th>Масса</th>
<th>Масса</th>
<th>Масса</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>2,971</td>
<td>278,9</td>
<td>739,187</td>
<td>1155,27</td>
<td>1555,38</td>
<td>289,0718</td>
<td>452,131</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[M-6-гексоза]</td>
<td></td>
<td>ПА-димер "Б", моногликозид</td>
</tr>
<tr>
<td>9</td>
<td>2,814</td>
<td>278,8</td>
<td>577,134</td>
<td>1155,27</td>
<td>1555,38</td>
<td>578,142</td>
<td>452,131</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[M+FA-H]</td>
<td></td>
<td>ПА-димер "Б", изомер-1</td>
</tr>
<tr>
<td>10</td>
<td>2,971</td>
<td>278,7</td>
<td>577,134</td>
<td>1155,27</td>
<td>1555,38</td>
<td>578,142</td>
<td>452,131</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[M+FA-H]</td>
<td></td>
<td>ПА-димер "Б", изомер 2</td>
</tr>
<tr>
<td>11</td>
<td>3,122</td>
<td>279,0</td>
<td>577,131</td>
<td>1155,27</td>
<td>1555,38</td>
<td>578,142</td>
<td>452,131</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[M+FA-H]</td>
<td></td>
<td>ПА-димер "Б", изомер 3</td>
</tr>
<tr>
<td>12</td>
<td>3,191</td>
<td>279,2</td>
<td>577,134</td>
<td>1155,27</td>
<td>1555,38</td>
<td>578,142</td>
<td>452,131</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[M+FA-H]</td>
<td></td>
<td>ПА-димер "Б", изомер 4</td>
</tr>
<tr>
<td>13</td>
<td>3,723</td>
<td>279,1</td>
<td>577,134</td>
<td>1155,27</td>
<td>1555,38</td>
<td>578,142</td>
<td>452,131</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[M+FA-H]</td>
<td></td>
<td>ПА-димер "Б", изомер 5</td>
</tr>
<tr>
<td>14</td>
<td>3,122</td>
<td>279,1</td>
<td>865,195</td>
<td>1155,27</td>
<td>1555,38</td>
<td>578,142</td>
<td>452,131</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[M+FA-H]</td>
<td></td>
<td>ПА-тример "Б", изомер-1</td>
</tr>
<tr>
<td>15</td>
<td>3,191</td>
<td>279,1</td>
<td>865,194</td>
<td>1155,27</td>
<td>1555,38</td>
<td>578,142</td>
<td>452,131</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[M+FA-H]</td>
<td></td>
<td>ПА-тример "Б", изомер 2</td>
</tr>
<tr>
<td>16</td>
<td>3,791</td>
<td>279,05</td>
<td>1155,27</td>
<td>1555,38</td>
<td>578,142</td>
<td>1156,30</td>
<td>ПА-тетramer "Б", изомер 1</td>
</tr>
<tr>
<td>17</td>
<td>3,191</td>
<td>279,5</td>
<td>1441,31</td>
<td>1155,27</td>
<td>1555,38</td>
<td>1442,33</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[M+FA-H]</td>
<td></td>
<td>ПА-пентамер "Б", изомер 1</td>
</tr>
<tr>
<td>18</td>
<td>3,723</td>
<td>279,15</td>
<td>1441,31</td>
<td>1155,27</td>
<td>1555,38</td>
<td>1442,33</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[M+FA-H]</td>
<td></td>
<td>ПА-пентамер "Б", изомер 2</td>
</tr>
<tr>
<td>19</td>
<td>3,791</td>
<td>279,0</td>
<td>1441,31</td>
<td>1155,27</td>
<td>1555,38</td>
<td>1442,33</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[M+FA-H]</td>
<td></td>
<td>ПА-пентамер "Б", изомер 3</td>
</tr>
</tbody>
</table>

Проантоцианидин олигомеры типа "А"

<table>
<thead>
<tr>
<th></th>
<th>Масса</th>
<th>Масса</th>
<th>Масса</th>
<th>Масса</th>
<th>Масса</th>
<th>Масса</th>
<th>Масса</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>2,971</td>
<td>278,7</td>
<td>575,120</td>
<td>1155,27</td>
<td>1555,38</td>
<td>576,126</td>
<td>ПА-димер "А", изомер 1</td>
</tr>
<tr>
<td>21</td>
<td>3,122</td>
<td>279,0</td>
<td>575,120</td>
<td>1155,27</td>
<td>1555,38</td>
<td>576,126</td>
<td>ПА-димер "А", изомер 2</td>
</tr>
<tr>
<td>22</td>
<td>3,191</td>
<td>279,3</td>
<td>575,120</td>
<td>1155,27</td>
<td>1555,38</td>
<td>576,126</td>
<td>ПА-димер "А", изомер 3</td>
</tr>
<tr>
<td>23</td>
<td>3,546</td>
<td>278,7</td>
<td>863,183</td>
<td>1155,27</td>
<td>1555,38</td>
<td>864,190</td>
<td>ПА-тример "А", изомер 1</td>
</tr>
<tr>
<td>24</td>
<td>3,666</td>
<td>278,7</td>
<td>863,182</td>
<td>1155,27</td>
<td>1555,38</td>
<td>864,190</td>
<td>ПА-тример "А", изомер 2</td>
</tr>
<tr>
<td>25</td>
<td>3,723</td>
<td>279,2</td>
<td>863,182</td>
<td>1155,27</td>
<td>1555,38</td>
<td>864,190</td>
<td>ПА-тример "А", изомер 3</td>
</tr>
<tr>
<td>26</td>
<td>3,791</td>
<td>279,0</td>
<td>863,183</td>
<td>1155,27</td>
<td>1555,38</td>
<td>864,190</td>
<td>ПА-тример "А", изомер 4</td>
</tr>
<tr>
<td>27</td>
<td>3,310</td>
<td>281,5</td>
<td>1151,24</td>
<td>1155,27</td>
<td>1555,38</td>
<td>575,1205</td>
<td>ПА-</td>
</tr>
</tbody>
</table>
С помощью колориметрического метода установлено, что среднее общее содержание проантоцианидинов в корнях и корневищах лапчатки белой достигает 20 % сухой массы [16]. Таким образом, проантоцианидины являются основными фенольными соединениями корней и корневищ лапчатки белой.

Список литературы:
1. Юзепчук, С.В. Род Potentilla L. Лапчатка. - в Кн.: Флора СССР. М.-Л., 1941, т. 10, с. 78-223.
6. Башилов, А.В. Использование Potentilla alba L. в качестве лекарственного растительного сырья в условиях республики Беларусь / А.В. Башилов //Экологический вестник. - 2010. - № 3. -
С. 85-89.

THE COMPOSITION AND CONTENT OF PROANTHOCYANIDINS OF WHITE CINQUEFOIL ROOTS (POTENTILLA ALBA).
Polyakov N.A.1, Hazieva F.M.1, Meshkov A.I.1, Korotkikh I.N.1, Ossipov V.I.1,2
The aim of the study was the analysis of polymers flavanol units such as proanthocyanidins in the extract of *Potentilla alba* roots with application of ultra-performance liquid chromatography and high resolution mass spectrometry. It was shown that the roots of *Potentilla alba* were considerably more abundant in total contents of polyphenols, particularly in oligomeric procyanidins. A large number of di-, tri-, tetra-, penta- and hexamers proanthocyanidin types "A" and "B" were found.

ИССЛЕДОВАНИЯ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ САФЛОРА КРАСИЛЬНОГО

Попова Н.В., Баражовец О.В., Литвиненко В.И.
Национальный фармацевтический университет, Харьков, Украина
bromatology@nuph.edu.ua
Государственный центр лекарственных средств и медицинской продукции, Харьков, Украина

Картамус или сафлор красильный *Carthamus tinctorius* L. (*Asteraceae*) – однолетняя травянистая диплоидная (2n=24) масличная культура, напоминающая чертополох, произрастающая в сухой жаркой зоне, по-видимому, была
введена в культуру 4000 лет назад. Растение происходит из Южной Азии, где культивировалось в Китае, Индии, Иране и Египте еще в доисторические времена. В средние века появился в Италии, Франции, Испании, откуда был завезен в США и по всему Средиземноморскому региону. В Украине созданы сорта сафлора красильного: солнечный, степной, живчик, лагидный. Сафлор - сельскохозяйственная культура с древней историей, много веков это растение используется для получения красителя из лепестков (цветки известны под названием «ложный шафран») и растительного масла из семян [1, 6,7].

Более 200 биологически активных веществ было выделено из сафлора красильного, среди них флавоноиды, производные гидроксикоричной кислоты, кумарины, жирные кислоты, летучие вещества, стероиды, углеводы и др. [1, 6].

Сафлор красильный – лекарственное фармакопейное растение, цветки и масло сафлора включены в фармакопеи США, Европы, Польши, Японии [1].

Нами был проведен предварительный анализ биологически активных соединений цветков и семян сафлора красильного, который показал наличие ряда природных соединений: жирное масло богато полиненасыщенными жирыми кислотами, жирорастворимыми витаминами, аминокислотами, углеводами, в том числе глюкофруктанами. Результаты анализа суммы фенольных соединений показали, что отечественное сырье (цветки) соответствует требованиям Европейской фармакопеи [2].

Поэтому углубленное исследование растительного сырья отечественных украинских сортов сафлора является актуальной проблемой фитохимии и фармации.

Цель исследования. Целью работы является изучение состава фенольных соединений в отечественных сортах сырья (цветки и семена) сафлора красильного.

Методы исследования. Для исследования использовали образцы сафлора красильного, собранные в 2014-2016 гг. в различной фазе вегетации растения в период с июня по сентябрь на фармакопейном участке ботанического сада НФаУ.

Хроматографический анализ проводили с помощью бумажной и тонкослойной хроматографии. Для этого использовали хроматографическую бумагу «Filtrak» различных номеров, хроматографические пластинки «Silufol», «Sorbfil» и «Merck».
Анализ проводили в следующих системах растворителей: дистиллированная вода, 3% водный раствор натрия хлорида, бутанол - уксусная кислота - вода 4: 1: 2, 2%, 15% и 30% уксусная кислота, муравьиная кислота - уксусная кислота- вода- этилацетат (11:11:27:100) и др.

Флавоноиды идентифицировали по темной или темно-желтой окраске в УФ-свете, которая менялась под влиянием паров аммиака. Для идентификации флавоноидов на хроматограммах использовали такие реактивы: конц. раствор аммиака, 10% раствор натрия гидроксида, 2% раствор хлористого циркония. После прохождения хроматограммы высушивали и анализировали в УФ-свете до и после обработки специфическими реактивами. На основании хроматографического анализа и в сравнении с достоверными образцами удалось идентифицировать ряд флавоноидов, характеристика которых приведена в таблице 1.

Хроматографический анализ спиртовых и водных экстрактов цветков сафлора красильного позволил идентифицировать сумму «желтого пигмента» и «красного пигмента» в соответствии с требованиями фармакопей Европы, Японии и США [1,2].

Большая часть производных флавоноидов сафлора красильного отличается тем, что в видимом свете их пятна на хроматограмме имеют, как желтую так оранжевую окраску, а в фильтрованном УФ-свете имеют темную, бурую и голубую окраску. Эти окраски изменяются (или не изменяются) под действием хлорида алюминия, хлористого циркония или в парах аммиака. На всех хроматограммах отмечены вещества халконовой природы.

Вещества также идентифицировали по показателям Rf и в сравнении с достоверными образцами.

Анализ флавоноидов проводили также на хроматографе модели LC-20 Prominence (Shimadzu) в следующей комплектации: насос LC-20AD, автосамплер SIL-20A, детектор SPD-20AV, термостат CTO-20A, системный контроллер CBM-20 ALITE.

В целом обнаружено ряд флавоноидов, среди них: лютеолин, цинарозид, гелихрихин, акацетин, изосалипурпозид, наригенин, гидроксикоричные кислоты: кофейная, хлорогеновая, феруловая, кумаровая кислоты, которые были идентифицированы на основе УФ-спектральных и химических исследований. Новыми для сырья сафлора являются
нarinин, изосалипурпразид, гелихризин [2, 4].

С помощью спектрофотометрии провели определение содержания "желтого и красного пигментов", при длине волны \(\lambda = 401 \text{ нм}, \lambda = 518 \text{ нм} \) соответственно, и сумму флавоноидов в пересчете на гиперозид (1,08-1,20%). Установлено, что цветки сафлора красильного отечественных сортов по содержанию флавоноидов соответствуют требованиям ЕФ [1].

Таблица 1. Физико-химические свойства фенольных соединений сафлора красильного

<table>
<thead>
<tr>
<th>Фенольное соединение</th>
<th>Химическая структура</th>
<th>УФ спектр (\lambda_{max})</th>
<th>Орган сафлора о</th>
</tr>
</thead>
<tbody>
<tr>
<td>Лютеолин</td>
<td>3’, 4’, 5,7- тетрагидроксифлавон</td>
<td>УФ спектр 350нм, 265 пл, 255;</td>
<td>Цветки, трава</td>
</tr>
<tr>
<td>Цинарозид</td>
<td>7-О-глюкозид лютеолина</td>
<td>УФ спектр 350, 265 пл, 255</td>
<td>Цветки, трава</td>
</tr>
<tr>
<td>Гелихризин</td>
<td>5-О-глюкозид нарингенина</td>
<td>УФ спектр 315, 285</td>
<td>Цветки, трава</td>
</tr>
<tr>
<td>Нарингенин</td>
<td>5,7,4’- тригидроксифлаванон</td>
<td>УФ спектр 325, 290</td>
<td>Цветки, трава</td>
</tr>
<tr>
<td>Изосалипурпразид</td>
<td>6-О-глюкопиранозид 2,4,6,4’-тетрагидроксихалкона</td>
<td>УФ спектр 370, 315пл</td>
<td>Цветки, трава</td>
</tr>
<tr>
<td>Акацетин C_{16}H_{12}O_{5}</td>
<td>3’-метокси, 5,7- дигидроксифлавон</td>
<td>УФ спектр 328, 270</td>
<td>семена</td>
</tr>
<tr>
<td>Кофейная кислота</td>
<td>3,4 дигидроксикоричная кислота</td>
<td>УФ спектр 325, 245</td>
<td>Цветки, трава</td>
</tr>
<tr>
<td>Хлорогеновая кислота</td>
<td>3-О-кофеил-D- хинная</td>
<td>УФ спектр 325, 240</td>
<td>Цветки, трава</td>
</tr>
<tr>
<td>Феруловая кислота</td>
<td>3-гидрокси-4- метоксикоричная кислота</td>
<td>УФ спектр 320, 290, 234</td>
<td>семена</td>
</tr>
<tr>
<td>Кумаровая кислота</td>
<td>гидрокси-коричная кислота</td>
<td>УФ спектр 310, 228</td>
<td>семена</td>
</tr>
</tbody>
</table>

Результаты исследований свидетельствуют, что цветки и семена сафлора красильного имеют богатый химический состав, что объясняет широкий спектр фармакологического действия препаратов на основе сафлора красильного [6].
Список литературы:

RESEARCH OF PHENOLIC COMPOUNDS OF SAFFLOWER

Popova N.V., Barashovets O.V., Litvinenko V.I.

National University of Pharmacy, Kharkov, Ukraine
bromatology@nuph.edu.ua

State Center of Medicines and Medical Products, Kharkov, Ukraine

Safflower is a famous oilseed plant from the family Astreraceae, cultivated in many regions of the world. Herbal drugs of this plant has found its application in pharmacy and medicine. Studies of phenolic substances have been carried out, the following compounds have been isolated and identified: flavonoids: luteolin, cynaroside, helichrysin, naringenin, isosalipurposide, acacetin, hydroxycinnamic acids: caffeic, chlorogenic, ferulic, coumaric acids. Naringenin, isosalipurposide and helichrysin are a new compounds for safflower. The quantitative analysis of the total of phenolic compounds and individual substances was carried out.
ФЕНОЛЬНЫЕ СОЕДИНЕНИЯ ЛИШАЙНИКОВ РОДА CLADONIA И ИХ БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ

Прокопьев И.А., Порядина Л.Н., Филиппов Э.В., Филиппова Г.В.
ФГБУН Институт биологических проблем криолитозоны СО РАН, Якутск, Россия, ilya.a.prokopiev@gmail.com

Аннотация. Показано, что наиболее часто встречающимися ароматическими соединениями, среди изученных 15 видов лишайников рода Cladonia, являлись усиновая и фумарпротоцетраровая кислоты. Выявлено, что (+) и (−) энантиомеры усиновой кислоты в концентрациях 40-300 мкмоль обладали выраженной цитотоксичностью в отношении лимфоцитов периферической крови человека. Установлено, что (+)- и (−)-энантиомеры усиновой кислоты в концентрациях 40-300 мкмоль проявляли генотоксическое действие, при этом генотоксичность (−)-усиновой кислоты в концентрациях 150 и 300 мкмоль была в 2.0 раза выше, чем у (+)-энантиомера.

Основными вторичными метаболитами лишайников рода Cladonia являются специфические фенольные соединения, образующиеся по ацетатно-малонатному пути биосинтеза. В настоящее время известно порядка 800 специфических фенольных соединений характерных для лишайников (депсиды, депсидоны, дибензофураны и хиноны), которые принято объединять в гетерогенную группу лишайниковых веществ [1, 2].

Биологическая роль фенольных соединений лишайников при протекании метаболических процессов остается недостаточно выясненной. Одной из функций некоторых полиfenолов признается защита от действия высокой инсоляции путем поглощения избыточного УФ излучения. Также было обнаружено ингибитирующее действие лишайниковых полиfenолов на рост и развитие высших растений, водорослей и грибов. Кроме того, фенольные кислоты, выделенные из лишайников, проявляют выраженное бактерицидное действие в отношении грамположительных микроорганизмов и микобактерий, включая штаммы, устойчивые к антибиотикам [3].

Проведено хроматографическое исследование 23 образцов,

Установлено, что изученные лишайники содержали 8 ароматических метаболитов группы лишайниковых веществ, относящихся к депсидам - атранорин, перлатолиевая, барбатовая, скваматовая и тамноловая кислоты, депсидонам - фумарпротоцетраровая кислота и дибензофуранам - усиновая и изоусниновая кислоты.

Компонентный состав большинства изученных лишайников соответствовал ранее описанному в литературе [4]. Показано, что лишайники C. *arbuscula*, C. *cariosa*, C. *mitis* и C. *stellaris*, отобранные в Якутии, по компонентному составу относились к одним и тем же ранее известным хемотипам, широко распространенным внутри северных популяций данных видов.

Количественное содержание отдельных лишайниковых веществ варьировало в широком диапазоне. Так, например, содержание тамноловой кислоты изменялось от следовых количеств в C. *cenotea* до 8.6 % от сухой массы в C. *digitata*. Наиболее часто встречающимися ароматическими соединениями, среди изученных видов лишайников рода *Cladonia*, являлись усиновая кислота (у 6 из 15 изученных видов) и фумарпротоцетраровая кислота (у 8 из 15 изученных видов). Наибольшее содержание усиновой кислоты (3.8±0.4 % от сухой массы) наблюдалось в лишайниках C. *deformis*, фумарпротоцетраровой в лишайниках C. *coniocraea* (хемотип I) – 3.8 % от сухой массы.

Усиновая кислота является широко распространенным среди лишайников рода *Cladonia* метаболитом. Известно, что в лишайниках содержатся (+) и (−) оптически активные формы усиновой кислоты. Причем (+)-стереоизомер обладает большей антибактериальной активностью в отношении аэробных и анаэробных бактерий по сравнению с (−)-стereoизомером [5]. Энантиомеры усиновой кислоты входят в состав различных БАД, получаемых на основе лишайникового сырья.

Вместе с тем, несмотря на активное использование
стереоизомеров усиновой кислоты, сведения о ее цитотоксическом и генотоксическом действии до сих пор носят спорадический и противоречивый характер.

Проведенное нами исследование жизнеспособности клеток лимфоцитов периферической крови показало значимое цитотоксическое действие различных концентраций (+)- и (−)-энантиомеров усиновой кислоты (рисунок). Из полученных данных (рисунок) видно, что число живых клеток при действии энантиомеров усиновой кислоты в концентрациях от 40 до 300 мкмоль, было в 1.1—7.0 раза ниже, чем в отрицательном контроле. Показано, что (−)-усиновая кислота в концентрациях 40 и 80 мкмоль проявляла менее выраженное цитотоксическое действие на клетки лимфоцитов, чем ее (+)-стереоизомер.

Исследование генотоксичности различных концентраций двух энантиомеров усиновой кислоты in vitro в лимфоцитах периферической крови человека проводили методом «ДНК-комет» в щелочной версии. Показано, что степень повреждения ДНК (% ДНК в хвосте «кометы») после инкубации лимфоцитов при концентрациях 40-300 мкмоль (+)- и (−)-энантиомеров усиновой кислоты была в 3.0-14.0 и 2.0-35.0 раза соответственно выше по сравнению с отрицательным контролем. При этом генотоксическое действие (−)-усиновой кислоты в концентрациях 150 и 300 мкмоль было в среднем в 2.0 раза

Рис.1. Жизнеспособность лимфоцитов при действии различных концентраций (−) и (+)-энантиомеров усиновой кислоты.
Серые столбцы - (−)-энантиомер, белые - (+)-энантиомер усиновой кислоты, звездочками отмечены статистически значимые отличия от отрицательного контроля (ДМСО).

Исследование генотоксичности различных концентраций двух энантиомеров усиновой кислоты in vitro в лимфоцитах периферической крови человека проводили методом «ДНК-комет» в щелочной версии. Показано, что степень повреждения ДНК (% ДНК в хвосте «кометы») после инкубации лимфоцитов при концентрациях 40-300 мкмоль (+)- и (−)-энантиомеров усиновой кислоты была в 3.0-14.0 и 2.0-35.0 раза соответственно выше по сравнению с отрицательным контролем. При этом генотоксическое действие (−)-усиновой кислоты в концентрациях 150 и 300 мкмоль было в среднем в 2.0 раза
выше, чем (+)-стереоизомера при тех же концентрациях.

Таким образом, наиболее часто встречаемыми ароматическими соединениями среди изученных видов лишайников рода Cladonia являлись усининовая и фумарпротоцетраровая кислоты. Энантиомеры усининовой кислоты в концентрациях 40-300 мкмоль обладали выраженной цитотоксичностью в отношении лимфоцитов периферической крови человека. Установлено, что (+)- и (–)-эпрахимо́ры усининовой кислоты в концентрациях 40-300 мкмоль проявляли генотоксическое действие, при этом генотоксичность (–)-эпрахимо́ры усининовой кислоты в концентрациях 150 и 300 мкмоль была в 2.0 раза выше, чем у (+)-эпрахимо́ры.

Работа выполнена в рамках госзаданий ИБПК СО РАН на 2017-2020 № AAAA-A17-117020110055-3 и AAAA-A17-117020110056-0 при финансовой поддержке РФФИ в рамках научного проекта № 17-04-01483 а.

Список литературы.

PHENOLIC COMPOUNDS OF GENUS CLADONIA LICHENS AND THEIR BIOLOGICAL ACTIVITY

Prokopiev I.A., Poryadina L.N., Filippov E.V., Filippova G.V.
Institute for Biological Problems of Cryolithozone SB RAS, Yakutsk, Russia, ilya.a.prokopiev@gmail.com

It was shown that usnic and fumarprotocetic acids is the most common aromatic compounds in studied 15 lichen of genus Cladonia. It
was found that (+) and (–)-usnic acid enantiomers in concentrations of 40-300 μmol had pronounced cytotoxicity with respect to human peripheral blood lymphocytes. Usnic acid enantiomers in concentrations of 40-300 μmol have exhibited a genotoxic effect; moreover, the genotoxicity of usnic-acid (–)-enantiomer in concentrations of 150 and 300 μmol was twice as high as that of (+)-enantiomer.

ФЛАВОНОИДЫ И ГИДРОКСИКОРИЧНЫЕ КИСЛОТЫ ПРЕДСТАВИТЕЛЕЙ РОДА LAVANDULA L.

Работягов В.Д., Палий А.Е., Старцева О.В., Палий И.Н.
ФГБУН Никитский ботанический сад – Национальный научный центр, Ялта, Россия, onlabor@yandex.ru

Аннотация. Изучено изменение содержания суммы фенольных соединений и отдельных компонентов в листьях Lavandula angustifolia Mill., L. latifolia Medic. и их межвидового гибрида в течение вегетации. Установлено, что максимальные концентрации фенольных соединений накапливают листья L. latifolia в фазе массового цветения. Выявлено, что листья всех исследованных образцов содержат более высокие концентрации суммы фенольных соединений, чем соцветия. Среди фенольных соединений листьев лаванды обнаружены неохлорогеновая, транс-кофейная и розмариновая кислоты, а также апигенин-7-О-глюкозид, лютеолин-7-О-глюкозид и кумарин. Соцветия отличаются также наличием апигенина, пиноцембрина и орто-кумаровой кислоты. По содержанию суммы фенольных соединений и отдельных компонентов межвидовой гибрид занимает промежуточное положение между исходными родительскими формами.

Лаванда (Lavandula L.) – род растений семейства яснотковых (Lamiaceae), включающий около 30 видов. К основным возделываемым видам рода Lavandula L. относятся лаванда узколистная – Lavandula angustifolia Mill. и лаванда широколистная – L. latifolia Medic. Лавандины (Lavandula x intermedia Emeric ex Loisel) – межвидовые гибриды первого поколения, возникающие в результате скрещивания лаванды узколистной и лаванды широколистной. Они отличаются от
исходных видов проявлением гетерозиса, чем и обусловливается особый интерес к ним [1]. Лаванда является ценной эфиромасличной, ароматической и лекарственной культурой.

В надземной части представителей рода *Lavandula* L. помимо эфирного масла также содержатся флавоноиды, гидроксикоричные кислоты и тритерпеноиды [2, 3]. Флавоноиды принимают активное участие в основных процессах жизнедеятельности растительных клеток: фотосинтезе, дыхании, а также защите от действия стрессовых факторов [4]. Гидроксикоричные кислоты в свободном виде или в виде гликозидов содержатся практически в каждом высшем растении, участвуя в поддержании необходимого окислительно-восстановительного баланса клетки они вносят свой вклад в нормальное гармоничное развитие растительного организма [5].

В Никитском ботаническом саду ведутся многолетние работы по интродукции и селекции лавандина, в результате которых были получен целый ряд хозяйственно-ценных сортов и селекционных форм. В связи с вышеизложенным актуальным является исследование особенностей накопления фенольных соединений межвидовых гибридов лаванды узколистной и л. широколистной.

Целью настоящего исследования являлось выявление особенностей накопления фенольных соединений в различных органах лаванды узколистной, лаванды широколистной и их межвидового гибрида.

Объектами исследований являлись лаванда узколистная, лаванда широколистная (родительские формы) и их аллотриплоидный гибрид — лавандин. В качестве сырья использовали соцветия, собранные в период массового цветения, а также листья весенне-летнего периода вегетации, собранные в период с мая по август месяц по мере наступления определенной фазы развития у каждого генотипа.

Содержание суммы фенольных веществ в этанольных экстрактах определяли спиртоспектрофотометрически по методу Фолина-Чокальтео на спиртоспектрофотометре Evolution 220 UV/VIS (Thermo Scientific) [6].

Компонентный состав фенольных соединений определяли на хроматографе Ultimate 3000 Dionex Thermo Scientific с диодно-матричным детектором DAD-3000. Идентификацию пиков производили на основании совпадения времени удерживания аналита и стандартного образца, а также совпадения УФ-
В результате проведенных исследований установлено, что содержание суммы фенольных соединений в листьях л. широколистной (29,3-90,2 мг/г в пересчете на сухой вес) было выше, чем у л. узколистной (27,2-56,3 мг/г) и аллотриплоидного лавандина (26,8-62,7 мг/г). Максимальное содержание фенольных соединений выявлено в фазах начала цветения (л. узколистная, лавандин) и массового цветения (л. широколистная).

В экстрактах из листьев идентифицированы три фенольные кислоты: неохлорогеновая, транс-кофейная, розмариновая и флавоноиды: апигенин-7-О-глюкозид, лютеолин-7-О-глюкозид и кумарин. Максимальное содержание розмариновой кислоты (4,6 мг/г) обнаружено в листьях л. широколистной в фазе окончания вегетации. Максимальное содержание неохлорогеновой кислоты (0,3 мг/г) и апигенин-7-О-глюкозида (1,7 мг/г) в листьях л. узколистной - в фазе начала вегетации. В листьях л. широколистной содержание транс-кофейной кислоты достигало максимума (1,7 мг/г) в фазе окончания вегетации. В листьях л. узколистной и лавандина в течение всей вегетации данное соединение не было обнаружено. Кроме того, в листьях лавандина также не был идентифицирован апигенин-7-О-глюкозид. Основным фенольным соединением листьев лавандина являлась розмариновая кислота, ее концентрация достигала максимума в период полного цветения (2,3 мг/г). Среди исследованных образцов лаванды листья лавандина накапливали максимальные количества лютеолин-7-О-глюкозида (0,3 мг/г) в фазе начала вегетации и кумарина (0,6 мг/г) в фазе полного цветения.

Содержание суммы фенольных соединений в соцветиях было ниже чем в листьях: у л. широколистной оно составляло 18,7 мг/г в пересчете на сухой вес, у л. узколистной 12,8мг/г, лавандина - 13,3 мг/г.

Среди фенольных веществ соцветий лаванды идентифицированы следующие флавоноиды и гидроксикоричные кислоты: апигенин-7-О-глюкозид, лютеолин-7-О-глюкозид, пиноцембрин, апигенин, орто-кумаровая, неохлорогеновая и розмариновая кислоты. Во всех исследованных образцах соцветий Lavandula L. основным фенольным соединением является неохлорогеновая и орто-кумаровая кислоты. Максимальные концентрации орто-кумаровой (0,24 мг/г),
розмариновой (0,14 мг/г) кислот и апигенин-7-О-глюкозида (0,03 мг/г) выявлены в соцветиях л. узколистной. Соцветия л. широколистной отличались минимальными концентрациями данных веществ и наличием лютеолин-7-О-глюкозида (0,03 мг/г). По содержанию отдельных компонентов соцветия аллотриплоидного лавандина занимают промежуточное положение между л. узколистной и л. широколистной.

Таким образом, установлено, что листья представителей рода Lavandula L. содержат более высокие концентрации суммы фенольных соединений, чем соцветия. Листья L. latifolia накапливают максимальные концентрации фенольных соединений в фазе массового цветения. Среди фенольных соединений листьев обнаружены неохлорогеновая, транс-кофейная и розмариновая кислоты, а также апигенин-7-О-глюкозид, лютеолин-7-О-глюкозид и кумарин. Соцветия отличаются от листьев наличием апигенина, пиноцембрина и орто-кумаровой кислоты. Соцветия и листья аллотриплоидного лавандина по содержанию суммы фенольных соединений и отдельных компонентов занимают промежуточное положение между исходными родительскими формами. Полученные результаты свидетельствуют о том, что листья L. angustifolia, L. latifolia и их гибрид также могут служить ценным источником фенольных соединений.

Работа выполнена при поддержке гранта Российского научного фонда № 14-50-00079.

Список литературы
5. Гончаров Н.Ф., Михайлов И.В., Гончаров Н.Н. Гидроксикоричные кислоты цветков и листьев нефармакопейных видов рода Боярышник // Фармацевтические науки. Фундаментальные
The change of total phenolics and individual components in the leaves of *Lavandula angustifolia* Mill., *L. latifolia* Medic. and their interspecies hybrid during vegetation has been studied. It has been found that the leaves of *L. latifolia* in the full blossom accumulate the maximum concentrations of phenolic compounds. It has found out that the leaves of all investigated samples have higher total phenolics content than their inflorescences. Neochlorogenic, *trans*-caffeic and rosmarinic acids, as well as apigenin-7-O-glucoside, luteolin-7-O-glucoside and coumarin were detected among the phenolic compounds of the leaves of lavender. Inflorescences are also notable for the presence of apigenin, pinocembrin and *ortho*-coumaric acid. The interspecies hybrid mediates the original parental forms in terms of the content of total phenolics and individual components.

СРАВНИТЕЛЬНЫЙ КАЧЕСТВЕННЫЙ АНАЛИЗ КОРНЕВИЩ С КОРНЯМИ МАРЕНЫ КРАСИЛЬНОЙ (RUBIA TINCTORUM L.) И МАРЕНЫ СЕРДЦЕЛИСТНОЙ (RUBIA CORDIFOLIA L.)

Рыбалко М.В.¹, Куркин В.А.², Шмыгарева А.А.²

¹ ГАПОУ "ООМК", Оренбург, Россия, majya.rybalko@yandex.ru
²ФГБОУ ВО СамГМУ Минздрава России, Самара, Россия,
Kurkinvladimir@yandex.ru, a.shmygareva@mail.ru

Аннотация. Проведен сравнительный качественный анализ корневищ с корнями марены красильной (*Rubia tinctorum* L.), корневищ с корнями марены сердцелистой (*Rubia cordifolia* L.) с использованием тонкослойной хроматографии и УФ-спектрофотометрии. В результате проведения качественного анализа обнаружены вещества, относящиеся...
Введение. Несмотря на стремительное развитие фармакологии, на появление эффективных современных лекарств, не стоит забывать о дарах природы – лекарственных растениях, помогающих исцелиться от многих недугов. Одним из таких "даров" является марена, терапевтические свойства которой были доказаны в экспериментальном порядке. И сегодня экстракт из корней этого растения успешно применяется в научной медицине при лечении почечнокаменной и многих других болезней [3, 4]. Марена красильная (Rubia tinctorum L.) - лекарственное растение, корневище с корнями которого содержит антрахиноны, сахар, кислоту аскорбиновую, иридоиды, пектиновые вещества, лимонную, яблочную, винную кислоты, белки [1, 5]. Все эти вещества способствуют разрушению камней в мочевом пузыре, почках, помогают выводить щавелевые, фосфорнокислые и другие соли. Сухой экстракт марены красильной применяют в официальной медицине в качестве диуретического, спазмолитического средства [3]. Марена сердцелистная наделена весьма ценными целебными свойствами, при этом с лечебной целью рекомендуется использовать плоды, корневища, листья и стебли этого растения. Наличие столь ценных целебных свойств следует объяснять содержанием в составе растения карденолидов, тритерпеноидов - рубифолиевой и рубиконмаревой кислот. Что касается корневищ этого растения, то в них содержатся кумаринны и следующие антрахиноны: пурпурин, луцидин, алиазарин, рубиадин, рубэртриновая кислоты, псевдопурпурин, примверозид рубиадина, нордамкантол, фисцин и моллюгин. В надземной части марены сердцелистной содержатся кумаринны, флавоноиды и следующие иридоиды: асперулозид и дезацетиласперулозид [5]. Настой и отвар, приготовленные на основе корневищ этого растения, получили довольно широкое распространение в корейской, индийской, тибетской и китайской медицине и используются при аменорее, различных гинекологических заболеваниях, дисменорее, белях и эндометриите. Что касается тибетской медицины, то здесь широко используется порошок и отвар корневищ марены сердцелистной. Данные средства используются при экссудативном плеврите, ларингите, пневмонии, туберкулезе, болезнях почек и печени, сибирской язве, оспе, головной боли, абсцессах легких и к антраценпроизводным.
осложненных заболеваниях органов пищеварения. Также корневища присутствуют в составе препаратов, которые рекомендованы к применению в качестве прототипов лекарственных препаратов, регулирующих солевой обмен. Следует отметить, что данное средство на основе марены сердцелистной оказывается очень эффективным [3].

Целью исследования стало проведение сравнительного качественного анализа корневищ с корнями марены красильной (Rubia tinctorum L.), корневищ корнями марены сердцелистной (Rubia cordifolia L.) с использованием тонкослойной хроматографии и УФ-спектрофотометрии.

Рис. 1. Хроматографический профиль водно-спиртового извлечения из марены красильной (Rubia tinctorum L.) и марены сердцелистной (Rubia cordifolia L.)
А - УФ-спектре при длине волны 366 нм;
Б - УФ-спектре при длине волны 254 нм.
Обозначения: 1- водно-спиртовое извлечение из корневищ с корнями марены сердцелистной; 2 - водно-спиртовое извлечение из корневищ с корнями марены красильной; 3-ализарин.

Материалы и методы. Регистрацию спектров проводили с помощью спектрофотометра UNICO 2800 в диапазоне длин волн 190-700 нм в кюветах с толщиной слоя 10 мм [2]. Для

Результаты исследования и их обсуждения. При просмотре хроматограммы в видимом свете обнаруживается доминирующее пятна антраценпроизводной природы, имеющее желтую окраску с величиной R_f около 0,7 (ализарин), а также темно-красное пятно с величиной R_f около 0,8 (эмодин).

Рис. 2. Электронные спектры исходного раствора (1) и щелочно-аммиачного раствора (2) водно-спиртового извлечения из корневищ с корнями марены красильной

Исследование УФ-спектров водно-спиртовых щелочно-аммиачных растворов корневищ с корнями марены красильной и марены сердцелистной показало, что максимум поглощения находится в длинноволновой области спектра при длине волны 408 нм, что характерно для антраценпроизводных [6]. Максимум
поглощения при длине волны 408 нм свидетельствует о наличии антраценпроизводных в составе сравниваемых видов растений.

Выводы. В результате проведения сравнительного качественного анализа корневищ с корнями марены красильной (Rubia tinctorum L.) и марены сердцелистой (Rubia cordifolia L.) с использованием УФ-спектрофотометрии подтверждено наличие суммы антраценпроизводных, а с помощью тонкослойной хроматографии обнаружен ализарин.

Список литературы:

A COMPARATIVE QUALITATIVE ANALYSIS OF THE RHIZOMES WITH ROOTS OF RUBIA TINCTORUM L., THE RHIZOMES WITH ROOTS OF RUBIA CORDIFOLIA L.

Rybalko M.V. ¹, Kurkin V.A. ², ShmygarevaA.A. ²
¹OrSMU, Orenburg, Russia, majya.rybalko@yandex.ru
²SamSMU, Orenburg, Samara, kurkinvladimir@yandex.ru, a.shmygareva@mail.ru

A comparative qualitative analysis of the rhizomes with roots of Rubia tinctorum L., and rhizomes with roots of Rubia cordifolia L., using thin layer chromatography and UV spectrophotometry was carried out. As a result of the qualitative analysis, substances that are related to anthracenederivatives are found.
ФЕНОЛЬНЫЕ СОЕДИНЕНИЯ БАРХАТЦЕВ ОТКЛОНЕННЫХ

Савельева А.Е. 1, Белоусова Д.А. 1, Стреликова Д.И. 1,
Андреева Ю.А. 1, Рыжов В.М. 1, Куркин В.А. 1, Рузаева И.В. 2

1 ФГБОУ ВО СамГМУ Минздрава России, Самара,
anewsavelieva@gmail.com
2 Самарский университет, Самара, Россия

Аннотация. Одним из перспективных источников биологически активных соединений являются бархатцы отклоненные (Tagetes patula L.). Целью настоящего исследования являлось сравнительное изучение фенольных соединений в морфологических органах (корней, травы и цветков) одного из сортов бархатцев отклоненных (Tagetes patula L.) – «Малыш Гармония», активно используемого в РФ как декоративное растение. В настоящей работе приведены результаты спектрального анализа фенольных соединений, содержащихся в морфологических органах бархатцев отклоненных.

В настоящее время род Бархатцы вызывает большой интерес в фармацевтической науке [1-4] В этой связи актуальным является изучение и сравнительный анализ различных видов и сортовых форм бархатцев. Одним из перспективных источников БАС являются бархатцы отклоненные (Tagetes patula L.).

Целью исследования являлось сравнительное изучение фенольных соединений в морфологических органах (корней, травы и цветков) одного из сортов бархатцев отклоненных (Tagetes patula L.) – «Малыш Гармония», активно используемого в РФ как декоративное растение.

Объектом исследования Объектом исследования являлись корни, трава и цветки бархатцев отклоненных (сорт Малыш гармония), собранных в Ботаническом саду Самарского НИУ имени академика С.П. Королева в октябре 2017 года.

В качестве метода исследования использовали дифференциальный спектрофотометрический анализ с добавлением комплексообразователя алюминия хлорида. Спектральные характеристики водно-спиртовых извлечений оценивали на спектрофотометре ФС-2000 в кюветах с толщиной
слоя 10 мм. Раствором сравнения являлся спирт этиловый 96 %. В качестве основного экстрагента для фенольных соединений был выбран спирт этиловый 70% в связи с наибольшей экстрактивной активностью в отношении фенольных соединений в частиности флавоноидов [5].

Результаты и их обсуждение. Сравнительный анализ спектров поглощения извлечений из различных морфологических частей растения выявил специфичность объектов и отличие их химического состава.

Рис. 1. Спектральные характеристики водно-спиртового извлечения из корней Бархатцев отклоненных.
Обозначения: а – спектр поглощения испытуемого раствора, б – батахромный сдвиг спектра при добавлении комплексообразователя AlCl₃, в – дифференциальная кривая спектра.

Рис. 2. Спектральные характеристики водно-спиртового из цветков Бархатцев отклоненных. Обозначения см. на рис. 1.
Так, спектральная кривая поглощения извлечения из корней бархатцев имеет один выраженный максимум поглощения в области 325 нм и дифференциальный максимум в области λ=360 нм (рис. 1). Данная характеристика спектра говорит о значительном присутствии фенольных соединений С₆-С₃ ряда (фенилпропаноидов) [5].

Кривая спектра поглощения извлечения из цветков имеет два выраженных максимума поглощения при λ=260 нм и λ=373 нм. Добавление комплексообразователя дает выраженный батохромный сдвиг с максимумом в области λ=421 нм. Дифференциальная кривая спектра имеет максимум при λ=428 нм (рис. 2), что характерно для флавоноидов группы флавонолов, в частности для кверцетина [6].

Кривая спектра поглощения извлечения из травы имеет два выраженных максимума поглощения при λ=267 нм и λ=324 нм. Добавление комплексообразователя дает выраженный батохромный сдвиг с максимумом в области λ=401 нм. Дифференциальная кривая спектра имеет максимум при λ=412 нм (рис. 3), что характерно для гликозидных форм флавонолов, в частности для рутина [5, 6].

В результате проведенного спектрофотометрического анализа было выявлено наличие флавонолов в траве и цветках, анализируемого сорта бархатцев. При этом отмечено, что в траве содержатся гликозиды флавонолов (рутин) около 0,12%, а в цветках – агликоновые флавонолы (кверцитин) со значительным содержанием – до 9%. В корнях анализируемого
PHENOLIC COMPOUNDS OF SPREADING MARIGOLD

Saveleva A.E. ¹, Belousova D.A. ¹, Streltsova D.I. ¹, Andreeva J.A. ¹, Ryzhov V.M. ¹, Kurkin V.A. ¹, Ruzueva I.V. ²

¹Samara State Medical University, Samara
²Samara University, Samara, Russia

One of the promising sources of biological active compounds is spreading marigold (Tagetes patula L.). The purpose of the research was a comparative study of phenolic compaunds in morphological organs (roots, herb and flowers) of one of the variety of spreading marigold (Tagetes patula L.) – «Malish Harmonia» is actively used in Russia as an
ornamental plant. This paper presents the results of the spectral analysis of phenolic compounds contained in the morphological organs of spreading marigold.

ФЕНОЛЬНЫЕ СОЕДИНЕНИЯ И АНТИОКСИДАНТНАЯ АКТИВНОСТЬ ПЛОДОВ ДВУХ ВИДОВ Lycium

Секинаева М.А.1, Ляшенко С.С.1, Исламова Ф.И.2, Алиев А.М.2, Денисенко О.Н.1, Юнусова С.Г.3
1Пятигорский медико-фармацевтический институт – филиал ФГБОУ ВО «Волгоградский государственный медицинский университет» Минздрава России, Пятигорск, Россия, lanochka22@yandex.ru
2ФГБУН Горный ботанический сад ДНЦ РАН, Махачкала, Россия, aslan4848@yahoo.com
3Уфимский Институт химии Уфимского федерального исследовательского центра РАН, Уфа, Россия, msyunusov@anrb.ru

Аннотация. Методом ВЭЖХ установлено, что состав фенольных соединений плодов Lycium barbarum, интродуцированной на опытном участке НИИ Биотехнологии Горского ГАУ РСО-Алания, и дикорастущей Lycium ruthenicum, собранной в Апшеронском районе, существенно не отличается. Основным соединением является галловая кислота (57,94% и 75,01% в сумме фенольных соединений L. barbarum и L. ruthenicum соответственно). Антиоксидантная активность плодов L. ruthenicum выше, чем L. barbarum (2,67 мг/г против 2,00 мг/г в пересчете на кислоту галловую). Плоды исследуемых видов могут представлять интерес как источники фенольных соединений, обладающих антиоксидантной активностью.

Lycium barbarum L. и Lycium ruthenicum Murr. семейства Solanaceae Juss. широко используются в медицинской практике и национальной азиатской кухне [1]. В литературе отсутствуют данные по биологически активным веществам плодов Lycium barbarum, интродуцированной на территории РФ, а данные по химическому составу плодов Lycium ruthenicum флоры нашей страны крайне ограничены [2]. Ранее нами было установлено, что мажорными фенольными соединениями листьев
интродуцированной *Lycium barbarum* являются оксикоричные кислоты: кофейная, галловая и цикориевая (32,5%, 27,7% и 16,6% в сумме фенольных соединений соответственно) [3].

Целью настоящей работы явилось изучение состава фенольных соединений и антиоксидантной активности высушенных до воздушно-сухого состояния зрелых плодов интродуцированных на опытном участке НИИ Биотехнологии Горского ГАУ *Lycium barbarum* и дикорастущей *Lycium ruthenicum* (Апшеронский район, долина реки Тугчай, 14 км западнее трассы Ростов-Баку). В плодах *Lycium barbarum* при наличии доступных стандартов методом ВЭЖХ было идентифицировано 8 веществ фенольной природы (галловая, феруловая, хлорогеновая, цикориевая кислоты, катехин, лютеолин-7-гликозид, танин, эпикатехин); *Lycium ruthenicum* – 10 веществ (галловая, изоферуловая, кофейная, феруловая, хлорогеновая, цикориевая кислоты, гиперозид, лютеолин-7-гликозид, танин, эпикатехин). В составе фенольных соединений плодов обоих видов преобладали фенолокислоты.

Основной в количественном отношении явилась галловая кислота (57,94% и 75,01% в сумме фенольных соединений плодов *Lycium barbarum* и *Lycium ruthenicum* соответственно), что согласуется с данными по составу фенольных соединений *Lycium barbarum*, культивируемой в Сербии [4]. В фенолах плодов *Lycium ruthenicum* в значимых количествах были представлены хлорогеновая кислота и танин (5,54% и 4,41% соответственно). Танин составлял 12% от суммы фенольных соединений плодов *Lycium barbarum*. Гиперозид, изоферуловая и кофейная кислоты, представленные в следовых количествах (0,17-0,28%) в плодах *Lycium ruthenicum*, отсутствовали в плодах *Lycium barbarum*.

В составе полифенолов *Lycium barbarum* присутствовал катехин (0,15% в сумме фенольных соединений), который не был обнаружен в *Lycium ruthenicum*. Следует отметить, что доминирующая в составе фенольных соединений галловая кислота играет роль строительного материала для танинов, которые являются перспективными ингибиторами процессов окисления органических веществ и имеют преимущества перед фенолами других групп: хорошая растворимость в воде и простота выделения [5]. На приборе «Цвет Яуза 01–АА» установлено, что антиоксидантная активность плодов *Lycium ruthenicum* несколько выше, чем *Lycium barbarum* (2,67 мг/г
против 2,00 мг/г в пересчете на кислоту галловую), что подтверждает имеющиеся литературные данные [6]. Таким образом, плоды двух видов Lycium могут представлять интерес как источники фенольных соединений, обладающих антирадикальной активностью, для использования в практической фармации и медицине.

Список литературы.
2. Хлебцова, Е.Б., Исаева, Э.Л. Количественное определение углеводов в экстракте плодов и аскорбиновой кислоты в водном экстракте дереэы русской // Вестник Чеченского государственного университета. 2015. № 1. С. 109-113.
5. Белый, А.В., Белая, Н.И. Антирадикальная активность дубильных веществ корневищ Bergenia crassifolia в реакции с 2,2'-дифенил-1-пикрилгидразилом // Химия растительного сырья. 2012. № 3. С. 121-126.
High-performance liquid chromatography method was applied in the quantitative analysis of phenolic compounds of the fruits of Lycium barbarum introduced in the Gorsky State Agrarian University (Vladikavkaz), and wild Lycium ruthenicum, collected in Absheron district. Among the phenolic compounds, the Gallic acid was main component (57,94% and 75,01% in total phenolic compounds of L. barbarum and L. ruthenicum, respectively). Gallic acid exhibits various biological activities. Antioxidant activity of fruits of L. ruthenicum was higher compared with L. barbarum (2,67 mg/g and 2.00 mg/g in terms of Gallic acid, respectively). Lycium barbarum and Lycium ruthenicum could be considered as sources of phenolic compounds with antiradical activity.
Одними из перспективных источников биологически активных соединений являются растения бузины. О лечебных свойствах бузины люди знали давно. Цветы бузины черной входят в фармакопею. Считается, что цветы и плоды бузины обладают обезболивающим, противовирусным, жаропонижающим, откаркивающим, противогрибковым действием [1]. В настоящий момент активно исследуется качественный и количественный состав соединений фенольной природы, а также антиоксидантные свойства экстрактов плодов и цветков бузины [2,3]. При этом основное внимание уделяется изучению плодов бузины черной. В связи с этим, целью данной работы явилось исследование антиоксидантных свойств плодов, цветков, листьев, коры (или стеблей) различных видов бузины: бузины черной (Sambucus nigra L.), бузины красной (Sambucus racemosa L.) и бузины травянистой (Sambucus ebulus L.).

Сбор растений производился в Ботаническом Саду БФУ им. И. Канта. Для определения биологически активных соединений использовались спектрофотометрический (для определения антоцианов и суммарного содержание полифенолов) и амперометрический (для определения суммарного содержания водорастворимых соединений - АОА) методы [4]. Антирадикальная активность (APA) антиоксидантов определялась по их способности связывать DPPH-радикал [5]. Статистическая обработка и анализ данных проводились с использованием программы SPSS 13.0. для Windows (SPSS, Inc). Результаты представлены в виде средних арифметических значений с указанием стандартного отклонения. Множественное сравнение средних проводили на основе критерия Тьюки (HSD).

В ходе проведенных исследований было установлено, что содержание антоцианов в различных частях бузины черной варьировало от 0,056 до 1,34 мг/г, бузины красной – от 0,047 до 0,97 мг/г., бузины травянистой – от 0,035 до 1,13 мг/г. Наибольшее количество антоцианов у всех исследованных видов бузины содержалось в плодах, а наименьшее – в цветках растений.

Максимальное содержание полифенолов отмечалось в плодах бузины черной (13,64 мг/г), наименьшее – в цветках (4,51 мг/г). Плоды бузины красной и бузины травянистой также отличались высоким содержание полифенолов (10,23 и 16,37 мг/г соответственно). Наименьший суммарный уровень полифенолов
выявлен в стебле и коре данных видов растений.
Массовая концентрация водорастворимых антиоксидантов также изменялась в широких пределах в зависимости от исследуемой части растения. Однако и для этого показателя максимальные значения были получены при изучении экстрактов плодов. Минимальное содержание водорастворимых антиоксидантов было зарегистрировано в коре и стебле растений бузины черной и травянистой и в листьях бузины красной. По полученным данным отмечено, что антирадикальная активность в растениях бузины черной и бузины красной в плодах выше, чем в стеблях и коре растений. А в растении бузины травянистой наименьшей антирадикальной активностью обладали цветки.
Сравнение содержания различных биологически активных компонентов в плодах трех видов бузины показало, что плоды бузины черной и бузины травянистой характеризовались более высоким уровнем полифенолов и антирадикальной активностью (таблица).
Таблица 1.
Сравнение уровня антиоксидантов в плодах трех видов бузины

<table>
<thead>
<tr>
<th>Объект</th>
<th>Содержание антоцианов, мг/г</th>
<th>Содержание полифенолов, мг/г</th>
<th>АОА, мг/г</th>
<th>АРА, мг/г</th>
</tr>
</thead>
<tbody>
<tr>
<td>Плоды бузины черной</td>
<td>1,34±0,23 a</td>
<td>13,64±1,14 a</td>
<td>8,93±1,12 a</td>
<td>14,43±1,35 a</td>
</tr>
<tr>
<td>Плоды бузины красной</td>
<td>0,97±0,09 a</td>
<td>10,23±0,89 b</td>
<td>10,34±1,39 a</td>
<td>10,18±1,26 b</td>
</tr>
<tr>
<td>Плоды бузины травянистой</td>
<td>1,13±0,13 a</td>
<td>16,37±1,85 a</td>
<td>9,32±0,93 a</td>
<td>15,72±2,15 a</td>
</tr>
</tbody>
</table>

Примечание: различными буквами в столбцах обозначены достоверно различные средние значения (p<0.05)
Таким образом, наибольшее содержание антиоксидантов фенольной природы было отмечено в плодах бузины всех трех видов по сравнению с другими частями изученных растений. Наиболее подходящими для разработки биологически активных добавок и функциональных продуктов питания являются плоды бузины черной и травянистой, которые характеризовались более высоким уровнем биологически активных компонентов
физиолого-биохимические исследования фенольной природы.

Список литературы.
1. Яхудин Р., Кароматов И. Д. Лекарственные травы бузина чёрная, бузина травянистая // Биология и интегративная медицина. – 2016. – №. 4.

PLANTS OF VARIOUS SAMBUCUS SPECIES AS A VALUABLE SOURCE OF PHENOLIC ANTIOXIDANT

Skrypnik L.N., Kurashova A.A., Feduraev P.V.
Immanuel Kant Baltic Federal University, Kaliningrad, Russia, LSkrypnik@kantiana.ru

Antioxidant properties of fruits, flowers, leaves, bark (or stems) of various Sambucus species (Sambucus nigra L., Sambucus racemosa L., Sambucus ebulus L.) were investigated. It was established that the highest level of antioxidants (the total content of water-soluble antioxidants – 8.93-10.34 mg/g, anthocyanins – 0.97-1.34 mg/g, polyphenols – 10.23-16.37 mg/g, antiradical activity – 10.18-15.72 mg/g) was in the fruits of all studied species. However the fruits of Sambucus nigra L. and Sambucus ebulus L. were characterized by a higher level of polyphenols and antiradical activity in comparison with the fruits of Sambucus racemosa L. The results of this work can be used for the development of biologically active additives and functional food.
СРАВНИТЕЛЬНЫЙ АНАЛИЗ СОДЕРЖАНИЯ ФЛАВОНОИДОВ В ПЛОДАХ НЕКОТОРЫХ ВИДОВ БОЯРЫШНИКА

Хасанова С.Р., Кудашкина Н.В., Еникеева К.И., Андресова П.А., Свирская М.В.
ФГБОУ ВО БГМУ Минздрава России, Уфа, Россия, svet-khasanova@yandex.ru

Аннотация. В статье представлены исследования содержания различных групп flavonoids в плодах боярышника кроваво-красного (Crataegus sanguinea Pall.) и плодах боярышника мягкватого (Crataegus submollis Sarg.). Для количественной оценки flavonoids использовался метод дифференциальной спектрофотометрии с комплексообразующей добавкой. В спиртовом извлечении плодов боярышника измеряли оптическую плотность, используя различные длины волн (409 нм и 540 нм), и рассчитывали содержание двух групп flavonoids - flavonолов и антоцианов. Согласно полученным данным, содержание flavonолов в плодах боярышника мягкватого выше в 1,5 раза и антоцианов - в 4 раза, чем в плодах боярышника кроваво-красного.

В настоящее время одной из актуальных задач современной фармации и медицины является поиск новых видов лекарственного растительного сырья. Одним из примеров таких исследований является изучение химического состава различных нефармакопейных видов боярышника с целью внедрения их в медицину в качестве сырьевых источников плодов и цветков боярышника. Так, в России давно интродуцирован и культивируется завезенный с Северной Америки боярышник мягкватый Crataegus submollis Sarg. за счет своих сочных и крупных плодов.

Целью исследований стало сравнительное изучение содержания различных групп flavonoids (антоцианов и flavonолов) в плодах боярышника кроваво-красного и боярышника мягкватого, которые были заготовлены в период плодоношения в 2017 году на коллекционном участке кафедры фармакогнозии с курсом ботаники и основ фитотерапии БГМУ.

Рис. 1. УФ-спектр плодов боярышника кроваво-красного (1), УФ-спектр плодов боярышника мягкватого (2).

Результаты и обсуждение. На первом этапе исследования у спиртовых извлечений плодов боярышника кроваво-красного и плодов боярышника мягкватого в присутствии хлорида алюминия были измерены УФ-спектры в диапазоне от 350 до 600 нм. Оказалось, что у обоих извлечений наблюдаются два максимума поглощения при 409±2 нм и 540±2 нм (рис. 1).

Таблица 1.

<table>
<thead>
<tr>
<th>Виды сырья</th>
<th>Flavonoиды в пересчeте на гиперозид</th>
<th>Антоцианы в пересчeте на цианидин-3-гликозид</th>
</tr>
</thead>
<tbody>
<tr>
<td>Плоды боярышника кроваво-красного</td>
<td>0,034±0,001% Xср=0,034 Sр=0,00039 Ea=0,001 Eотн=2,9</td>
<td>0,06±0,003% Xср=0,06 Sр=0,0011 Ea=0,0028 Eотн=4,7</td>
</tr>
<tr>
<td>Плоды боярышника мягкватого</td>
<td>0,054±0,001% Xср=0,054 Sр=0,00038 Ea=0,001 Eотн=1,85</td>
<td>0,25±0,01% Xср=0,25 Sр=0,0039 Ea=0,010023 Eотн=4,0</td>
</tr>
</tbody>
</table>
Максимум при 409±2 нм свидетельствует о наличии в плодах обоих видов боярышника флавоноидов группы флавонола (гиперозид), а при 540±2 нм – антоцианов (цианидин-3-гликозид). Сдвиг цианидин-3-гликозида с 510 нм на 540 нм связан с использованием в качестве экстрагента этилового спирта и добавлением к исследуемому раствору ионов алюминия [2].

Далее нами проведены расчеты количественного определения данных групп флавоноидов в исследуемом сырье. Данные представлены в таблице 1.

Для проведения сравнительного анализа мы составили диаграмму по содержанию флавоноидов и антоцианов в плодах боярышника мягковатого и боярышника кроваво-красного (рис. 2).

![Diagram](image)

Рис. 2. Содержание флавоноидов и антоцианов в плодах боярышника мягковатого и кроваво-красного.

Согласно полученным данным, содержание флавоноидов в плодах боярышника мягковатого выше в 1,5 раза и антоцианов - в 4 раза, чем в плодах боярышника кроваво-красного.

Выводы. Согласно проведенным исследованиям боярышник мягковатый можно считать потенциальным сырьевым источником плодов боярышника. Данный вид является перспективным видом лекарственного растительного сырья и источником антоцианов, которые в настоящее время исследуются в качестве природных антиоксидантов.
COMPARATIVE ANALYSIS OF THE CONTENT OF FLAVONOIDS IN THE FRUITS OF SOME SPECIES OF THE HAWTHORN

Bashkir State Medical University, Ufa, Russia,
svet-khasanova@yandex.ru

The article presents the results of quantitative determination of flavonoids in the fruit of hawthorn blood-red (Crataegus sanguinea Pall.) and fruit of Emerson's thorn (Crataegus submollis Sarg.). Spectrophotometry was used to quantify the flavonoids. The absorbance was measured at 409 nm and 540 nm. Two groups of flavonoids determined - flavonols and anthocyanins. Quantity of flavonols and anthocyanins in Emerson's thorn fruits is more.

СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА АНТИОКСИДАНТНОЙ АКТИВНОСТИ И КОЛИЧЕСТВЕННОГО СОДЕРЖАНИЯ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ НЕКОТОРЫХ БОБОВЫХ И ЗЛАКОВЫХ КУЛЬТУР ГРУЗИИ

Чиквишвили И.Д., Гогия Н.Н., Чиквишвили Д.И., Есаишвили М.
Тбилисский Государственный Медицинский Университет, Институт Медицинской Биотехнологии, Лаборатория Биологически-активных соединений, Тбилиси, Грузия, Irak.Chkhikvishvili@yahoo.com

Аннотация. Проведены исследования по сравнительной характеристике антиоксидантной активности и количественного содержания полифенолов некоторых
бобовых и злаковых культур Грузии. Представлены сведения о наиболее перспективных их представителях.

Пищевые растительные культуры предназначены не только для удовлетворения голода и обеспечения человека необходимыми питательными веществами, но и для предотвращения ряда заболеваний [1]. В пищевых продуктах всеобщего потребления, какими являются бобовые и злаковые культуры, содержатся многие нутриенты, в том числе антиоксиданты фенольной природы [2,3]. Эпидемиологические исследования показали прочную связь между потреблением бобовых и предотвращением риска развития рака, а также снижением диабета и риска сердечно-сосудистых заболеваний путем нормализации профиля липидов и глюкозы в крови человека [4]. Широко распространенный представитель бобовых культур фасоль (Phaseolus vulgaris), является одним из основных источников растительного белка, наиболее доступного для населения развивающихся стран [5]. Благодаря наличию полифенолов, фасоль играет определенную роль в снижение риска развития диабета и сердечно-сосудистых заболеваний человека [6]. Благотворное влияние полифенолов на здоровье человека выражается в основном за счет уменьшения окислительного стресса [7]. Некоторые полифенолы также способны оказывать антиапоптотическое, антибактериальное действие, а также антиканцерогенную активность, в целом ингибитируя процессы пролиферации клеток [8,9].

Проведены исследования по сравнительной характеристике антиоксидантной активности и количественного содержания полифенолов некоторых бобовых и злаковых культур Грузии. Образцы были собраны в супермаркетах и на рынках в Грузии. Каждый образец семян растительного материала измельчали и к 1 г добавляли 30 мл смеси 96%-ного спирта и равного объема воды. После настаивания в течение 3 дней при 25 °C, экстракты отфильтровывали и определяли количество полифенолов и антиоксидантную активность. Методом Фолина-Чикальтеу определяли количественное содержание полифенолов. Калибровочную кривую строили по галловой кислоте, а количество полифенолов определяли в мг/г в пересчете на галловую кислоту. Антиоксидантную активность определяли по времени S, в секундах необходимых для нейтрализации 50%-ов синтетического радикала 2,2-дифенил-1-пикрилхидразила и
выражали в $R=1000/S$, чем меньше количество времени необходимо для неитрализации (S), тем больше антиоксидантная активность (R). Из результатов анализа видно, что среди изученных культур самой высокой антиоксидантной активностью и содержанием полифенолов, обладают черные семена рапса (48±0,6 мг/г, $R=500$ у.e.) Brassica oleifera Moench L., его больше причисляют к овощным культурам [10] и семена фасоли „Гурула“ (24±0,5 мг/г, 250) Phaseolus vulgaris, затем по величине антиоксидантной активности идут семена ценной крупяной культуры гречихи (7,8±0,4 мг/г, 142) Fagopyrum esculentum [11]. Среди разновидностей фасоли кроме „Гурула“, большой антиоксидантной активностью и содержанием полифенолов отличаются фасоли, под названием “Батумела Сарис” (23,5±0,4 мг/г, R=225), “Батумела Миндвис”, „Миндвис“ , „Борджомула“, средними показателями характеризуются “Шулавера” (18±0,2 мг/г, 204), “Тиркмела” и наименьшими „Дедофала“, „Мерцхала“ и “Уделеби” (4,2±0,08 мг/г, 214 у.е.). В соответствии с приведенными данными, наблюдается определенная корреляция между антиоксидантной активностью и содержанием полифенолов в изученных культурах, за исключением фасоли „Уделеби“. Видимо антиоксидантная активность в этой разновидности фасоли определяется нефенольными соединениями, возможно каротиноидами, алкалоидами и т.д. Здесь нужно учесть, что мы изучали свободные фенольные соединения, тогда в злаковых и бобовых культурах существуют связанные формы фенольных соединений и можно предположить их влияние на общую антиоксидантную активность. Кроме фасоли среди изученных бобовых культур нужно отметить Нут (Турецкий горох) Cicer arietinum (8,4 мг/г ±0,09, R=131), Чечевичу Lens Culinaris (6,0 мг/г±0,11, 93), Горох Pisum sativum L (5,9 мг/г±0,07, 84), Лен Linum usitatissimum L. (5,8 мг/г±0,05, 81), Зеленый горох (4,8±0,02 мг/г, 50), и Сою Glycine max (L.) (2,4±0,03 мг/г, 45) [12-15]. Злаковые культуры обладают средней антиоксидантной активностью и содержанием полифенолов, однако среди них есть различия, так например показатели отличаются в цельных зернах Пшеницы (5,5 мг/г±0,04, R=55) (Triticum aestivum L), Кукурузы Zea mays L. желтой (8,4 мг/г±0,06, 90) и белой (4,7 мг/г±0,09, 50), в Овсяных (Avena sativa) хлопьях (6,3 мг/г±0,09,112), в Ячмене (6,5 мг/г±0,1, R=110) Hordeum vulgare и
Ржи (19 мг/г ±0,4, R=100) Secale cereale. Более низким содержанием полифенолов, но довольно заметными показателями антиоксидантной активности характеризуются Пшено Panicum miliaceum L. (3,6 мг/г ±0,07, 72) и Рис (1,8 мг/г ±0,02, 60) [16-19].

Изучение бобовых и злаковых культур продолжается, с целью выявления и обогащения продуктов питания биодоступными антиоксидантами фенольной природы. Более того для широкого применения их в качестве биологически-активных добавок в лечебном и диетическом питании.

Список литературы:
2. Журлова Е.Д., Бондаренко А.В., Базильский Д.А., Черненко С.А. Содержание свободных и связанных полифенолов злаковых и бобовых культур. Зернови продукти и комбікорми, 2017, I. 2 ,Vol.17, 14-18
3. Yu-Wei Luo, Qian Wang, Jing Li, Xiao-Xiao Jin and Zhen-Ping Hao The Relationship between Antioxidant Activity and Total Phenolic Content in Cereals and Legumes. Advance Journal of Food Science and Technology. 2015, 8(3): 173-179
ANTIOXIDANT ACTIVITY AND TOTAL PHENOLIC CONTENT IN SOME LEGUMINOUS AND CEREAL CROPS IN GEORGIA

Chkhikvishvili I.D., Gogia N.N., Chkhikvishvili D.I., Esaiashvili M.V.
Tbilisi State Medical University, Institute of Medical Biotechnology, Tbilisi, Georgia, Irak.Chkhikvishvili@yahoo.com

Food products of wide use are represented by Legumes and Cereal, contain many nutrients, including polyphenols with antioxidant activity. We studied the antioxidant properties (R) and the total polyphenols content (mg/g) in some commercial samples of Leguminous and Cereal crops in Georgia. From the analysis results, seeds (48 ± 0.6 mg / g, R = 500) of Brassica oleifera Moench L. and Phaseolus vulgaris of "Gurula", (24 ± 0.5 mg / g, 250) had the highest antioxidant activity and the total polyphenols content.

In ten bean varieties, there was correlation between the antioxidant activity and the total polyphenols content, with the exception of the “Udelebi” beans. Apparently, the antioxidant activity in this variety of bean is determined by non-phenolic compounds. The Legumes to be studied include Cicer arietinum (8.4 mg / g ± 0.09, R = 131), Culinaris lens (6.0 mg / g ± 0.11, 93), Pisum sativum L (5.9 mg / g ± 0,07,84), Linum usitatissimum L. (5.8 mg / g ± 0.05, 81), green peas (4.8 ± 0.02 mg / g, 50) and Glycine max (L.) (2.4 ± 0.03 mg / g, 45).

The Cereals have medium antioxidant activity and polyphenol content, but there are differences between them, for example, indices vary in whole Wheat grains (5.5 mg / g ± 0.04, R = 55) (Triticum aestivum L), Zea mays L yellow seeds of Maize (8.4 mg / g ± 0.06, 90) and white (4.7 mg / g ± 0.09, 50), in Oat flakes (Avena sativa) (6.3 mg / g ± 0, 09,112), in Barley (6.5 mg / g ± 0.1, R = 110) of Hordeum vulgare and Rye (19 mg / g ± 0.4, R = 100) of Secale cereale. Millet (Panicum miliaceum L.) (3.6 mg / g ± 0.07, 72) and Rice (1.8 mg / g ± 0.02, 60) are characterized by a lower content of polyphenols, but rather significant antioxidant activity.

The study of Legumes and Cereals continues to identify and enrich food products with bioactive polyphenols, antioxidants. They are widely used as biologically active additives in medical and dietary nutrition.
ФЕНОЛЬНЫЕ СОЕДИНЕНИЯ ЛИПОФИЛЬНОЙ ФРАКЦИИ ЭКСТРАКТА FILIPENDULA ULMARIA

Шилова И.В.
НИИ фармакологии и регенеративной медицины имени Е.Д. Гольдберга, Томский национальный исследовательский медицинский центр РАН, Томск, Россия, inessashilova@gmail.com

Аннотация. Представлены сведения о составе фенольных соединений лиофильной фракции экстракта лабазника вязолистного.

Экстракт лабазника вязолистного (Filipendula ulmaria (L.) Maxim.) сухой [1] предложен в качестве субстанции для получения ноотропного, адаптогенного, антиоксидантного, гепатозащитного [1, 2] и иммунотропного [3] средства. Экстракт сухой содержит простые фенолы, flavonoиды (кверцетин, кемпферол, изокверцитрин, спиреозид, 4’-O-β-D-галактопиранозид кверцетина, авикулярин, рутин), фенолкарбоновые кислоты, кумарины, дубильные и другие вещества [1, 2]. Фракционирование экстракта рядом растворителей с увеличивающейся полярностью показало, что адаптогенные, антигипоксические и антиоксидантные свойства в максимальной степени присущи хлороформной фракции. С целью определения носителей активности лиофильную фракцию подвергли химическому исследованию.

Исследование химического состава осуществляли с помощью качественных реакций, хроматографии в тонком слое и на бумаге в сравнении с достоверными образцами. Для более детального изучения применяли метод хроматомасс-спектрометрии (ГХ/МС). Исследование выполняли на приборе Trace DSQ (Thermoelectron corp., США). В работе использовали колонку BPX5 (25м), объем газа-носителя (гелия) составил \(V_{\text{n/м}} = 1 \text{мл/мин} \), скорость нагрева – 15 °/мин. В качестве растворителя использовали хлороформ. Рабочая температура испарителя составила 280 °C, термостата – от 70 до 290 °C (при 290 °C – 90 мин). Идентификацию осуществляли путем сравнения времени удерживания и полных масс-спектров с соответствующими данными из базы Wiley 275, Wiley7N.L и Nisto5.L. Для разделения сложных смесей веществ использовали методы адсорбционной флэш-хроматографии и дробной кристаллизации.
Исследование фракции с помощью качественных реакций и хроматографии в тонком слое и на бумаге в сравнении с достоверными образцами, выявило наличие простых фенолов (рододендрола, салигенина, салицина), фенолкарбоновых кислот (салициловой, m-гидроксибензойной, анисовой, ванилиновой), flavonoидов (кверцетина, кемпферола, апигенина, лютеолина, таксифолина). ГХ/МС-анализ фракции показал наличие салигенина (0,52 %, т = 10,16 мин), салициловой кислоты (2,39 %, т = 10,34 мин), анисового спирта (0,74 %, т = 10,32 мин), анисовой кислоты (6,28 %, т = 11,59 мин), 1-(4-гидроксифенил)-2-метил-1-пропанона (0,12 %, т = 10,49 мин), кониферилового спирта (0,81 %, т = 14,31 мин) и феруловой кислоты (0,1 %, т = 11,34 мин).

Разделение хлороформной фракции осуществляли методом флэш-хроматографии на силикагеле (L 5/40) в соотношении 1:6, элюируя смесь гексан-хлороформ с увеличением градиента последнего. При использовании соотношения гексан-хлороформ 6:4 получили игольчатые кристаллы белого цвета с т. пл. 150-151 °С (возгонка) (этанол-гексан 1:3). ЯМР 1Н спектр (DMSO-d6, δ, м.д.: 8,05 (с.; Н-2, Н-6), 6,94 (с.; Н-3, Н-5), 3,86 (с.; 3Н). Масс-спектр, m/z, ЭУ, 70 eV: 152 (M+), 135, 119, 107, 92. Вещество идентифицировали как анисовую кислоту.

Список литературы.

PHENOLIC COMPOUNDS OF THE LIPOPHILIC FRACTION OF THE EXTRACT OF FILIPENDULA ULMARIA
Shilova I.V.
Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia, inessashilova@gmail.com

The chloroform fraction of the extract of the meadowsweet
(Filipendula ulmaria (L.) Maxim.) has pronounced adaptogenic, antihypoxic and antioxidant properties.

A study of the chemical composition of the fraction using qualitative reactions, chromatography in a thin layer and on paper in comparison with reliable samples showed the presence of simple phenols (rhododendrol, saligenin, salicin), phenol carboxylic acids (salicylic, \(m \)-hydroxybenzoic, anisic, vanillin), flavonoids (quercetin, kaempferol, apigenin, luteolin, taxifolin). GC/MS-analysis of the fraction revealed saligenin, anisic and coniferyl alcohols, 1-(4-hydroxyphenyl)-2-methyl-1-propanone, salicylic, anisic and ferulic acids. When the chloroform fraction was separated on silica gel, 4-methoxybenzoic (anisic) acid was obtained in an individual form.

ИССЛЕДОВАНИЕ ФЕНОЛЬНОГО СОСТАВА НЕКОТОРЫХ ВИДОВ СИНЕГОЛОВНИКА ПРОИЗРАСТАЮЩИХ НА КАВКАЗЕ

Щербакова Е.А. 1, Коновалов Д.А. 2

1 Пятигорский медико-фармацевтический институт – филиал ФГБОУ ВО ВолгГМУ МЗ РФ, Пятигорск Россия, yeliseikina@mail.ru
2 Пятигорский медико-фармацевтический институт – филиал ФГБОУ ВО ВолгГМУ МЗ РФ, Пятигорск Россия, d.a.konovalov@pmedpharm.ru

Аннотация. Фенольные соединения водного и спиртоводных (40% и 70%) извлечений из травы и корней синеголовника плосколистного и синеголовника кавказского были проанализированы нами с помощью ВЭЖХ. Основным компонентом водных извлечений травы и корней синеголовника кавказского и синеголовника плосколистного травы был танин. В водном извлечении из корней синеголовника плосколистного преобладал кверцетин. В спиртовых же извлечениях из травы и корней двух видов синеголовника преобладала галловая кислота.

Род *Eryngium* L., принадлежащий подсемейству *Saniculoideae* сем. *Apiaceae*, представлен 317 видами, произрастающими в тропических, субтропических и умеренных широтах и широко распространенными в Средней Азии, Америке, Центральной и Юго-восточной Европе [1, 2, 3].

Синеголовник кавказский – *Eryngium caucasicum* Trautv. и
синеголовник плосколистный – *Eryngium planum* L. – многолетние травянистые растения, имеют стержневую корневую систему, простые листья цельные или расчленённые, стебель прямостоящий ветвистый до 70-90 см высотой. Распространены синеголовники на Кавказе, в Западной Сибири и в европейской части России, а также в Средней Азии. Произрастают на пастбищах, залежах, по окраинам полей, на опушках лесов, иногда как сорные растения [4,5].

По мнению некоторых авторов, фармакологические свойства видов рода *Eryngium* зависят от содержания flavonoids, в том числе кемпферола, гликозидов кверцетина и др., а также кумаринов и фенольных кислот [2] среди которых розмариновая и хлорогеновая кислоты [6]. Для flavonoids и фенольных кислот (розмариновой и хлорогеновой кислот) описаны антибактериальные и антиоксидантные свойства [7, 8, 9].

В качестве материала для исследования использовали воздушно-сухое сырьё синеголовника кавказского и синеголовника плосколистного заготавливали от растений, выращиваемых в коллекционном питомнике, расположенном в окрестностях п. Змеяка Минераловодского района Ставропольского края в фазу цветения. Собранное сырьё (корни и надземная часть) измельчали (до размера не более 10 мм) и высушивали в тени в хорошо проветриваемом помещении.

Аналитическую пробу в соответствии с ГОСТ 214-83 измельчали до размера частиц, проходящих сквозь сито с диаметром отверстий 2 мм.

Сырьё (навеска ~3 г) помещали в колбы объемом 100 мл, добавляли по 20 мл элюента (спирта этилового 70%, 40%, воды очищенной), подсоединяли к обратному холодильнику и нагревали на водяной бане 1 час с момента закипания содержимого колбы. После завершения процесса экстракции извлечения охлаждали до комнатной температуры, фильтровали через бумажные фильтры «синяя лента» в мерные колбы объёмом 25 мл и доводили объем извлечения до метки соответствующим экстрагентом.

Фенольные соединения водного и спиртоводных (40% и 70%) извлечений из травы и корней синеголовника плосколистного и синеголовника кавказского были проанализированы нами с помощью ВЭЖХ.

В качестве образцов сравнения использовали 0,05%
растворы в спирте этиловом 70% flavonoидов (апигенина, витексина, геспередина, диgidрокверцетина, изовитексина, изорамнетина, катехина, кверцетина, кемпферола, лютеолин-7-гликозида, лютеолина, нарингенина, рутина, эпикатехина, эпигалокатехингаллата), фенольных кислот (галловой кислоты, коричной кислоты, кофейной кислоты, о-кумаровой, феруловой кислоты, хлорогеновой кислоты, цикориевой кислоты, эллаговой кислоты), кумаринов (кumarина, метоксикумарина, умбеллиферона, эскулетина) и танина.

Объём пробы – 20 мкл. Скорость элюента 0,7 мл/мин. Время анализа – 50 мин. В качестве УФ-детектора использовали «UV DETECTOR 5410». Исследование проводили при длине волны 254 нм.

В качестве основного фенольного компонента в водных извлечениях из травы и корней синеголовника кавказского и травы синеголовника плосколистного был обнаружен танин (более 30% от суммы обнаруженных соединений). В водном извлечении из корней синеголовника плосколистного преобладали flavonoиды кверцетин (около 20% от суммы обнаруженных соединений), эпикатехин, танин, хлорогеновая и галловая кислоты. В спиртоводных извлечениях (40%, 70%) из травы и корней двух видов синеголовника преобладала галловая кислота (приблизительно 60% от суммы обнаруженных соединений). В водных и спиртоводных извлечениях из травы обоих видов синеголовника одним из преобладающих элементов были катехин и эпикатехин, также в спиртоводных извлечениях из травы синеголовника плосколистного была обнаружена феруловая кислота (около 2%). В спиртоводных извлечениях из корней синеголовника плосколистного была обнаружена цикориевая кислота (до 14%) и лютеолин-7-гликозид (не более 2%). В водном извлечении синеголовника плосколистного одним из преобладающих элементов были кофейная и цикориевые кислоты (приблизительно 4%). В спиртоводных извлечениях из
корней синеголовника кавказского преобладали танин, кофейная и хлорогеновая кислоты. В водных извлечениях травы и корней синеголовника кавказского преобладала хлорогеновая кислота. Эта статья представляет собой первое исследование фенольного состава синеголовника кавказского и синеголовника плосколистного, произрастающих на Северном Кавказе.

Выводы. Проведённые исследования показали, что танин и галловая кислота присутствовали во всех извлечениях. Катехин и эпикатехин были обнаружены в водных и спиртоводных экстрактах травы синеголовника кавказского и плосколистного. Впервые были обнаружены и идентифицированы лютелин-7-гликозид, цикориевая, феруловая и галловая кислоты. Эта статья представляет собой первое исследование фенольного состава синеголовника кавказского и синеголовника плосколистного, произрастающих на Кавказе.

Список литературы.

397
INVESTIGATION OF PHENOLIC COMPOSITION OF SOME SPECIES OF THE SYNDRONIST OF DEVELOPING IN THE CAUCASUS

Shcherbakova E.A., Konovalov D.A.
Pyatigorsk Medical and Pharmaceutical Institute - branch of FGBOU VO VolgGMU MZ RF, Pyatigorsk, Russia, yeliseikina@mail.ru

Phenolic compounds of aqueous and alcoholic (40% and 70%) extracts from the grass and roots of Eryngium planum and Eryngium caucasicum were analyzed by HELC. The main component of aquatic extracts of grass and roots of Eryngium caucasicum and Eryngium planum grass was tannin. In water extraction from the roots of Eryngium planum, quercetin predominated. In alcohol extracts from the grass and roots of two species of Eryngium, gallic acid prevailed.
Фенольные соединения и их использование в медицине и промышленности
New Insights of Polyphenols Enriched Dietary Supplement on Human Oxidative Stress or Redox Signaling

Nemzer B.V.1,2, Fink B.3, König D.4
1VDF FutureCeuticals, Inc, Momence, IL 60954, USA, bnemzer@futureceuticals.com
2 University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
3 Noxygen Science Transfer & Diagnostics, GmbH, Elzach, Germany, Bruno.fink@noxygen.de
4 Steinbeis Center for Health Promotion and Metabolic Research, Freiburg, Germany, Daniel.koenig@sport.uni-freiburg.de

Abstract. Recent interest has focused on maintenance of healthy levels of redox signaling and the related oxidants; these parameters are crucial for providing us with concrete phytochemical and nutritional targets that may help us to better understand and maintain "optimal health". Following the above hypothesis, we performed crossover, double blind, placebo controlled, single dose studies to measure the effects (including dose-dependent effect) of a proprietary plant-based polyphenol enriched dietary supplement (PES) on oxidative stress markers (OSM) and cellular metabolic index (CMI) in healthy human participants. The measurements of OSM in whole blood was performed using electron paramagnetic resonance (EPR) spectrometer NOXYSCAN. We investigated also the ability of these supplements to modulate ex vivo cellular inflammatory responses and changes in bioavailable nitric oxide (NO) concentrations.

The measurement of OSM (ex-vivo intra- and extracellular formation of reactive oxygen species (ROS, O2-, H2O2, OH-)) in whole blood, respiratory activity of blood cells, as well as mitochondrial dependent ROS formation and respiratory activity), was performed using EPR spectrometer NOXYSCAN, spin probe CMH and oxygen label NOX-15.1, respectively. The advances in instrumentation (bench-top EPR spectrometer NOXYSCAN) provided us with an opportunity to perform a pilot study to investigate the bioactivity of PES, a formulation of botanical materials high in preferable phytochemicals such as catechins, chlorogenic acids, and curcumin. The supplement PES is designed, manufactured and commercially
marketed by FutureCeuticals, Inc. (Momence, IL) for promotion of circulating NO concentrations, support of efficient O2 utilization, and healthy oxidative status and metabolism.

The principle of the extended “Cellular Metabolic Index” assay, which was developed by Noxygen Science Transfer & Diagnostics GmbH (Elzach, Germany), is based upon the monitoring of cellular and mitochondrial generation of reactive oxygen species by tracing of an EPR signal using benchtop EPR spectrometer “NOXYSCAN” equipped with a Temperature and Gas Controller System (TGC-BIOIII, Noxygen Science Transfer & Diagnostics GmbH, Germany). Spin probe (CMH, 200 µM) and/or compounds such as SOD (50 U/ml), catalase (50 U/ml), Antimycin A (10 µM) were mixed into the freshly drawn capillary blood in order to perform various types of observations related to ROS generation under controlled temperature and oxygen concentration (t = 37°C, pO2 = 110 mm/Hg). Addition of oxygen label (NOX-15.1 - 5 µM) to the blood sample allowed us to monitor oxygen concentrations and cellular, as well as mitochondrial, oxygen consumption. To distinguish pathways involved in generation of ROS and oxygen consumption we measured:

a. Total cellular ROS/O2 consumption - without addition of inhibitors
b. Extracellular O2•- formation/O2 consumption – after addition of SOD
c. Extracellular H2O2 formation/O2 consumption – after addition of catalase
d. Mitochondrial ROS formation/O2 consumption – after addition of Antimycin A

Furthermore, we investigated the ability of single dose of two concentrations of polyphenols enriched supplement (PES) to modulate ex-vivo cellular inflammatory resistance induced by stimulation with exogenous TNF-α, effects on blood glucose levels and followed changes in circulating NO concentrations as parameter of endothelial function.

In this pilot study, we demonstrated that the administration of 25 or 50 mg PES resulted in statistically significant, long-term, dose dependent inhibition of mitochondrial and cellular ROS generation by as much as 9.2 or 17.7 % as well as 12.0 or 14.8% inhibition in extracellular NADPH system-dependent generation of O2•-, and 9.5 or 44.5% inhibition of extracellular H2O2 formation. This was reflected with dose dependent 13.4 or 17.6% inhibition of TNF-alpha induced cellular inflammatory resistance and also 1.7 or 2.3-times increases of
bioavailable NO concentration. Additionally, we observed significant up to 25 mg/ml decrease in physiological hyperglycemia.

For the first time, we demonstrated the ability of a natural supplement to effect cellular redox signaling and cellular metabolic activity. The unique design and activity of this proprietary plant-based material, in combination with the newly developed “Cellular Metabolic Index” test, demonstrates the potential of using dietary supplements (and PES specifically) to modulate redox signaling, which is considered by many researchers as oxidative stress. This also opens the door to future research into the use of PES for modulation of inflammatory markers associated with chronic age-related conditions, for sports endurance or recovery applications, for healthy, natural maintenance of improved circulating NO, and for potential to ameliorate metabolic disbalances in industrialized nations wherein more than 60% of the populations exhibit two or more symptoms of “Metabolic Syndrome”.

ФЕНОЛЬНЫЕ СОЕДИНЕНИЯ КАК МАРКЕРЫ БОТАНИЧЕСКОГО ПРОЙСХОЖДЕНИЯ МЕДА

Абашидзе Н., Ванидзе М.Р., Джапаридзе И.В., Каландия А.Г.
Батумский Государственный Университет Шота Руставели, Батуми, Грузия, Aleko.kalandia@bsu.edu.ge

Аннотация. Проведено изучение фенольных соединений меда, произведённого в западной Грузии. Осуществено применение полученных данных для получения химических маркеров их ботанического происхождения.

Фенольные соединения относятся к одним из наиболее распространенных в растениях представителей вторичного метаболизма. Мед продукт переработки цветочного нектара, куда попадают и другие вещества входящие в состав цветков растении и частиц пыльцы и из которых экстрагируются содержащие в них вещества. Получается, что монофлорные соединения должно содержат, характерные растении определенные фенольные соединения. Эти соединения в комбинации с другими веществами определяют антиоксидантную
активность меда. В последние годы в научной литературе появились множества работ связанных определении фенольных соединений в меде разного ботанического происхождения и их часто используют как химических маркеров (1-5). Актуален этот вопрос в мировом масштабе как с точки зрения теории так и практически. К сожалению, не смотря на то что производства меда в Грузии имеет исторические корни, такие работы не проведены и на эту тему доступная литература скудна.

Целью настоящей работы является изучения фенольных соединений меда, произведённого в западной Грузии и применения полученных данных для получения химических маркеров их ботанического происхождения.

Анализ биоактивных соединений проводили с использованием различных физико-химических и инструментальных методов. Идентификация, разделения и количественный анализ проводились с использованием UPLC-MS (Waters Acquity QDa detector), HPLC (Waters Brceze 1525, UV-Vis 2489 detectors), pH-meters (Mettler Toledo). Refractometer - Misco , Spectrometer – (Mettler Toledo UV5A), Химикаты –AlCl3, Folin Ciocalteu реагент (preparation), стандартные вещества – Quercetin, Rutin, Naringenin, хроматографическая колонка препаративная C18 (5µm, 10x250mm) и аналитическая C18 (3µm, 4,6x150mm), Cartridge Solid Phase Extraction (SPE) Waters SepPak C18 (500 mg). UPLC-MS 1-3 µm использовали следующие системы - solvent A- Water +1 % acetic acid and solvent -B Methanol +1% acetic acid, column ACQUITY UPLC BEN C18, Acquity UPLC BEH C18 1,7µm, solvent A- Water +1 % formic acid and solvent -B Acetonitril +1% formic acid, Flow 1.0 ml/min, column temp 50 0C, MS-scan 40-1200 DA, Probe 500 0C,Negative 0,8 kV,Capilari 1,5 kV,CV - 15. Все образцы перед вводом фильтровали (Waters Acrodisc LC PVDF Filter 13 mm 0, 45µm).

Общее количество фенольных соединений, натурального каштанового меда, составляет более 400 мг/кг, а их содержание в липовом меде составляет 300 мг/кг, а меде акации - менее 200 мг/кг. Фенольные соединения в меде в основном представляют собой фенолкарбоновые кислоты. Примечательно, что фенолкарбоновые кислоты, присутствуют во всех каштановых медах, но в медах, другого ботанического происхождения, эти соединения в следовых количествах. Изучена антиоксидантная активность меда и доказано корреляционная связь с количеством фенольных соединений.
Эта работа была выполнена при финансовой поддержке Национального научного фонда Грузии (гранты AP / 96/13 и 216816). Любая идея в этой публикации принадлежит автору и не может представлять мнение Национального научного фонда Грузии.

Список литературы.
2. Corina predescu, camelia papuc, valentin nicorescu antioxidant activity of sunflower and meadow honeys scientific Works. Series C. Veterinary Medicine. Vol. LXI (1) ISSN 2065-1295; ISSN 2343-9394 (CD-ROM); ISSN 2067-3663 (Online); ISSN-L 2065-1295
5. Otilia Bobis, L. Al. Marghitas, Victorina Bonta, D. Dezmirean, O. Maghear free phenolic acids, flavonoids and abscisic acid related to hplc sugar profile in acacia honey Bulletin USAMV-CN, 63 - 64/2007 Piotr Marek Ku, Saskia van Ruth Discrimination of Polish unifloral honeys using overall PTR-MS and HPLC fingerprints combined with chemometrics LWT - Food Science and Technology 62 (2015) 69e75

PHENOL COMPOUNDS AS THE MARCHERS OF BOTANICAL ORIGINS OF HONEY
Abashidze N., Vanidze M., Djaparidze I., Kalandia A.
Batumi Shota Rustaveli State University, Aleko.kalandia@bsu.edu.ge

The purpose of this work is to study the phenolic compounds of honey produced in West Georgia and to apply the received data to obtain chemical markers of their botanical origin.

Bioactivity compounds of West Georgian honey were analyzed used UPLC-MS (Waters Acquity QDa detector), HPLC (Waters Breeze 1525,
UV-Vis 2489 detectors), Cartridge Solid Phase Extraction (SPE) Waters Sep-Pak C18 (500 mg). column- Prep.C18 (5µm, 10x250mm) and C18 (3µm, 4,6x150mm), column ACQUITY UPLC BEN C18, Acquity UPLC BEH C18 1,7µm, solvent A- Water +1% formic acid и solvent -B Acetonitrile +1% formic acid, Flow 1.0 ml/min, column temp 50 °C, MS-scan 40-1200 DA, Probe 500 0C, Negative 0,8 kV, Capillary 1,5 kV, CV -15. Total content of phenolic compounds in natural Chestnut honey more 400 mg/kg, In Lime (Tilia) honey 300 mg/kg, Acacia honey - less 200 mg/kg. Phenolic compounds in honey are mainly phenol carbonic acids. The antioxidant activity of honey has been studied and the correlative relationship with the amount of phenolic compounds has been proved.

РЕГЕНЕРАТОРНАЯ АКТИВНОСТЬ ФЛАВОНОИДОВ SAUSSUREA CONTROVERSA ПРИ ЭКСПЕРИМЕНТАЛЬНОМ ОСТЕОМИЕЛЕТИТЕ

Акдеева Е.Ю., Решетов Я.Е., Белоусов М.В.
ФГБОУ ВО Сибирский государственный медицинский университет Минздрава России, Томск, Россия, elenaavdeev@yandex.ru

Аннотация. Флавоноиды Saussurea controversa стимулируют процессы регенерации костной ткани и миелопозз при экспериментальном остеомиелите. После обработки экстракта Saussurea controversa бутанолом получен комплекс флавоноидов. Методом колоночной хроматографии комплекс разделен на пять гликозидов кверцетина, структура которых установлена методом ЯМР. Полученный комплекс флавоноидов в дозе 10 мг/кг вводили крысам с модельным остеомиелитом на фоне антибиотикотерапии. После его применения достоверно возрастало число гранулоцитов и лимфоцитов в костном мозге, при морфологическом исследовании костной ткани наблюдали активацию регенераторных процессов в отличие от крыс, получавших монотерапию антибиотиком. Таким образом, флавоноиды S.controversa стимулируют процессы регенерации костной ткани и миелопозз при экспериментальном остеомиелите.

Остеомиелит составляет порядка 6,5-7% в структуре заболеваний опорно-двигательного аппарата и занимает третье...
место после травм и операций. Не смотря на то, что основным этиологическим фактором является микробная контаминация, заболевание происходит на фоне сенсибилизации организма и ослаблении его иммунной защиты. При этом патогенез заболевания осложняется нарастающим воспалительным процессом, нарушением кровоснабжения и регенерации костной ткани в зоне поражения [1]. Такая мультиплетность патогенетических факторов обусловливает сложность лечения данной патологии и оставляет высокий процент неудовлетворительных результатов. Лечение остеомиелита, как правило, длительно и требует наряду с хирургическим вмешательством применения целого комплекса лекарственных препаратов: антибиотиков, противовоспалительных средств, иммуномодуляторов, обладающих рядом побочных эффектов и обусловливающих высокую ксенобиотическую нагрузку на организм [2]. Использование биологически активных веществ растений перспективно в комплексной терапии остеомиелита, благодаря их мультитаргетному воздействию и возможности длительного приема. В ряде исследований установлены иммуномодулирующая и противовоспалительная активность фенольных соединений, в частности, флавоноидов [3], а так же их способность стимулировать остеобласти, ингибировать пролиферацию остеокластов и активность в них щелочной фосфатазы [4]. Цель настоящей работы состояла в исследовании влияния комплекса флавоноидов соссюреи спорной (Saussurea controversa DC, Asteraceae) (далее по тексту КФСС) на процессы регенерации костной ткани при экспериментальном остеомиелите.

С целью выделения КФСС навеску сырья экстрагировали горячим 40% водным этанолом. Экстракт фильтровали и упаривали до водного остатка, который последовательно обрабатывали в делительной воронке хлороформом, этилацетатом и бутанолом. При удалении бутанола получили КФСС в виде осадка. При элюировании смесью ацетонитрила и изопропанола (5:2 v/v) в градиенте 0,1% ТФУ (колонка Perfect Sil Target ODS-3), КФСС идентифицируется в виде одиночного пика с t, 20,378 и составляет порядка 7% от суммарного экстракта.

Влияние КФСС на костный мозг и регенерацию костной ткани оценивали на модельном остеомиелите у крыс после внутрижелудочного введения в дозе 10 мг/кг в течение 28 дней на фоне антибиотикотерапии цефазолином (50 мг/кг
внутримышечно 5 дней). После курсового применения КФСС достоверно возрастало число гранулоцитов и лимфоцитов костного мозга в отличие от не леченных или крыс получавших монотерапию антибиотиком, что указывает на стимуляцию миелопоза в данных условиях. При морфологическом исследовании костной ткани наблюдали активацию регенераторных процессов, большинство костных пластин имели нормальное строение и равномерную минерализацию, достоверно увеличивались удельная площадь незрелой костной ткани, грануляционной ткани и остеобластов в сравнении с не леченными животными и получавшими только антибиотикотерапию.

Для определения компонентного состава КФСС, провели его хроматографическое разделение на силикагеле и микрокристаллической целлюлозе. В результате выделили пять гликозидов кверцетина (рис.), структуру которых установили методом ЯМР с использованием 1H-1H and 1H-13C корреляций (COSY, COLOC, COXH, ROESY) [5].

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>R$_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Glu</td>
<td>Rha</td>
</tr>
<tr>
<td>2</td>
<td>Glu-(1→6)-Glu-(1→6)-Rha</td>
<td>H</td>
</tr>
<tr>
<td>3</td>
<td>Glu-(1→6)-Rha</td>
<td>H</td>
</tr>
<tr>
<td>4</td>
<td>Xyl</td>
<td>Rha</td>
</tr>
<tr>
<td>5</td>
<td>Rha-(1→2)-Glu</td>
<td>Glu</td>
</tr>
</tbody>
</table>

Рис.1. Флавоноиды Saussurea controversa

Полученные результаты установили достоверную регенераторную активность суммы флавоноидов Saussurea controversa на модели патологии, что позволяет считать их перспективным кандидатом для разработки нового лекарственного средства, эффективного в комплексной фармакотерапии остеомиелита.

Список литературы.
2. Приказ Минздравсоцразвития РФ от 11.08.2005 № 520 "Об утверждении стандарта медицинской помощи больным остеомиелитом".
REGENERATIVE ACTIVITY OF FLAVONOIDS FROM SAUSSUREA CONTROVERSA IN EXPERIMENTAL OSTEOMYELITIS

Avdeeva E.Yu., Reshetov Ya.E., Belousov M.V.
Siberian State Medical University, Tomsk, Russia, elenaavdeev@yandex.ru

The flavonoids of Saussurea controversa DC stimulates the regeneration of bone tissue and myelopoiesis in experimental osteomyelitis. After processing of Saussurea controversa extract with butanol the complex of flavonoids was obtained. It was divided by column chromatography into five quercetin glycosides, the structure of which was established by NMR. The complex of flavonoids at a dose of 10 mg/kg was administered to rats with simulated osteomyelitis along with the antibiotic. After its application the number of granulocytes and lymphocytes in the bone marrow increased. At morphological study of bone tissue the activation of regenerative processes observed in contrast to rats treated with only the antibiotic. Thus, the flavonoids of S. controversa stimulates the regeneration of bone tissue and myelopoiesis in experimental osteomyelitis.
различными способами: тепловая обработка, замораживание и выдерживание в парах спирта (этанола). Было установлено: первое-содержание дубильных веществ (полифенолов) в свежих плодах были высшее, чем после обработки; второе - значительно большим содержанием как общей суммы дубильных веществ, так и растворимых отличается сухофрукты, полученные из свежих плодов (сумма дубильных - 9,15%, растворимые - 0,93%), соответственно высокие антиоксидантные показатели (DPPH-64.3%). Наименьшим содержанием выделяются сухофрукты после выдерживания в парах спирта, сумма дубильных - 6,48%, растворимые - 0,47%, антиоксидантная активность DPPH-46,6%. Средними показателями отличаются сухофрукты полученные после тепловой обработки и замораживания.

Общее содержание дубильных веществ и соответственно уровень антиоксидантной активности в сушенных хурмах остается значительно высокой, поэтому когда свежие плоды не доступны сухофрукты хурмы целесообразно использовать, как ценный продукт для профилактики разных заболеваний.

Последние время особое внимание уделяется соединениям природного происхождения, обладающим антиоксидантными свойствами, растет популярность функциональных ингредиентов, повышающих резистентность организма человека к различным заболеваниям, способные сохранять и стабилизировать метаболические процессы в организме и тем самым участвовать в сохранении его активности.

Пищевые антиоксиданты и особенно фенолы, которые обладают широким спектром биологической активности, включая антибактериальную, противораковую, противовоспалительную функцию, способны предотвратить окисление LDL-C и следовательно, замедлить развитие общего атеросклероза, в частности коронарного атеросклероза. Поэтому пища, содержащие эти пищевые антиоксиданты пользуются спросом (1, 2, 3).

Субтропическая хурма считается хорошим источником легко доступных углеводов и биологически активных соединений, такие как полифенолы и пищевые волокна. Проведенные исследования доказывают соответствующую роль хурмы и
продуктов ее переработки в защите клеток от свободных радикалов. Несмотря ряд научно-исследовательских работ, изучив химический состав различных сортов хурмы (4, 5), трудно сравнивать данные, полученные в вышеупомянутых исследованиях потому, что помимо сорта на содержание первичных и вторичных метаболитов влияют и другие факторы: стадии зрелости, условия окружающей среды и технологический процесс (6). Характерной особенностью хурмы является наличие дубильных веществ, они могут находиться либо в растворимом состоянии, либо в связанном состоянии (7, 8), которые вальяют на общую антиоксидантную активность (9).

Субтропическая хурма, которая богата биоактивными соединениями, прежде всего дубильными веществами, стала предметом исследования. Однако свежая хурма недоступна весь год, поэтому содержание некоторых важных биоактивных соединений в свежих и высушенных хурмах были определены и сопоставлены.

Для исследования брали субтропическую хурму (Diospyros kaki L.), сорт „Хачиа“, которая относится к группе терпких, в технической стадии зрелости. Плоды были разделены на четыре партии: первая - свежие плоды оставляли без обработки (контроль); вторая - подвергали тепловую обработку при температуре 70°C в течение 30 минут; тертая - замораживали при -18°C и дегидратировали; четвертая - выдерживали в парах спирта при комнатной температуре, плоды выдерживались в замкнутой посуде, время выдержки 4 дней. После обработки плоды всех партии очищали от кожицы и сушили при температуре 70 °C в шкафных сушилках с циркуляцией воздуха. Эти партии сушенных плодов были названы: первая партия сухофрукт-К, вторая партия сухофрукт-А, тертая партия сухофрукт-Б, четвертая партия сухофрукт-В. Во всех вариантах определяли сухие вещества, содержание дубильных веществ и оценивали органолептические показатели. Состав и содержание дубильных веществ плодов хурмы мы изучали по методе Левенталя с применением пересчетного коэффициента 0,04157. Для оценки антиоксидантной активностью применяли два метода: метод Прилуцкого В.И. (ЭВ) (10), основан на различии окислительно-восстановительного потенциала в экстрактах и метод DPPH основан на полное связывание радикалов(TRSA). Связывающая активность была выражено, как процент ингибирования (11,12). Антиоксидантную активность определяли
в тех же экстрактах, которые были подготовлены для определения общих дубильных веществ.

Содержание общих, растворимых и связанных дубильных веществ в свежих и обработанных плодах различными способами дана в таблице 1.

Таблица 1
Изменения дубильных веществ в плодах хурмы в зависимости от предварительной обработки

<table>
<thead>
<tr>
<th>#</th>
<th>Способ Обработки</th>
<th>сухие вещества (реф), %</th>
<th>Дубильные вещества, % на сырую массу</th>
<th>Дубильные вещества, % на сухое вещество</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Растворимые</td>
<td>Связанные</td>
<td>Сумма</td>
</tr>
<tr>
<td>1</td>
<td>Свежие плоды-контроль</td>
<td>16,6</td>
<td>0,45</td>
<td>1,81</td>
</tr>
<tr>
<td>2</td>
<td>Тепловая обработка</td>
<td>16,20</td>
<td>0,24</td>
<td>1,84</td>
</tr>
<tr>
<td>3</td>
<td>Замораживание</td>
<td>17,0</td>
<td>0,29</td>
<td>1,65</td>
</tr>
<tr>
<td>4</td>
<td>Выдержка в парах спирта</td>
<td>16,50</td>
<td>0,11</td>
<td>1,63</td>
</tr>
</tbody>
</table>

В таблице 1 показывает, что суммарное количество дубильных веществ незначительно изменяется при разных способах предварительной обработки (15-20% по сравнению с контролем), но значительно меняется растворимые полифенолы: в четыре раза уменьшается при обработке этанолом, почти в два раза при тепловой обработке и полтора раза при замораживании.

При дегустации выявлено, что свежие плоды характеризуется сильно вяжущим вкусом, при обработке этанолом вяжущий вкус исчезает, а при тепловой обработке и замораживанием терпкость уменьшается, плоды становится легка вяжущими.

Данные приведенные в таблице 2 показывают, что значительно большим содержанием как общей суммы дубильных
веществ, так и растворимых отличается сухофрукт К (сумма дубильных-9.15%, растворимые-0.93%), соответственно высокие антиоксидантные показатели (DPPH-64.3%, ЭВ-208). Наименьшим содержанием выделяется сухофрукт В, сумма дубильных-6.48%, растворимые-0.47%, антиоксидантная активность DPPH-46.6%, ЭВ-148.

Таблица 2
Содержание дубильных веществ в сушенных плодах хурмы и показатели антиоксидантной активности

<table>
<thead>
<tr>
<th>№</th>
<th>Наименование образца</th>
<th>Сухие вещества (реф.), %</th>
<th>Дубильные вещества, % на сухую массу</th>
<th>Антиоксидантная активность</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Расторимые</td>
<td>Связанные</td>
<td>Сумма</td>
</tr>
<tr>
<td>1.</td>
<td>Сухофрукт К</td>
<td>79,85</td>
<td>0,93</td>
<td>8,22</td>
</tr>
<tr>
<td>2.</td>
<td>Сухофрукт А</td>
<td>80,90</td>
<td>0,64</td>
<td>6,81</td>
</tr>
<tr>
<td>3.</td>
<td>Сухофрукт Б</td>
<td>83,63</td>
<td>0,74</td>
<td>7,55</td>
</tr>
<tr>
<td>4.</td>
<td>Сухофрукт В</td>
<td>81,21</td>
<td>0,47</td>
<td>6,01</td>
</tr>
</tbody>
</table>

Во всех опытных вариантах более резкое уменьшение претерпевают растворимые (свободные) таниды, количество которых уменьшается на 80-90% от первоначального содержания.

Таким образом, полученные результаты свидетельствуют, что качества сушенных плодов хурмы высокая при подборе правильного технологического ре-жима производства, в частности при тепловое обработке свежих плодов перед сушкой. Общее содержание дубильных веществ и соответственно уровень ан-тиоксидантной активности в сушенных хурмах остается значительно высокой, поэтому когда свежие плоды не доступны сухофрукты хурмы целесообразно использовать, как ценный продукт для профилактики разных заболеваний.

Список литературы:
disease risk. American Journal of Medicine, 97 18S–21S, 22S–28S.
7. Фишман Г.М. Керзнер Е.Л. Переработка плодов субтропической хурмы, Бюллетень ВНИИ чая и субтропических культур, №4б, 1954 г. Ст. 118-135.

DRYING OF PERSIMMONS (Diospyros kaki L.) AND THE
Fresh fruits of persimmons (variety ,,Hachia") were treated before drying in three different ways: thermal treatment, frizzing and keeping in steams off spirit (ethanol). It was found First- tannin content in fresh fruits was higher, than after pro-cessing; Second- much larger content as the total amount of tannins also soluble dif-fer dried fruits, obtained from fresh fruits (the sum of tannins is 9.15%, soluble is 0.93%), accordingly high antioxidant indices (DPPH-64.3%). The lowest content is allocated in dried fruits after aging in alcohol vapors, the amount of tannins-6.48%, soluble-0.47%, and antioxidant activity of DPPH-46.6%. The average indicators are dried fruits, obtained after thermal treatment and freezing.

The differences in the contents of dietary fibers, total polyphenols in fresh and dried persimmons are not significant; the content of total tannins and the related TRSA re-mained high in dried persimmons; when fresh fruits are not available, proper dried persimmons could be used as a valuable substitute in diseases preventing diets.
Дигидрокверцетин - биофлавоноид, наиболее мощный природный антиоксидант. Его антирадикальная активность проявляется при концентрации $10^{-4} - 10^{-5}$ M при полном отсутствии мутагенной активности для человека. Дигидрокверцетин связывает свободные радикалы, выделяемые при активации воспалительной реакции, и лишает их вредоносной активности в тканях организма. Кроме того, он оказывает противовоспалительное, мембраностабилизирующее и, как следствие, - противоотечное действие.

Выпускаемые в настоящее время промышленные образцы дигидрокверцетина (ДКВ) отличаются по некоторым физико-химическим параметрам, несмотря на то, что сырье для их производства используется одно и то же - древесина лиственницы. Различия в характеристиках производимых образцов ДКВ можно объяснить разными технологическими условиями их производства: различные параметры процесса (температура, давление, время и т.д.), а также немалую роль играет использование в технологии разных растворителей.

Таблица 1.

<table>
<thead>
<tr>
<th>Используемый экстрагент</th>
<th>Содержание ДКВ. % от а.с.д</th>
<th>ORAC (μmol Тролакс /г)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>этилацетат</td>
<td>92 -93</td>
<td>32743</td>
</tr>
<tr>
<td>Водный этанол - третбутиловый эфир</td>
<td>88-90</td>
<td>15155</td>
</tr>
<tr>
<td>Этиловый спирт (кавитационное поле)</td>
<td>94-95</td>
<td>23000</td>
</tr>
<tr>
<td>Этиловый спирт</td>
<td>96-98</td>
<td>11790</td>
</tr>
</tbody>
</table>

* Тролокс - водорастворимый аналог витамина Е

Любой параметр технологического процесса, особенно применение водного или безводного растворителя, может повлиять на получение продукта с разным количественным составом оптических изомеров. Соответственно, производимые образцы обладают разным уровнем антиоксидантной активности [1]. Из приведенных в таблице 1 данных видно, что антиоксидантная активность ДКВ (ORAC) зависит не только, и не столько, от чистоты производимого продукта, но и от технологии его получения и применяемого растворителя.

Молекула ДКВ (лекарственная форма Диквертин) содержит
два асимметрических атома углерода - C-2 и C-3, следовательно, существует в виде 4 энантиомеров (двух пар стереоизомеров). Основным природным изомером является транс(+)-2R3R-изомер ДКВ. Известно, что именно эти природные изомеры обладают наибольшей биологической активностью (рис.1).

Рис. 1. (+)2R3R транс-изomer ДКВ (более 97%)

Описанные в литературе способы экстракции не делают акцента на количественном содержании изомеров получаемого ДКВ. Известны способы экстракции ядерой древесины спиртовыми растворами с последующей очисткой от смолистых веществ неполярными растворителями (гексан, бензин), экстракция спиртоэфирной фазой с дальнейшим растворением сухого экстракта в ацетоне.

Нами проведено научное обоснование метода получения нативного дигидрокверцетина, содержащего более 97 % (+)-2R3R-транс изомера от общего количества выделенного ДКВ.

Таблица 2.

<table>
<thead>
<tr>
<th>Растворитель</th>
<th>Температура экстракции *, °C</th>
<th>Выход ДКВ, % от а.с.д.</th>
<th>Содержание (+)2R3R-изомера, от общего количества ДКВ, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Этилацетат</td>
<td>77-78</td>
<td>1.18</td>
<td>98.73</td>
</tr>
<tr>
<td></td>
<td>20-22</td>
<td>1.14</td>
<td>96.00</td>
</tr>
<tr>
<td>Водный этанол (70%)</td>
<td>80</td>
<td>0.84</td>
<td>85.36</td>
</tr>
<tr>
<td></td>
<td>20-22</td>
<td>0.88</td>
<td>90.40</td>
</tr>
<tr>
<td>Ацетон</td>
<td>87</td>
<td>1.26</td>
<td>91.11</td>
</tr>
<tr>
<td></td>
<td>20-22</td>
<td>1.19</td>
<td>92.47</td>
</tr>
</tbody>
</table>

Экспериментальные данные свидетельствуют, что содержание искомого изомера ДКВ в экстрактах, полученных с применением в качестве экстрагента этилацетата, наибольшее и может достигать 99% от общего выхода ДКВ, в то время как
ацетоновые экстракты содержат до 92,5%, а наименьший показатель для спиртовых экстрактов - 85-90 %. (таблица 2).

Параллельно изучено влияние растворителя на изменение энантиомерного состава ДКВ от времени его хранения в разных растворителях: этиловый спирт, ацетон и этилацетат.

Установлено, что ДКВ при нахождении в растворе этилацетата в течение 3-х месяцев не обнаруживает изменения в энантиомерном составе. Однако при хранении вещества в ацетоне или в этиловом спирте происходит снижение содержания (+)-2R3R-изомера, что наблюдается с первого дня хранения. Процесс рацемизации ДКВ в спиртовом растворе отмечен ранее и другими исследователями[2].

Таким образом, использование в качестве экстрагента этилацетата позволяет защитить искомый продукт от рацемизации и получить не менее 97 % транс-изомера (+)-2R3R дигидрокверцетина от общего содержания ДКВ. Это значительно повышает биологическую активность производимого продукта. Исследование показало, что этилацетат в качестве экстрагента в данном процессе имеет неоспоримые преимущества перед другими, используемыми в промышленности, растворителями. Это позволило разработать оптимальный метод выделения дигидрокверцетина из древесины лиственницы с высоким выходом продукта с большим энантвиомерным избыtkом.

На сегодняшний день изучение противовирусной активности антиоксидантов в отношении вирусных инфекций является необходимым условием для создания комплексных противовирусных препаратов [3].

В работе, проведенной ранее совместно с Институтом гриппа (Санкт-Петербург), было показано, что на основании низкой токсичности и высокой защитной активности, ДКВ можно рассматривать как перспективный препарат для комплексной профилактики и / или лечения гриппа, в частности, в тяжелых случаях [3,4].

Результаты исследований противовирусных свойств ДКВ в отношении представителя семейства пикорнавирусов - вируса Коксаки В4, свидетельствует о потенциале ДКВ как противовирусного агента в отношении вируса Коксаки В4 и перспективности дальнейших исследований антиоксидантов как ингибиторов вирусной инфекции. Проведено исследование ряда флавоноидов, выделенных из древесины лиственницы, в отношении вируса Коксаки В4. Из изученных образцов только
ДКВ показал сильную противовирусную защиту в отношении вируса Коксаки B4 \textit{in vitro} \textit{u in vivo}. Применение препарата приводит к дозозависимому снижению вирусных титров в ткани поджелудочной железы инфицированных животных. По этим показателям ДКВ оказался более эффективным, чем контрольное соединение рибавирин. Кроме того, применение ДКВ привело к улучшению патологических процессов в ткани, которое проявлялось в снижении воспаления и гибели клеток, нормализации строения ткани, уменьшении числа очагов воспаления и их размера.

В опытах \textit{in vitro} ДКВ имеет высокий индекс селективности равный 12, что свидетельствует о его противовирусной активности. В экспериментах \textit{in vivo} ДКВ существенно снизил вирусные титры до 5×10²TCID50/mg по сравнению с контролем вируса, вирусный титр которого составлял 5×10⁶TCID50/mg. \cite{5,6}.

Список литературы:
1. В.А. Бабкин, Л.А. Остроухова, А.А Левчук, Н.А. Онучина. Изучение влияния условий экстракции на выход нативного дигидрокверцетина, содержащего более 97 % (+)-2R3R- транс изомера// Химико-фармацевтический журнал, 2016. Том 50, №12. с 115-118.
4. Патент РФ № 2380100 Средство для профилактики и лечения гриппа A и B / Киселев О.И., Бабкин В.А., Зарубаев В.В., Остроухова Л.А.// Б.И. № 3 2010
5. Галочкина А.В.; Зарубаев В.В.; Бабкин В.А.; Остроухова Л.А. Исследование противовирусной активности дигидрокверцетина в процессе репликации вируса Коксаки B4 \textit{in vitro}. Вопросы вирусологии, т 61, № 1. 2016 с 27-31.DOI: 10.18821/0507-4088-2016-1-27-31
THE STUDY OF THE ANTIVIRAL ACTIVITY OF DIHYDROQUERCETIN - A NATURAL BIOFLAVONOID FROM LARCH WOOD

Babkin V.A.¹, Ostroukhova L.A¹, Zarubaev V.V.²
¹A.E. Favorsky Institute of Chemistry Russian Academy of Sciences Siberian Branch, Irkutsk, Russia, babkin@irioch.irk.ru
²Influenza Research Institute, St. Petersburg, Russia

The qualitative and quantitative content of dihydroquercetin isomers in extracts obtained from larch wood at different conditions of extraction has been researched. The optimal process parameters selection of wood enantiomer (+) 2R3R - trans dihydroquercetin having its greatest physiological activity are recommended. The sample is fully characterized by physicochemical methods using chiral HPLC. His studies of antiviral activity in vitro and in vivo on the example of coksovirus infection have been carried out. The high potential of DHQ as an antiviral agent against enteroviruses is shown.

ВЛИЯНИЕ РЕСВЕРАТРОЛА НА ФИЗИОЛОГИЧЕСКИЕ ПАРАМЕТРЫ И ЧУВСТВИТЕЛЬНОСТЬ К ЦИПРОФЛОКСАЦИНИЮ БАКТЕРИЙ ESCHERICHIA COLI

Безматерных К.В., Смирнова Г.В., Октябрьский О.Н.
ПФИЦ «Институт экологии и генетики микроорганизмов УрО РАН», Пермь, Россия, hydrargyrum@iegm.ru

Аннотация. Изучалось влияние биологически активного вещества растительного происхождения ресвератрола на бактерии Escherichia coli. В химических тестах ресвератрол не проявлял способности хелатировать Fe²⁺ и в 1.9 раз слабее тролокса связывал радикалы DPPH·. При действии на растущие бактерии ресвератрол вызывал умеренное ингибирование роста и обратимое падение мембранного потенциала. Ресвератрол индуцировал экспрессию генов katG, sodA и rpoS, но не оказывал существенного влияния на экспрессию katE. Присутствие ресвератрола в среде культивирования модифицировало действие антибиотика ципрофлоксацина (ЦФ), влияя на МИК, время наступления лизиса и число колониеобразующих единиц (КОЕ). При этом
низкие концентрации ресвератрола усиливают эффективность низкой дозы антибиотика (0.03 мкг/мл), в то время как высокие концентрации ресвератрола повышали число КОЕ при всех концентрациях ЦФ.

Для большинства аэробных организмов неизбежными побочными продуктами метаболизма являются токсичные активные формы кислорода (АФК), к числу которых относятся супероксидный радикал, гидроксильный радикал, перекись водорода и др. Живые организмы, в том числе бактерии, выработали различные механизмы, позволяющие сохранять концентрацию радикалов на низком уровне и восстанавливать повреждения, возникающие при окислительном стрессе [1]. Многие болезни и процесс старения сопровождаются нарушением баланса между окислительно-восстановительными реакциями в сторону усиления продукции АФК. В настоящее время фармацевтический рынок предлагает большой выбор антиоксидантных биодобавок, содержащих полифенолы (ПФ), включая ресвератрол. Известно, что при прохождении по желудочно-кишечному тракту значительная часть ПФ не всасывается в кровь или подвергается превращению в различные производные. В итоге концентрация редокс-активных ПФ в плазме очень мала, что делает маловероятным их непосредственное участие в прямом антиоксидантном действии на клетки человека и животных [2]. В отличие от клеток млекопитающих, микрофлора кишечника, представляющая собой важный метаболический орган, может прямо контактировать с высокими концентрациями ПФ и выступать как вероятный посредник их положительного влияния на здоровье. Недавние работы показали, что некоторые флавоноиды и танины, а также ряд экстрактов лекарственных растений способны активировать экспрессию антиоксидантных регулонов и влиять на устойчивость бактерий E. coli к окислительному стрессу [3, 4]. Однако в целом характер воздействия полифенолов на стрессовые регулы и механизм их антиоксидантного действия остается мало изученным.

Актуальность исследования эффектов ПФ на микрофлору кишечника возрастает в связи с вероятностью их модулирующего влияния на чувствительность бактерий к антибиотикам. В последнее десятилетие предложена гипотеза, согласно которой окислительный стресс является единым механизмом гибели
клеток при действии различных антибиотиков [5]. Если гипотеза справедлива, антиоксидантная активность ПФ может интерферировать с действием антибиотиков, влияя на эффективность антибактериотерапии.

В настоящей работе антиоксидантная активность ресвератрола (способность ингибировать радикалы DPPH и хелатировать ионы Fe^{2+}) была исследована с использованием химических методов. Влияние ресвератрола на физиологические параметры бактерий в условиях стресса, вызванного действием ципрофлоксацина (ЦФ), изучали, определяя минимальную ингибирующую концентрацию (МИК), удельную скорость роста бактерий, время наступления лизиса и способность к образованию колоний. Изменение мембранного потенциала (Дψ) оценивали при помощи потенциал-чувствительного флуоресцентного красителя DiBAC_4(3). Измерение экспрессии генов, принадлежащих к антиоксидантным и стрессовым регулонам, проводили с использованием репортерных генных слияний.

В наших экспериментах ресвератрол не проявлял хелатирующей активности по отношению к ионам Fe^{2+}. Способность связывать свободные радикалы DPPH была в 1.9 раза менее выражена, чем у тролокса, который характеризуется высокой радикал-связывающей активностью и часто используется в качестве стандарта.

Действие ресвератрола на растущие культуры Escherichia coli было изучено в диапазоне концентраций 1-100 мкг/мл. Инкубация бактерий в присутствии ресвератрола приводила к дозозависимому снижению удельной скорости роста (µ) относительно контроля (на 35% при максимальной дозе 100 мкг/мл) через 50 мин экспозиции.

Отрицательно заряженные молекулы флуоресцентного красителя DiBAC_4(3) не могут проникать в клетки с нормальным мембранным потенциалом вследствие отрицательного заряда с внутренней стороны мембраны, поэтому клетки, окрашенные DiBAC_4(3), можно рассматривать как деполяризованные. Через 5 мин после добавления ресвератрола в среду культивирования наблюдалось дозозависимое возрастание количества флуоресцирующих клеток, то есть происходило падение мембранного потенциала. При дозе ресвератрола 100 мкг/мл количество клеток, утративших мембранный потенциал, возрастало в 3.2 раза по сравнению с контролем с последующим
возвращением к исходному уровню в течение 60 мин.

В наших экспериментах изучалось влияние ресвератрола на экспрессию генов katG, katE, sodA, rpoS(katF) и sulA(sfiA), кодирующих соответственно каталазу HPI и HPII, Mn-супероксидисмутазу, регулятор общего стрессового ответа RpoS и ингибитор клеточного деления, входящий в SOS-регулон. Предобработка бактерий высокими дозами ресвератрола (40-100 мкг/мл) вызывала 20-35% индукцию экспрессии генов katG и sodA. Низкие дозы (1-12 мкг/мл) повышали экспрессию гена rpoS до 26%. При этом ресвератрол слабо индуцировал экспрессию sulA и не оказывал влияния на экспрессию katE.

Бактерицидный антибиотик ципрофлоксацин, относящийся к группе фторхинолонов, ингибирует синтез ДНК, воздействуя на бактериальные топоизомеразы. В наших экспериментах значение МИК ЦФ для E. coli составляло 0.016 мкг/мл. Высокие дозы ресвератрола оказывали защитное действие, повышая МИК в 2 раза. Экспозиция бактерий с ЦФ приводила к постепенному снижению удельной скорости роста (μ) до нуля с последующим переходом в область отрицательных значений, свидетельствуя о наступлении лизиса клеток. Предобработка ресвератролом (1 и 12 мкг/мл) ускоряла наступление лизиса в присутствии 3 мкг/мл ЦФ.

Экспозиция бактерий к ЦФ приводила к резкому снижению числа КОЕ. Через 70 мин инкубации с 0.03 мкг/мл антибиотика число КОЕ было в 83 раза ниже контрольного значения. Предобработка E. coli 40-100 мкг/мл ресвератрола снижала бактерицидное действие 0.03 мкг/мл ЦФ. Напротив, 1 мкг/мл ресвератрола усиливал действие этой дозы ЦФ, существенно ускоряя снижение КОЕ. При концентрациях ЦФ (0.3 и 3 мкг/мл) КОЕ снижалось до 77000 раз, при этом предобработка 100 мкг/мл ресвератрола увеличивала выживаемость E. coli от 12 до 26 раз.

Конкретные механизмы, лежащие в основе наблюдаемых физиологических изменений в клетках E. coli при действии ресвератрола, и причины его модифицирующего влияния на чувствительность к ципрофлоксацину требуют дальнейшего исследования. Одним из таких механизмов может быть способность ресвератрола к обратимому связыванию с субъединицами домена F1 АТФ-синтазы E. coli [6], что может приводить к ингибированию активности комплекса. Модулирующее влияние препаратов, содержащих ресвератрол на чувствительность к антибиотикам должно учитываться при
антibiотикотерапии.
Исследования выполнены при финансовой поддержке грантов УМНИК 0019636, РФФИ № 16-04-00762 и гранта Президента РФ МК-3376.2018.4.

Список литературы

INFLUENCE OF RESVERTROL ON PHYSIOLOGICAL PARAMETERS AND SENSITIVITY TO CIPROFLOXACIN OF ESCHERICHIA COLI

Bezmaternykh K.V., Smirnova G.V., Oktyabrsky O.N.
PFRC «Institute of Ecology and Genetics of Microorganisms, Ural Branch, RAS», Perm, Russia, hydrargyrum@iegm.ru

The effect of the biologically active plant-derived substance resveratrol on *Escherichia coli* was studied. In chemical tests, resveratrol did not show the ability to chelate Fe$^{2+}$ and 1.9 times weaker the trolox bound the DPPH* radicals. When exposed to growing bacteria, resveratrol caused moderate growth inhibition and a reversible drop in the membrane potential. Resveratrol induced the expression of the *katG, sodA* and *rpoS* genes, but did not significantly affect the expression of *katE*. The presence of resveratrol in the culture medium modified the action of the antibiotic ciprofloxacin (CF), affecting the MIC, the time of onset of lysis and the number of colony forming units (CFU). At the same time, low concentrations of resveratrol enhanced the efficiency of a low dose of the antibiotic (0.03 μg/ml), while high concentrations of resveratrol increased the number of CFUs at all concentrations of CF.
ОЦЕНКА ВОЗДЕЙСТВИЯ ПРОИЗВОДСТВА ДИГИДРОКВЕРЦЕТИНА НА ОКРУЖАЮЩУЮ СРЕДУ

Вольф М. Д., Остроухова Л. А.
ФГБУН Иркутский институт химии им. А. Е. Фаворского СО РАН, Иркутск, Россия, babkin@irioch.irk.ru

Аннотация. Основу технологии получения Дигидрокверцетина (ДКВ) составляет экстракция древесины лиственницы этилацетатом с последующей дистилляцией экстракта и кристаллизацией полученного водного экстракта. Технологическая цепочка состоит из ряда последовательных операций, каждая из которых требует специальных мероприятий по минимизации воздействия на окружающую среду.

Технологическая схема производства дигидрокверцетина из древесины лиственницы состоит из ряда последовательных операций:
- подготовка исходного сырья;
- экстракция;
- дистилляция экстракта;
- сушка щепы;
- разделение упаренного экстракта;
- кристаллизация, фасовка и упаковка.

Твердые отходы при производстве ДКВ – проэкстрагированная, высушенная лиственничная щепа, которая передается на дальнейшую переработку на профильное предприятие по производству целлюлозы или бумаги [1]. Сопутствующие "примеси", которые отделяются при отгоне экстракта - нативные экстрактивные вещества древесины. При высыхании эта фракция представляет собой красно-коричневый порошок со слабым запахом древесной смолы. В примесях содержится до 5 % ДКВ и 15-17% других флавоноидных соединений (аромадендрин, нарингенин, кемпферол) [2]. Остальные составляющие вещества не дают положительной реакции на фенольные соединения. "Примеси" представляют собой ценный побочный продукт и передаются для дальнейшей переработки на предприятия лесохимии.

Жидкие отходы образуются при фильтрации
технологических суспензий при кристаллизации ДКВ. Водный маточный раствор, остающийся после отделения кристаллического ДКВ, содержит сухих веществ 0,7%, из которых 0,21% составляет ДКВ. В дальнейшем они возвращаются на экстракцию [3].

При сушке ДКВ в воздух выбрасывается пары воды, которые уходят в атмосферу через систему вытяжной вентиляции.

Основной технологический процесс экстракции древесины - замкнутый, поэтому другие газовые выбросы в атмосферу практически не наблюдаются [4]. Выбросы также исключаются с помощью установки аборбционной колонны.

Список литературы:
1. Бабкин В. А., Остроухова Л. А., Малков Ю. А. и др. Ресурсосберегающая и экологически безопасная переработка древесины и коры лиственницы // Наука – производству.- 2004.-№ 1.- С. 52-58
2. Правила организации производства и контроля качества лекарственных средств (СМР). РД 64-125-91.
3. Патент РФ № 2246301. Способ получения дигидрокверцетина/ Бабкин В.А., Остроухова Л.А., Бабкин Д. В. //Б.И. № 5, 2005
4. Регламент производства дигидрокверцетина на Байкальском ЦБК. 2006г.

ASSESSMENT OF THE ENVIRONMENTAL IMPACT OF DIHYDROQUERCETIN PRODUCTION

Volf M.D., Ostroukhova L.A.
A.E. Favorsky Institute of Chemistry Russian Academy of Sciences Siberian Branch., Irkutsk, Russia, babkin@irioch.irk.ru

The basis of the technology for obtaining dihydroquercetin is the extraction of larch wood with ethyl acetate, followed by distillation of the extract and crystallization of the obtained aqueous extract. The technological chain consists of a series of sequential operations, each of which requires special measures to minimize the impact on the environment.
ИССЛЕДОВАНИЕ ВЛИЯНИЯ РАСТИТЕЛЬНЫХ ЭКСТРАКТОВ НА АНТИБАКТЕРИЦИДНЫЕ СВОЙСТВА БИОПЛЕНОК

Гончарова Н.В., Сячинова Н.В., Дахалаева Г.Г.
Восточно-Сибирский государственный университет технологий и управления, Улан-Удэ, Россия, natvic@list.ru

Аннотация. Проведено изучение наличия антибактериальных свойств у экстракта, полученного из скорлупы кедрового ореха. Показано, что при его действии отмечена модификация коллагеновых пленок. Это позволяет значительно повысить теплостойкость пленок ПРК и придать им антибактерицидные свойства, что может быть использовано в медицине или косметологии.

Проблемы глубокой переработки растительного сырья привлекают все большее внимание ученых. Полная утилизация биомассы, остающейся в виде отходов в различных отраслях народного хозяйства: лесозаготовительной, пищевой и др. позволит снизить антропогенную нагрузку на окружающую среду. Таким образом, возможность получения растительных экстрактов из нетрадиционного сырья является весьма актуальным.

Целью данной работы было изучение наличия антибактериальных свойств у экстракта, полученного из скорлупы кедрового ореха.

Проведенные ранее исследования показали, что водой извлекается ~2% веществ содержащихся в скорлупе кедрового ореха, что крайне мало для налаживания его промышленной переработки в экстрактовом производстве. Применение вместо воды раствора соды позволяет увеличить выход экстрактивных веществ до ~10% и получить экстракт с доброкаачественностью ~70% [1]. При этом на фенольные соединения разной степени конденсации приходится основная масса веществ извлекаемых из растительного сырья в процессе экстракции. Полифенольные соединения, с молекулярными массами в пределах от 1 000 до 3 000 у.е. проявляют хорошие дубящие свойства, чем активно пользуются в кожевенно-меховом производстве [2]. Однако растительные экстракты содержат и большое количество фенольных соединений – продуктов полураспада органической
материи, молекулярные массы которых значительно меньше указанных величин. Такие соединения часто даже в небольших концентрациях проявляют антибактериальные свойства. Продукты высокой поликонденсации фенолов — флобафены мешают процессу дубления и могут приводить к появлению технологического брака — «задуба» у кожевенного полуфабриката из-за громоздкости их молекул [3]. Однако такой уникальный полифенольный состав экстрактов вполне может быть использован при производстве коллагеновых пленок. Пленки, полученные на основе продуктов растворенного коллагена (ПРК), в медицине могут использоваться в качестве перевязочного материала при обширных повреждениях кожного покрова. Однако их производство связано с рядом проблем, которые необходимо решать, в частности их трудно стерилизовать из-за низкой термостойкости ПРК. Решение данной проблемы видится в модификации пленочного материала экстрактами скорлупы кедрового ореха. Полифенольный состав, возможно, позволит не только повысить термостойкость коллагеновых пленок, но и придать им антибактериальные свойства за счет фенольных соединений низкой степени конденсации, которые не образуют с коллагеном прочных ковалентных связей и в последующем при контакте с влажной поверхностью могут частично мигрировать. Таким образом, модификация коллагеновых пленок содовым экстрактом скорлупы кедрового ореха позволяет не только решить проблему тепловой стерилизации пленочного материала, но и создать условия для дозированной доставки лечебных компонентов непосредственно в зону поврежденного участка кожного покрова.

Для проверки возможности придания антибактериальных свойств пленочным материалам путем модификации их экстрактом скорлупы кедрового ореха использовали продукты растворенного коллагена (ПРК), полученные из шкуры крупного рогатого скота. Перед процессом пленкообразования в состав ПРК вводили различное количество содового экстракта скорлупы кедрового ореха: 5, 10, 20, 30 и 50% от объема модифицируемого белкового материала. Модификация позволила повысить термостойкость пленочных материалов с 50°C до 100°C и сделать возможным процесс тепловой стерилизации.

Исследование антибактериальной способности модифицированных пленочных материалов проводили на
условно патогенной культуре *Alcaligenes faecalis*, представляющей собой грамотрицательные, толстые, короткие слабо подвижные палочки размером 1,0×1,05 мкм, размножающиеся делением. Посев культуры проводили в чашках Петри на *МПА* (мясопептонную питательную среду, приготовленную на основе агар-агара) [4], туда же помещали модифицированные пленочные материалы размером 15×15 мм. Затем чашки Петри в перевернутом положении, инкубировали в течение 96 ч, в термостате, после чего отмечали наличие или отсутствие просветления непосредственно под пленочным материалом и подсчитывали количество выросших колоний микроорганизмов – КОЕ (колонии образующие единицы). Полученные результаты представлены в таблице 1.

<table>
<thead>
<tr>
<th>Пленочный материал</th>
<th>Время культивирования, ч</th>
<th>Наличие просветления под пленочным материалом</th>
<th>КОЕ, ед.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ПРК 5</td>
<td>48</td>
<td>Есть</td>
<td>23×10¹</td>
</tr>
<tr>
<td>ПРК 10</td>
<td>48</td>
<td>Есть</td>
<td>Отсутствие микроорганизмов</td>
</tr>
<tr>
<td>ПРК 20</td>
<td>48</td>
<td>Есть</td>
<td>14×10¹</td>
</tr>
<tr>
<td>ПРК 30</td>
<td>48</td>
<td>Есть</td>
<td>Отсутствие микроорганизмов</td>
</tr>
<tr>
<td>ПРК 50</td>
<td>48</td>
<td>Есть</td>
<td>34×10¹</td>
</tr>
</tbody>
</table>

Процентная доля экстракта, взятая от объема модифицируемого белкового материала

Результаты наблюдений зафиксировали, что просвет, образовавшийся в месте контакта модифицированной пленки ПРК со средой *МПА*, был тем значительнее, чем выше была концентрация экстракта скорлупы кедрового ореха, пошедшего на модификацию пленочного материала. При высокой доле вводимого в состав пленочного материала содового экстракта скорлупы кедрового ореха (варианты с ПРК 10 по ПРК 50) наблюдалась его миграция в питательную среду, в результате
чего колонии, образованные культурой *Alcaligenes faecalis*, либо располагались по периферийным участкам питательной среды, либо вообще не росли.

Таким образом, проведенные исследования показали, что модификация коллагеновых пленок содовым экстрактом скорлупы кедрового ореха позволяет значительно повысить теплостойкость пленок ПРК и придать им антибактерицидные свойства, что может быть использовано в медицине или косметологии.

Список литературы.

PLANT EXTRACTS INFLUENCE ON ANTI-BACTERICIDAL PROPERTIES OF BIOFILMS

Goncharova N.V., Syachinova N.V., Dakhalayeva G.G.
East Siberia State University of Technology and Management, Ulan-Ude, Russia, natvic@list.ru

Polyphenols have anti-bacterial properties often in small concentration. This feature can be used for collagenic biofilms a broad spectrum of activity production. Anti-bacterial collagenic biofilms of the modified by soda a pine nut shell extract properties checked on culture *Alcaligenes faecalis*

Researches showed that modification of collagenic films plant extract allows to increase heat resistance of collagenic biofilms and to give them anti-bactericidal properties. It can be used in medicine or cosmetology.
АНАЛИЗ СОДЕРЖАНИЯ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ И АНТИОКСИДАНТНОЙ АКТИВНОСТИ ИГРИСТЫХ ВИН

Гришин Ю.В., Аристова Н.И., Зайцев Г.П.
ФГБУН “ВННИИВиВ “Марагач” РАН”, Ялта, Крым, Россия, grishin.iurij2010@mail.ru

Аннотация. Проведены исследования антиоксидантной активности и компонентного состава фенольных соединений игристых вин. Установлены диапазоны варьирования мономерных и полимерных форм фенольных соединений, антиоксидантной активности в различных группах игристых вин. Выявлена взаимосвязь антиоксидантной активности и величины массовой концентрации фенольных соединений. Показана возможность использования игристых красных вин в качестве продукции функциональной направленности дополнительно к широко известной ранее.

За последние годы накоплено значительное количество данных о пользе виноградных натуральных вин, главным образом, благодаря проявляемой ими антиоксидантной активности, которая связана со способностью, входящих в их состав особых биологически активных веществ (антиоксидантов), инактивировать свободные радикалы, образующиеся в митохондриях клеток человека во время окислительного стресса [1,2]. В тоже время сведения об антиоксидантной активности и компонентном составе фенольных веществ игристых вин в отечественной научной литературе практически отсутствуют, поэтому исследования особенностей их компонентного фенольного состава и проявляемой ими антиоксидантной активности, а также их взаимосвязи являются весьма актуальными.

Целью исследований являлось определение антиоксидантной активности, а также качественного и количественного состава фенольных соединений различных групп игристых вин Республики Крым (РК), РФ.

Материалы и методы исследования. Объекты исследований: 11 образцов игристых белых, розовых и красных вин, полученных на предприятиях винодельческой отрасли РК,

Диапазоны варьирования форм фенольных соединений и АОА в различных группах игристых вин Республики Крым, РФ

<table>
<thead>
<tr>
<th>Наименование игристых вин</th>
<th>Массовая концентрация</th>
<th>АОА, в пересчёте на Trolox-C, мин+макс, ср. г/дм³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Фенольных веществ (по методу Фолин-Чокальтеу) в пересчёте на Trolox-C, мин+макс, ср. г/дм³</td>
<td>31,80–88,49 / 63,55</td>
<td>123,00–205,00 / 168,80</td>
</tr>
<tr>
<td>Мономерных форм фенольных соединений, мин+макс, ср. мг/дм³</td>
<td>39,00–83,00 / 64,25</td>
<td>164,00–399,00 / 249,67</td>
</tr>
<tr>
<td>Оligомерных процианиди новых, мин+макс, ср. мг/дм³</td>
<td>123,00–205,00 / 168,80</td>
<td>965,00–1370,00 / 1167,50</td>
</tr>
<tr>
<td>Полимерных процианиди новых, мин+макс, ср. мг/дм³</td>
<td>52,00–85,00 / 67,00</td>
<td></td>
</tr>
<tr>
<td>Белые</td>
<td>0,46–0,87 / 0,74</td>
<td></td>
</tr>
<tr>
<td>Розовые</td>
<td>0,88–1,94 / 1,32</td>
<td></td>
</tr>
<tr>
<td>Красные</td>
<td>5,44–7,36 / 6,40</td>
<td></td>
</tr>
</tbody>
</table>

Физико-химические показатели образцов игристых вин, определённые стандартизированными и принятыми в виноделии методами [3-5], соответствовали ГОСТ 33336. Антиоксидантную активность (АОА) в образцах определяли амперометрическим методом (ГОСТ Р 54037). на анализаторе антиоксидантной активности веществ Цвет ЯУЗА-01-АА [4]; массовую концентрацию фенольных веществ - фотоколориметрическим методом [5]; качественный и количественный состав фенольных веществ - методом высокоэффективной жидкостной хроматографии с использованием хроматографической системы
Agilent Technologies 1100 с диодно-матричным детектором и аналогичным методикам [5].

Рис. 1. Мономерный фенольный состав игристых вин РК, РФ.

Рис. 2. Олигомерные и полимерные процианидины игристых вин РК, РФ.

Результаты и их обсуждение. Известно, что игристые белые, розовые и красные вина, производятся из винограда европейских сортов вида Vitis Vinifera. Динамика перехода мономерных и полимерных форм фенольных соединений из винограда имеет существенные отличия, связанные с применением технологических приёмов переработки винограда “по-белому” и “по-красному” способам. В табл. представлены диапазоны варьирования значений массовой концентрации фенольных веществ, мономерных и полимерных форм фенольных соединений и АОА различных групп игристых вин. Выявлена тенденция увеличения значения мономерных форм фенольных
соединений, суммы олигомерных и полимерных процианидинов, соответственно от белых → розовых (1,1; 1,4 раза); → к красным (2,3; 5,4 раза).

Выводы:
1. Идентифицированный мономерный состав форм фенольных соединений показал, что игристые розовые и красные вина состоят: из антоцианов, флавонов, флаван-3-олов, оксиbensойных и оксикоричных кислот, белые — аналогично, за исключением, антоцианов.
2. Сумма олигомерных и полимерных процианидинов в игристых красных винах составляет – 1247,5 г/дм³, что соответственно – в 5,4 и 3,9 раз больше, чем в белых и розовых. Установлена взаимосвязь антиоксидантной активности и величины массовой концентрации фенольных соединений.
3. Установлено, что проявляемая антиоксидантная активность игристых красных вин выше, чем белых и розовых, компонентный состав фенольных соединений позволяют использовать их дополнительно в качестве функциональных продуктов питания оздоровительного характера, наряду с широко известными ранее (продуктов переработки красных сортов винограда и др.).

Работа выполнена в рамках Государственного задания ФАНО России (№ 0833-2015-0001).

Список литературы
5. Р 4.1. 1672-03 Руководство по методам контроля качества и
ANALYSIS OF PHENOLIC COMPOUNDS CONTENT AND ANTIOXIDANT ACTIVITY OF SPARKLING WINES
Grishin Yu.V., Aristova N.I., Zaitsev G.P.
Federal State Budget Scientific Institution “All-Russian National Research Institute of Viticulture and Winemaking "Magarach", Russian Academy of Science”, Yalta, Republic of Crimea, Russia, grishin.iurij2010@mail.ru

Antioxidant activity and component composition of phenolic compounds of sparkling wines have been analyzed. Variation ranges were established for monomeric and polymeric forms of phenolic compounds, and antioxidant activity of various groups of sparkling wines. The relationship between antioxidant activity and mass concentration of phenolic compounds was established. The possibility of using sparkling red wines as a product of functional scope in addition to the widely known earlier was demonstrated.

ИЗМЕНЕНИЕ СОСТАВА ФЕНОЛЬНЫХ СОЕДИНЕНИЙ В ПРОЦЕССЕ БРОЖЕНИЯ ЯБЛОЧНОГО СОКА НА ДРЕВЕСНОЙ ЩЕПЕ
Гусакова Г.С.1, Чеснокова А.Н.1, Супрун Н.П.1, Коваль А.Н.1, Кузьмин А.В.2
1Иркутский национальный исследовательский технический университет, Иркутск, Россия, gusakova58@mail.ru
2Лимнологический институт СО РАН, Иркутск, Россия, kuzmin@lin.irk.ru

Аннотация. В работе определены основные физико-химические показатели, суммарное содержание и качественный состав фенольных соединений сока и виноматериала из яблока сорта Красноярский снегирек. Методом ВЭЖХ-УФ-МС исследовано изменение состава фенольных соединений в процессе брожения сока на древесной щепе. Показано снижение содержания фенольных соединений при брожении на щепе по отношению к контролю
более чем в 3 раза.

В последние годы на Российском рынке отмечен потребительский интерес к натуральным сидрам на основе местных сортов. Как известно, качественные показатели готового напитка определяются химическим составом исходного сырья. Отличительной чертой «сидровых» сортов яблок является высокое содержание полифенолов, обладающих широким спектром биологической активности [1-4]. В современных работах [5-7] отмечается, что яблоки выращенные в Иркутской области отличаются от привозных сортов более высоким (в 3-4 раза) содержанием витамина С и фенольных соединений.

Исследование химического состава фенольных соединений яблочного сока в процессе брожения является актуальной задачей, имеющей важное технологическое значение при создании новых эффективных продуктов оздоровительного действия [8, 9].

Цель данной работы - проследить изменение состава фенольных соединений в процессе брожения на щепе сока из яблок, выращенных в Прибайкалье.

Объектом исследования послужили плоды яблони сорта Красноярский снегирек, выращенные в Иркутской области, собранные в фазе потребительской зрелости в сентябре 2016 г. Сок из яблок получали с помощью лабораторного пак-пресса. Экстрактивные вещества сока представлены сахарами и кислотами (сумма сахаров – 11,5%, титруемая кислотность – 7,8 г/дм³).

В опыте использовали дрожжи вида Saccharomyces bayanus, перед внесением проводили процесс регидратации. После активного забраживания вносили в сок, подготовленный для брожения. Бродильную смесь подавали в ёмкость на 1/3 заполненную щепой из древесины яблони в несколько приёмов, для достижения требуемой концентрации дрожжевых клеток. Контролем служила емкость без щепы. Температура брожения составляла 18–20 °C.

Определение физико-химических показателей проводили по стандартным методикам. Общее содержание фенольных соединений в соках определяли спектрофотометрическим методом Фолина-Чокальтеу, используя в качестве стандарта галловую кислоту [10].

Состав полифенольных соединений в соке и вине из яблок
сорта Красноярский снегирек определяли методом ВЭЖХ-УФ-МС (ионизация электростатическим распылением в режиме регистрации положительных ионов) на колонке Zorbax 300SB C18 (5 мкм, 150×2.1 мм); температура колонки 35°С; элюент А 0.1% гептафторбутановая кислота (HFBA) в воде; элюент Б 0,1% HFBA в MeCN в градиентном режиме элюирования.

При получении вина процесс брожения на щепе закончился на 7 сутки, на 72 часа быстрее, чем в контроле (10 сут.), бродившем в аналогичных условиях без щепы. Этому способствовало создание на поверхности древесины более благоприятных условий для развития дрожжевых клеток, вследствие сорбции на древесине физиологически активных соединений: Р-активных фенольных веществ, аминокислот и других стимуляторов роста. Кроме того щепа благоприятно влияет на газовый режим, ускоряя выделение CO₂.

Яблочное вино, полученное брожением на щепе, получило более высокую дегустационную оценку (8,9 бал) в сравнении с контролем (8,2 бал) по 10 бальной шкале. По содержанию этанола существенных различий не наблюдалось (6,0% и 5,9% в контроле) при остаточном сахаре 0,2–0,15 г/дм³ соответственно. По мере накопления спирта происходило незначительное понижение титруемой кислотности (с 7,8 в соке до 7,5 в контроле). Активная кислотность (pH) колебалась в пределах 3,2–3,9. Окислительно-восстановительный потенциал в первый день брожения резко снизился с 340 до 155 мВ, в конце брожения составил 160 мВ. В контроле снижался только до 170 (на 3 день) и в конце снова вырос до 210 мВ.

При брожении на щепе наблюдали снижение интенсивности окраски виноматериала по сравнению с контролем, что, по нашему мнению, связано с замедлением окислительных процессов за счет сорбции красящих и фенольных веществ на поверхности щепы. Подтверждением данного вывода служит снижение содержания фенольных соединений по отношению к контролю более чем в 3 раза (с 1914,7 до 538,9 мг/дм³, в том числе содержание мономерных – с 478,7 до 140,6 и полимерных с 1436,0 до 398,3 мг/дм³).

В составе сока идентифицировано 15 фенольных соединений, представленных фенолкарбоновыми кислотами (3), дигидрохалконами (3), flavan-3-олами (2) и flavonами (7). В ходе получения вина методом брожения на щепе качественный состав фенольных соединений практически не изменился.
Исключение составили кофейная кислота (2) и (+)-катехин (7). Их отсутствие в виноматериалах может быть связано со снижением концентрации в результате окисления и взаимодействия с компонентами вина.

Таблица 2.
Состав фенольных соединений сока и виноматериалов

<table>
<thead>
<tr>
<th>Название</th>
<th>Брутто</th>
<th>T_R (MS), мин</th>
<th>$[M+H]^+$ теор.</th>
<th>УФ max, нм</th>
<th>Сок</th>
<th>Вин 1</th>
<th>Вин 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Хлорогеновая кислота (1)</td>
<td>$C_{16}H_{18}O_9$</td>
<td>4,1</td>
<td>355,102</td>
<td>326</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Кофейная кислота (2)</td>
<td>$C_9H_8O_4$</td>
<td>5,0</td>
<td>181,050</td>
<td>325</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Паракумарил-хинная кислота (3)</td>
<td>$C_{16}H_{18}O_8$</td>
<td>6,1</td>
<td>339,107</td>
<td>312</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2'-О-ксилозид флоретина (4)</td>
<td>$C_{26}H_{32}O_{14}$</td>
<td>14,2</td>
<td>569,187</td>
<td>284</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Флоридзин (5)</td>
<td>$C_{21}H_{24}O_{10}$</td>
<td>15,1</td>
<td>437,144</td>
<td>284</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Флоретин (6)</td>
<td>$C_{15}H_{14}O_{5}$</td>
<td>15,4</td>
<td>275,091</td>
<td>286</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(+)-катехин (7)</td>
<td>$C_{15}H_{14}O_{6}$</td>
<td>9,5</td>
<td>291,086</td>
<td>278</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>(-)-эпикатехин (8)</td>
<td>$C_{15}H_{14}O_{6}$</td>
<td>12,6</td>
<td>291,086</td>
<td>278</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Кверцетин (9)</td>
<td>$C_{15}H_{18}O_{7}$</td>
<td>17,2</td>
<td>303,050</td>
<td>372</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3-О-глюкозид кверцетина (10)</td>
<td>$C_{21}H_{20}O_{12}$</td>
<td>13,1</td>
<td>465,103</td>
<td>354</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3-О-галактозид кверцетина (11)</td>
<td>$C_{21}H_{20}O_{12}$</td>
<td>13,4</td>
<td>465,103</td>
<td>355</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3-О-ксилозид кверцетина (12)</td>
<td>$C_{20}H_{18}O_{11}$</td>
<td>13,3</td>
<td>435,092</td>
<td>356</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>3-О-арабинозид кверцетина (13)</td>
<td>$C_{20}H_{18}O_{11}$</td>
<td>13,9</td>
<td>435,092</td>
<td>354</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3-О-рамнозид кверцетина (14)</td>
<td>$C_{21}H_{20}O_{11}$</td>
<td>14,6</td>
<td>449,108</td>
<td>350</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3-О-рутинозид кверцетина (рутин, витамин P) (15)</td>
<td>$C_{27}H_{30}O_{16}$</td>
<td>12,5</td>
<td>611,161</td>
<td>356</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Из дигидрохалконов в исследуемых образцах найдены характерные для сидровых сортов яблок флоридзин, флоретин и

Идентифицированные в соке и вине флаванолы представлены кверцетином и его гликозидами: 3-O-глюкозидом (10), 3-O-галактозидом (11), 3-O-арabinозидом (13), 3-O-рамнозидом (14), 3-O-рутинозидом (15) кверцетина. Обнаруженный в соке 3-O-ксилозид кверцетина (12) не был детектирован в виноматериале, что может быть связано со снижением его концентрации ниже предела обнаружения.

Таким образом, в работе показано, что продолжительность процесса брожения сока при использовании древесной щепы сократилась на 72 часа. Изменился состав фенольных соединений. В сравнении с контролем в виноматериале сброженном на щепе не идентифицированы (+)-катехин (7) и 3-O-ксилозид кверцетина (13).

Список литературы:
5. Раченко М.А. и соавт. Различия в количестве фенольных соединений в плодах яблонь, выращенных в Прибайкалье // Вестник ИрГСХА. Иркутск, 2016. № 72. С. 17-21.
7. Гусакова Г.С., Раченко М.А. Перспективы промышленного использования зимостойких сортов яблони Южного Прибайкалья // Вестник российской сельскохозяйственной науки. Москва, 2016. №5. С. 52-56.
CHANGES OF THE PHENOLIC COMPOUNDS COMPOSITION DURING THE PROCESS OF APPLE JUICE FERMENTATION ON THE WOOD CHIPS

Gusakova G.S.¹, Chesnokova A.N.¹, Suprun N.P.¹, Koval A.N.¹, Kuzmin A.V.²
¹Irkutsk National Research Technical University, Irkutsk, Russia, gusakova58@mail.ru
²Liminological Institute SB RAS, Irkutsk, Russia

The main physicochemical parameters and total phenolic compounds composition of juice and wine from Krasnoyarskiy snegirek apple were studied in the present work. The composition redistribution of phenolic compounds before and after fermentation of the juice on wood chips was observed by HPLC-UV-MS method. The decrease in the content of phenolic compounds after fermentation on chips with respect to the control by more than three times is shown.

ПРИРОДНЫЕ ФЕНОЛЫ ВЫПОЛНЯЮТ РОЛЬ ГЕПАТОПРОТЕКТОРОВ В ЖИВОТНЫХ МОДЕЛЯХ ПЕЧЕНОЧНОЙ ПАТОЛОГИИ

Дерябина Ю.И.¹, Исакова Е.П.¹, Гесслер Н.Н.¹, Мариничев А.А.¹, Кляйн О.И.¹
¹ФГУ «Федеральный исследовательский центр «Фундаментальные основы биотехнологии» РАН», Москва, Россия, yul_der@mail.ru;
²Московский политехнический институт, Москва, Россия, anton1796@mail.ru

Аннотация. В работе показано положительное воздействие природных полифенолов класса дигидрофлавонолов (дигидромерицетин) и стильбенов (ресвератрол и пиносилин) на функции печени в животной модели
токсического гепатита. Продемонстрировано, что ресвератрол, дигидромерицетин и пиносиливин оказывают стабилизирующее действие на состояние экспериментальных крыс с индуцированным токсическим гепатитом, уменьшая уровень билирубина и обеспечивая смещение уровней глюкозы и АСТ в крови животных в сторону контрольных значений. Проведенные исследования дают основания рассматривать природные полифенолы класса дигидрофлавонолов и стильбенов в качестве потенциальных гепатопротекторов при системных патологиях печени.

За последние десять лет неалкогольная жировая дисфункция печени становится основной формой хронического заболевания печени и наблюдается более чем у 30% населения [1]. Развитие стеатоза может происходить под действием различных токсических факторов. Сходные изменения могут наблюдаться при алкоголизме, действии лекарственных препаратов, сахарном диабете, кардиоваскулярных заболеваниях, ожирении. Выявлена связь стеатоза с другими хроническими заболеваниями, такими как сонное апное, колоректальный рак, остеопороз, псориаз и эндокринные нарушения [2]. Неалкогольная жировая дистрофия печени (стеатоз, гепатостеатоз, жирная печень) представляет собой неспецифическую реакцию гепатоцитов на токсическое воздействие. Основной характеристикой этого состояния является избыточное накопление жира в печени. При сильной жировой дистрофии могут наблюдаться жировые кисты и разрастание соединительной ткани.

Существует несколько моделей индукции печеночной патологии в экспериментальных целях. Одним из наиболее эффективных гепатотоксикантов является тиоацетамид (ТАА). Установлено, что отравление ТАА вызывает нарушение многих биохимических процессов в организме. Было показано, что ТАА индуцирует увеличение содержания в печени оксипролина, растворимого и нерастворимого коллагена, приводит к изменению содержания аминокислот в плазме крови, к повышению активности щелочной и кислой фосфатаз, цитохромоксидазы, лактатдегидрогеназы и др. Предполагают, что ТАА одновременно стимулирует синтез и распад белка [3]. Было также обнаружено, что в результате острого отравления
ТАА развивается внутридольковый некроз, жировая дегенерация печени, а при длительном хроническом поступлении ТАА развивается гиперплазия клеток эпителия желчных ходов и соединительнотканной стромы, приводящие к циррозу печени.

Печеночную патологию у крыс индуцировали с помощью хронической интоксикации ТАА в течение 30 суток эксперимента. Моделью патологического состояния служили самцы белых лабораторных крыс линии Wistar, которые подвергались хроническому отравлению 0,5 % ТАА в течение 28 суток эксперимента, индуцирующему токсическое повреждение и различные патологии печени. В эксперименте участвовали животные интактной (1), контрольной (2) и 3 экспериментальных групп (3-5). 1 группа не получала никаких дополнительных добавок, контрольная получала ТАА с питьем, группы 3-5 получали, помимо ТАА, полифенолы ресвератрол (РСВ) (3), дигидромерицетин (ДГМ) (4) и пиносилин (ПС) (5) в концентрациях 15 мг/кг веса, 10 мг/кг веса и 2 мг/кг веса, соответственно. В ходе эксперимента оценивали динамику веса и биохимических параметров крови животных. Осмотр и взвешивание животных проводили через день. Динамика веса животных показала, что интактные животные, в отличие от контрольной группы, характеризовались уверенной прибавкой веса (Табл. 1).

Таблица 1

<table>
<thead>
<tr>
<th>Группа животных</th>
<th>Увеличение веса животных, г</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 день эксперимента</td>
</tr>
<tr>
<td>1</td>
<td>25,4±5</td>
</tr>
<tr>
<td>2</td>
<td>-21,2±6,5</td>
</tr>
<tr>
<td>3</td>
<td>-15,6±7,5</td>
</tr>
<tr>
<td>4</td>
<td>-19,8±5,2</td>
</tr>
<tr>
<td>5</td>
<td>21±6,3</td>
</tr>
</tbody>
</table>

Введение РСВ и ДГМ в первые 10 дней эксперимента приводило к уменьшению потери веса животных, в то время как администрирование ПС вызывало его прибавку, сопоставимую с интактной группой (Табл. 1). Динамика веса животных 3-5 групп в последующие 20 дней эксперимента продемонстрировала положительную тенденцию, что могло свидетельствовать о позитивном воздействии полифенолов на функции печени.
Анализ динамики биохимических показателей крови экспериментальных животных показал, что при интоксикации уровень билирубина увеличивался почти в 10 раз, в то время как внесение полифенолов уменьшало этот показатель более, чем в 2 раза (Табл. 2). Кроме того, внесение полифенолов индуцировало смещение биохимических параметров крови (в частности, уровня глюкозы и АСТ) в сторону контрольных значений (Табл. 2). Наиболее эффективностью характеризовался РСВ (группа 3) и ДГМ (группа 4) (Табл. 2).

Таблица 2
Динамика биохимических показателей крови животных в ходе проведения эксперимента.

<table>
<thead>
<tr>
<th>Группа животных</th>
<th>Билирубин прямой</th>
<th>АСТ, ед/л</th>
<th>АЛТ, ед/л</th>
<th>Общий белок, г/л</th>
<th>Глюкоза, ммоль/л</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,48±0,13</td>
<td>267,26±74,5</td>
<td>93,86±10,9</td>
<td>71,28±3,28</td>
<td>6,68±0,6</td>
</tr>
<tr>
<td>2</td>
<td>4,15±2,03</td>
<td>227,38±33,82</td>
<td>51,37±5,1</td>
<td>64,03±3,9</td>
<td>5,9±0,65</td>
</tr>
<tr>
<td>3</td>
<td>2,36±0,83</td>
<td>311,32±65,22</td>
<td>83,3±22,88</td>
<td>62,14±4,27</td>
<td>5,67±0,93</td>
</tr>
<tr>
<td>4</td>
<td>2,58±1,27</td>
<td>239,37±29,86</td>
<td>54,31±5,27</td>
<td>63,62±4,33</td>
<td>5,99±1,07</td>
</tr>
<tr>
<td>5</td>
<td>1,9±0,66</td>
<td>242,01±58,49</td>
<td>55,32±10,9</td>
<td>63,1±4,8</td>
<td>5,9±0,66</td>
</tr>
</tbody>
</table>

Таким образом, проведенные исследования показали, что природные полифенолы класса дигидрофлавонолов (ДГМ) и стильбенов (РСВ и ПС) оказывают положительное воздействие на функции печени в модели экспериментального токсического гепатита и могут рассматриваться в качестве потенциальных гепатопротекторов.

Список литературы.
NATURAL PHENOLS SERVE AS HEPATOPROTECTORS IN ANIMAL MODELS OF HERATIC PATHOLOGY

Deryabina Y.I.¹, Isakova E.P.¹, Gessler N.N.¹, Marinichev A.A.¹,², Klein O.I.¹
¹. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia, yul_der@mail.ru; ²Moscow Polytechnic University, Moscow, Russia, anton1796@mail.ru

In the study, a positive influence of naturally occurring polyphenols of the dihydroflavonols (Dihydromyricetin) and stilbens (Resveratrol and Pinosylvin) on the liver functions using an animal model of toxic hepatitis. It was shown that Resveratrol, Pinosylvin, and Dihydromyricetin make a stabilizing effect on the state of experimental rats with induced toxic hepatitis through reducing the level of bilirubin and changing the levels of glucose and AST in the animal blood to the control figures. The obtained data provide the base to consider the natural polyphenols of the dihydroflavonols and stilbens as potential hepatoprotectors under the system pathologies of the liver.
экстрактов этих растений. Экстракты сравнивали по действию на выживаемость и биопленкообразование **Escherichia coli** XL1-Blue и **Pectobacterium carotovorum**. Установлено, что экстракты исследованных растений обладали разной степенью антимикробного действия. Наиболее эффективным оказался 70 % спиртовой экстракт **Alchemilla subcrenata**.

Одни растительные метаболиты, такие как флавоноиды, алкалоиды и терпены, обладают выраженной антимикробной активностью. Другие, например, сахара и аминокислоты, могут использоваться микроорганизмами в качестве дополнительного источника питания и способствовать их размножению. Фенольная составляющая экстрактов лекарственных растений одновременно с бактерицидным действием часто обладает антиоксидантным эффектом. В природных условиях бактерии в свободноживущей (планктонной) форме присутствуют в основном с целью расселения, а для эффективного освоения новых экологических пространств микроорганизмы переходят в состояние биопленок, в котором они становятся более устойчивыми и менее уязвимыми к внешним воздействиям. Способность бактерий формировать биопленки рассматривается в настоящее время как фактор их патогенности и устойчивости к действию антибиотиков и дезинфицирующих средства. Поэтому целью представленной работы было изучение химического состава водных и этанольных (40 и 70 %) экстрактов растений подбела многолистного (**Andromeda polyfolia** L.) и манжетки городковатой (**Alchemilla subcrenata** Buser) и сравнение их антимикробного потенциала.

Отбор растительного материала проводили на юго-восточном побережье озера Байкал, в 700 м от уреза озера, разнотравный луг, стационар СИФИБР СО РАН «Речка Выдринная». Отбиралась надземная часть растений (листья). Для определения антимикробного и противобиопленочного эффектов использовались грамотрицательные фитопатогенные бактерии **Pectobacterium carotovorum** ssp. **carotovorum** ВКМ В-1247 и условно-патогенные **Escherichia coli** XL-1 Blue (“**Stratagene**”, США).

Воздушно-сухие листья растений измельчали до частиц размером 1-2 мм. Экстракцию проводили при соотношении сырье-экстрагент 1:30. Водный экстракт получали следующим
образом: сырье заливают горячей водой, 5 мин кипятили на водяной бане и настаивали 1 ч. Спиртовую экстракцию проводили 1 ч в 40 или 70 % водном растворе этанола. Перед исследованием бактерицидного действия экстрактов из них на роторном испарителе удалялся спирт и излишки воды, полученный концентрат стерилизовали фильтрованием через бактериальный фильтр (диаметр пор 20 мкм) с последующим доведением стерильной дистиллированной водой до исходного объема.

Общее содержание фенольных соединений в пересчете на кверцетин определяли спектрометрическим методом с помощью реактива Фолина-Чокальтеу при 720 нм на SPECORD S 100 («Analytikjena», Германия). Содержание флавоноидов в экстрактах определяли по реакции с хлоридом алюминия (калибровочная строилась по кверцитину). Антимикробный потенциал исследуемых экстрактов оценивали диско-диффузионным методом на газонах (МПА) по диаметру зоны подавления роста бактерий. Бактерицидный и бактериостатический эффекты оценивали визуально по характеру зоны подавления вокруг диска. Действие экстрактов на формирование биопленки определяли по интенсивности окрашивания содержимого лунок на 96-луночных планшетах в смеси, состоящей на 1/4 из суспензии исследуемого штамма микроорганизма в забуференном физиологическом растворе (ЗФР) с 0,5 % глюкозы (ЗФРГ) и экстрактов, сгущенных до 1:6. Планшеты инкубировали 3 сут при 31 ºС. На 4 сут измеряли оптическую плотность окрашенных биопленок на планшетном спектрофотометре (Bio-Rad, США) при длине волны 495 нм. Изучение воздействия экстрактов лекарственных растений на сформированную биопленку: в выращенные в планшетах в течение 4 сут биопленки вносили по 37 мкл ЗФРГ или растительных экстрактов. Изменение состояния биопленок фиксировали спектрофотометрическим методом на 0, 1, 2 и 3 сут.

Содержание флавоноидов было достоверно выше при всех способах экстракции из манжетки по сравнению с подбелом. Содержание фенольных соединений в спиртсодержащих экстрактах было значимо выше в вытяжках подбела, тогда как в водных экстрактах не выявлено различий в содержании фенольных соединений. Стерилизация экстрактов и выпаривание из них спирта не приводили к уменьшению
содержания действующих веществ в экстрактах, за исключением flavonoидов в 70% экстракте подбела (по критерию Вилкоксона).

Экстракты подбела в концентрации 1:6 не влияли на исследуемые виды бактерий, а экстракты манжетки обладали выраженным бактерицидным действием на P. carotovorum и замедляли рост E. coli (бактериостатический эффект). При этом наблюдаемое действие не зависело от степени разведения экстракта. В то же время на рост P. carotovorum низкие концентрации экстракта манжетки не оказали существенного воздействия.

При изучении воздействия экстрактов подбела на биопленкообразование E. coli u P. carotovorum было установлено, что водный экстракт подбела почти в два раза усиливал биопленкообразование E. coli и не влиял на P. carotovorum. Экстракты, полученные с использованием 40% и 70% этанола, значительно подавляли и P. carotovorum u E. coli (на 25 и 17%, 14 и 39%, соответственно, по сравнению с контролем). Таким образом, экстракты этого растения, несмотря на отсутствие антимикробного действия при использовании диско-диффузионного метода, снижали пророст популяции бактерий исследуемых видов. Одновременно, спиртовые экстракты оказали значимое влияние на образование биопленок, что позволяет рекомендовать экстракты A. polifolia к дальнейшему исследованию с целью поиска соединений, ингибирующих биопленкообразование.

Практически все экстракты манжетки существенно стимулировали биопленкообразование у исследуемых видов бактерий, относительно контроля. Наиболее значительной стимулирующей активностью обладал 70 % спиртовой экстракт данного растения. Экстракты данного вида обладали выраженной антимикробной активностью, что было показано выше при использовании диско-диффузионного метода. Известно, что процесс формирования биопленок запускается при неблагоприятных воздействиях, поэтому возможно, что именно содержание биологически-активных соединений в экстрактах A. subcrenata Buser обладающих значительной антимикробной активностью объясняет стимуляцию биопленкообразования.

При изучении воздействия растительных экстрактов на бактериальные биопленки, важно оценивать их способность к деструкции этих формирований. Исследование влияния
экстрактов на уже сформированную биопленку не привело к изменению их оптической плотности, что подтверждает данные об устойчивости зрелых биопленок.

Нами установлено, что экстракты исследованных растений обладали разной степенью антимикробного действия на газонах культур микроорганизмов. A. subcrenata Buser обладала выраженным бактерицидным действием на P. carotovorum и бактериостатическим – E. coli. В то время как к добавлению экстрактов подбела многолистного (A. polifolia) оба микроорганизма были устойчивы. В то же время, спиртовые экстракты подбела значимо подавляли образование биопленок P. carotovorum и E. coli. Экстракты манжетки, напротив, стимулировали рост и биопленкообразование бактерий, что можно объяснить высокой антимикробной активностью данного растения. Учитывая изученный химический состав экстрактов, выявленные эффекты очевидно связаны с содержанием в них флавоноидов, которых в экстрактах манжетки было больше.

ANTIMICROBIAL ACTIVITY OF EXTRACTS OF ANDROMEDA POLYFOLIA AND ALCHEMILLA SUBCRENATA CAUSED BY PHENOL COMPONENT

Zhivetyev M.A.1,2, Bybin V.A.1, Graskova I.A.1,3, Markova Y.A.1,3
1Siberian Institute of Plant Physiology and Biochemistry (SIPPB SB RAS), Irkutsk, Russia, nik.19@mail.ru
2Irkutsk National Research Technical University, Irkutsk, Russia
3Irkutsk Scientific Center Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia

Plants accumulate in their tissues powerful arsenal of protective substances necessary for survival in the face of abiotic environmental and in aggressive neighborhood with pathogenic bacteria and viruses. We examined the following kinds of medicinal plants: Alchemilla subcrenata and Polyfolia andromeda. Conducted chemical analyses of water and 40 and 70% alcohol extracts of these plants. Extracts compared on the effects on survival and biofilm formation of Escherichia coli XL1-Blue and Pectobacterium carotovorum. Found that extracts of plants studied have varying degrees of antimicrobial action. The most effective proved to be 70% alcoholic extract of Alchemilla subcrenata.
ФЛАВОНОИДЫ ПРОПОЛИСА МЕДОНОСНОЙ
ПЧЕЛЫ НА ТЕРРИТОРИИ БАШКОРТОСТАНА –
БАШКИРСКОГО ПРОПОЛИСА

Зайнуллин Р.А. 1, Галяутдинов И.В. 2, Садретдинова З.Р. 2,
Гареев В.Ф. 2, Мамаева Г.Г. 2, Одиноков В.Н. 2
1Уфимский государственный нефтяной технический университет,
Россия, Уфа, 5599032@mail.ru
2Институт нефтехимии и катализа РАН, Россия, Уфа, ilgizphd@mail.ru

Аннотация. Приводятся сведения о сосставах флавоноидов прополиса. Установлена структура этих соединений.

Прополис – продукт медоносной пчелы *Apismellifer a* с широким спектром биологической активности находит широкое применение в традиционной и альтернативной медицине [1]. В композиционном составе прополиса, зависящего от географического происхождения, вида пчел и растений, идентифицировано более 300 соединений (флавоноидов, терпеноидов, стероидов, ароматических альдегидов, спиртов, стильбенов, кумаринов, липидов) [2].

![Флавоноиды прополиса](image)

Нами впервые выделены из башкирского прополиса индивидуальные флавоноиды: флаваноны 1-4 и флавоны 5,6. Флаваноны 1-3 являются левовращающимися оптическими изомерами 2S-конфигурации. На основании взаимной транс-ориентации 2-фенильной и 3-ацетильной групп, занимающих экваториальное положение в гетероцикле, сделан вывод об относительной 2S*,3R*-конфигурации флаванона 4. Поскольку во
всех флаванонах 2-хиральный атом имеет (S)-конфигурацию, 2,3-бихиральный флаванон-4 следует отнести к 2S, 3R-ряду. В более ранних работах флаванону-4 (пинобанксин-3-ацетат) и его деацетильному аналогу – пинобанксину приписывали 2R, 3R-конфигурацию [3].

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 17-43-020483 р_а)

Список литературы.

ИЗУЧЕНИЕ ПРОТИВОМИКРОБНОЙ АКТИВНОСТИ ФЛАВОНОИДОВ ЛИСТЬЕВ МЯТЫ ПЕРЕЧНОЙ В ОТНОШЕНИИ ШТАММОВ МУКОВИСЦИДОЗА

Казакова М.А., Минько О.В., Миронова С.С., Рыжов В.М., Лямин А.В., Кондратенко О.В.
ФГБОУ ВО «Самарский государственный медицинский университет» Минздрава России, Самара, Россия, тел.:+79270030190, romashka.23.03.97@mail.ru

Аннотация: Мята перечная (Mentha piperita L.) является одним из перспективных лекарственных растений, применяемое в традиционной и научной медицине, обладающее широким спектром действия [1, 2, 3]. Целью настоящего исследования являлось изучение воздействия извлечений из травы мяты перечной на биологические свойства различных штаммов патогенных микроорганизмов. В настоящей работе представлены результаты микробиологического анализа фенольных соединений, содержащихся в листьях мяты перечной. Муковисцидоз - наследственное мультисистемное заболевание, поражающее дыхательные пути, желудочно-кишечный тракт, печень, поджелудочную железу, слюнные,
потовые железы, репродуктивную систему [4]. В настоящее время наибольшую проблему для терапии представляют пациенты, инфицированные штаммами *Burkholderiacepacia complex*, который включает 19 геномоваров. Бактерии данной группы имеют генетическую устойчивость к ряду антибактериальных препаратов, поэтому на данный момент в медицинской практике препаратов, излечивающих данное заболевание, крайне мало. В связи с чем, имеется интерес по поиску биологически активных соединений оказывающих противомикробную активность в отношении штаммов бактерий, вызывающих муковисцидоз, в том числе и растительного происхождения [4, 5, 6].

Рис. 1. Противомикробная активность в отношении *B. Cenocepacia* (105)

Рис. 2 Противомикробная активность в отношении *B. multivorans* (141)

Рис. 3 Противомикробная активность в отношении *B. multivorans* (139)

Одним из перспективных, на наш взгляд, источников
противомикробных компонентов является мята перечная *Mentha piperita* L., содержащая группу фенольных соединений flavonовой природы (лютеолин), а также монотерпены (ментол) [1, 2, 3].

Объектами исследования являлись водно-спиртовые извлечения из листьев мяты перечной на 40%, 70%, 96% этиловом спирте и спиртовый раствор РСО Лютеолина, предоставленный СамГМУ (2017 г).

Определение минимальной ингибитирующей концентрации проводили методом двойных серийных разведений в бульоне в соответствии с МУК 4.2.1890-04 [7].

Учет результатов микробиологического анализа осуществлялся через 48-72 часа после инкубации при температуре 37° С, также проводилась визуальная оценка задержки роста. Из лунок с видимой задержкой роста осуществлялся высев на питательные среды (5% кровяной агар-агар), через 24 часа отсутствие роста оценивалось как бактерицидный эффект, а появление видимого роста – как бактериостатический. Результаты эксперимента представлены в гистограммах сравнения (рис. 1-5).

Рис. 4. Противомикробная активность в отношении *Pseudomonas aeruginosa*

Рис. 5. Противомикробная активность в отношении *B. cenocepacia* (136)

Полученные данные свидетельствуют о неоднородности
действия в отношении различных штаммов муковисцидоза. Так в отношении *B. Cenocepacia* (105) была проявлена высокая бактериостатическая активность извлечений из мяты на 70% и 96% этаноле, а также раствором лютеолина. При этом бактерицидная активность была незначительной (рис. 1). Напротив, в отношении *B. multivorans* (141) бактерицидная активность была проявлена всеми извлечениями и раствором лютеолина, в то время как бактериостатическая активность у некоторых образцов не проявилась (рис. 2).

Таким образом, проведенные нами исследования свидетельствуют о выраженной противомикробной активности флавона – лютеолина в отношении штаммов муковисцидоза: *B. multivorans* (141), *B. multivorans* (139), *Pseudomonas aeruginosa*, что показывает его потенциальную перспективность в качестве препарата для комплексной терапии, данной нозологии муковисцидоза. В дальнейшем планируется исследование противомикробной активности терпеновой фракции листьев мяты перечной.

Список литературы.
1. ГФ XIII ФС.2.5.0029.15 Мяты перечной листья
STUDY OF ANTIMICROBIAL ACTIVITY PHENOLIC COMPOUNDS CONTAINED IN PEPPERMINT ON REGARD TO STRAINS MUCOVISCIDOSUM

Kazakova M.A., Minko O.V., Mironova C.C., Ryzhov V.M., Lamin A.V., Kondratenko O.V.
Samara State Medical University, Samara, Russia, romashka.23.03.97@mail.ru

Peppermint is one of promising medical plant, useful in traditional and official medicine, which have large sector of action. The purpose of the research was a study of effects extraction from peppermint leaves on the biological properties of various of strains pathogenic microorganisms. This paper presents the results of a microbiological analysis of phenolic compounds contained in peppermint leaves.

ЛЕЧЕБНОЕ ДЕЙСТВИЕ СЕМЯН ВИНОГРАДА КАК ИСТОЧНИКА ФЕНОЛЬНЫХ СОЕДИНЕНИЙ

Казахмедов Р.Э.¹, Казахмедов Э.Р.², Магомедова М.А.¹
¹Филиал Дагестанская селекционная опытная станция виноградарства и овощеводства ФГБНУ «СКФНЦСВВ», Дербент, Россия, dsosvio@mail.ru
²Российский университет дружбы народов, Москва, Россия

Аннотация. Виноград является одним из наиболее богатых и перспективных источников флавоноидов, содержащий несколько классов наиболее биологически активных антиоксидантов-флавоноидов, таких как: фенолкислоты, флавонолы, катехины (танины и проантоцианидины), лейко-антцианидины, антоцианы, проантоцианы и антоцианы, кверцитин и дигидрокверцитин, а также ресвератрол - самый мощный антиоксидант, известный современной науке. Флавоноиды в значительных количествах содержаться во всех составляющих виноградной лозы: ягоде (кожица, семена, сок), а также в стебле и гребне. Общие фенольные вещества виноградной ягоды, подлежащие экстракции, распределяются в следующем соотношении: 10% в мякоти, 60-70% - в семенах, 28-35% в кожице. Содержание фенольных веществ в семенах
варьирует от 5 до 8% по массе. Изучение свойств и получение легко доступного порошка из семян винограда в профилактике ряда заболеваний, в том числе и социально-значимых является актуальным.

Исследование физико-химических характеристик виноградных семян показало, что в их состав входят также липиды, белки, кофеин, тонизирующие, дубильные и красящие вещества, минеральный состав виноградных семян отличается высоким содержанием калия и кальция при низком содержании натрия, что способствует выведению жидкости из организма, улучшает работу сердца. Установлено, что липиды виноградных семян имеют сбалансированный жирно-кислотный состав и отличаются высоким содержанием витаминов A, E, D. Виноградные семена содержат значительное количество углеводов, состоящих главным образом из полисахаридов (клетчатки и гемицеллюлозы), и могут рассматриваться как источник пищевых волокон, являющихся обязательным фактором процесса пищеварения [1,2,3,4].

Благотворный эффект полифенолов из виноградных семян обеспечивается поглощением свободных радикалов, кроме того, антиоксидантные свойства полифенолов из виноградных семян превосходят другие известные антиоксиданты. Клинические испытания подтвердили, что антиоксидантные свойства олигомеров процианидинов виноградных семян в 20 раз сильнее витамина C и в 50 раз – витамина E [5]. В исследовании влияния шрота семян винограда на реактивные изменения ткани печени крыс подтвердился гепатопротекторный эффект шрота на клеточном уровне [6].

Ресвератрол обнаружен в виноградных винах, семенах и стеблях. Ресвератрол относится к фитоалексинам — природным антибактериальным веществам, являющимся частью системы защиты растений против различных болезней. Ресвератрол из семян винограда сокращает число жировых клеток в организме, замедляет развитие преджировых клеток. Значительно снижается метеозависимость [3,7].

Несмотря на интенсивные исследования в области создания природных БАД, актуальность этой проблемы, а также проблемы создания функциональных пищевых продуктов на основе растительного сырья, является очевидной. В настоящее время к наиболее приемлемому, быстрому и эффективному
способу профилактики и лечения различных заболеваний относится использование пищевых добавок. Добавки растительного происхождения более доступны и менее аллергенны. Вторичные продукты винодельческой промышленности – это дешевое и доступное сырье [8].

Предлагаемые на рынке БАД с содержанием активных соединений винограда имеют высокую стоимость и малодоступны широким слоям населения. В этой связи, изучение свойств и получение легкодоступного порошка из семян винограда в профилактике ряда заболеваний, в том числе и социально-значимых является актуальным.

В наших исследованиях установлены повышение эффективности базовой терапии при сочетании ее с приемом порошка семян винограда в урологической практике [9] и возможность применения порошка из семян винограда для профилактики гипертонической болезни [10].

Дагестанская СОСВиО проводит исследования по теме госзадания ФАНО России «Разработать технологии получения экологически чистого и доступного сырья из растений брокколи и вторичных продуктов переработки винограда и томата с целью получения БАД для профилактики социально значимых заболеваний». Установлено низкое содержание или отсутствие остаточных количеств тяжелых металлов и пестицидов в семенах винограда [11,12], что подтверждает целесообразность их применения в профилактической медицине и геронтологии, в том числе и в качестве доступной для широких слоев населения БАД.

Список литературы
2. Кондратьев, Д.В. Способы получения экстракта виноградных выжимок и возможности его использования в пищевой промышленности / Д.В. Кондратьев, Н.Г. Щеглов // Известия высших учебных заведений. Пищевая технология 2009.– №1. – С. 62-65;
3. Мизин, В.И. Эффективность применения полифенолов винограда в комплексном санаторно-курортном лечении больных с заболеваниями кардио-респираторной системы / В.И. Мизин, В.М. Монченко, В.В. Мешков [и др.] // Материалы науч. конф. «Биологически активные природные соединения винограда:
применение в медицине продуктов с высоким содержанием полифенолов винограда».— Симферополь, 2003.— С. 86-119.;
4. Вершинина, О. Л. О возможности использования порошка из семян винограда при предварительной активации прессованных дрожжей//О. Л. Вершинина, З. И. Асмаева, Н. Н. Корнен, А. П. Бежко//Химия и компьютерное моделирование. Бутлеровские сообщения.— 2001.— № 5;
5. Полифенолы из виноградных семян. Ресвератрол. [Электронный ресурс].— Режим доступа: https://mlmsisel.mirtesen.ru;
6. Павлова, О.Н. Реактивные изменения ткани печени крыс в результате нагрузки щротом семян винограда / О.Н. Павлова Т.В.Гарипов, Ю.В. Григорьева, Н.Н. Желонкин, С.В. Первушкин // Актуальные вопросы ветеринарной биологии.— 2013.— № 3 (19).— С.85-89;
7. Барабой, В.А. Фенольные соединения виноградной лозы: структура, антиоксидантная активность, применение / В.А. Барабой // Биотехнология. 2009.— №2.— С. 67-75.;
8. Аралина, А.А. Анализ и оптимизация технологического процесса извлечения флавоноидов из виноградных выжимок /А.А. Аралина, М.А. Селимов, В.В. Садовой //Доклады Российской академии сельскохозяйственных наук.—2012.— № 2. — С. 55-57;
9. Азизов, А.П. Применение порошка из семян винограда для лечения эректильной дисфункции / А.П. Азизов, Р.Э. Казахмедов // Международный конгресс по андрологии.— Сочи, Дагомыс. 2009. 28-31 мая;
10. Казахмедов, Э.Р. Фенольные вещества семян винограда в профилактике гипертонической болезни / Э.Р. Казахмедов, Р.Э. Казахмедов // Виноделие и виноградарство.— 2013.— №3.— С. 43 - 45.;
11. Казахмедов, Р.Э. Содержание тяжелых металлов в выжимках винограда, томата и растениях брокколи для производства биологически активных добавок / Р.Э. Казахмедов, А.Ш. Рамазанов, А.Т. Шихсефиев, М.А. Магомедова // Сборник материалов Международной научно- практической конференции «Современные проблемы садоводства и виноградарства и инновационные подходы к их решению», посвященной 85-летию профессора, академика АТН Н.Алиева. 3 декабря 2016. Махачкала 2016. С. 150-157;
12. Казахмедов, Р.Э. К вопросу о разработке БАД для профилактики социально значимых заболеваний / Р.Э. Казахмедов, М.А. Магомедова // Рациональное питание, пищевые добавки и биостимуляторы.— 2017.—№ 1.— С.13-16;
THE THERAPEUTIC EFFECT OF GRAPE SEED AS A SOURCE OF PHENOLIC COMPOUNDS
Kazahmedov R.E.\(^1\), Kazahmedov E.R.\(^2\), Magomedova M.A.\(^1\)
\(^1\)Branch of Dagestan breeding research station of viticulture and horticulture FGBNU “SKFNTsSVV”, Derbent, Russia, dososvio@mail.ru
\(^2\)Peoples’ friendship University of Russia, Moscow, Russia

Grapes is one of the richest and most promising sources of flavonoids, containing several classes of the most biologically active antioxidants-flavonoids, such as: phenolic acids, flavonols, catechins (tannins and proanthocyanidins), LEUCO-anthocyanidins, anthocyanins, proanthocyanins and anthocyanidins, Quercitin and dihydroquercetin, as well as resveratrol - the most powerful antioxidant known to modern science. Flavonoids in large quantities contained in all components of the vine: berries (skins, seeds, juice), as well as in the stem and crest. Common phenolic substances of grape berries to be extracted are distributed in the following ratio: 10% in pulp, 60-70% in seeds, 28-35% in the skin. The content of phenolic substances in seeds varies from 5 to 8% by weight. The study of the properties and production of easily accessible powder from grape seeds in the prevention of a number of diseases, including socially significant is relevant.

ВЛИЯНИЕ ФОСФОРСОДЕРЖАЩЕГО ФЕНОЛЬНОГО АНТИОКСИДАНТА НА ИНТЕНСИВНОСТЬ ПЕРОКСИДНОГО ОКИСЛЕНИЯ ЛИПИДОВ СПЕРМЫ БЕЛОРЫБИЦЫ ПРИ ГИПОТЕРМИЧЕСКОМ ХРАНЕНИИ
Коляда М.Н.\(^1\), Антонова Н.А.\(^2\), Берберова Н.Т.\(^2\)
\(^1\)ЮНЦ РАН, Ростов-на-Дону, Россия, mnkolyada@mail.ru
\(^2\)АГТУ, Астрахань, Россия

Аннотация. В работе показана возможность снижения уровня пероксидного окисления липидов мембран спермиев белорыбицы в присутствии (4-гидрокси-3,5-ди-трет-бутилфенил)-метилендифосфоновой кислоты - нового фосфорсодержащего пространственно-затрудненного фенола при гипотермическом хранении при температуре +4 °C в течение 3 суток. Добавка данного соединения непосредственно к сперме рыб может быть альтернативой
разбавлению спермы модифицированной криосредой Штайн. Полученные в работе данные позволяют сделать вывод о перспективности нового антиоксиданта для повышения резистентности липидов мембран спермиев белорыбицы к процессам пероксидного окисления в условиях гипотермического хранения без замораживания в течение 3 суток.

Одним из механизмов повреждения спермиев при криоконсервации является окислительный стресс, биохимическим маркером которого выступает пероксидное окисление липидов (ПОЛ). Сperms рыба чрезвычайно уязвимы к реакциям ПОЛ, так как в мембранах половых клеток гидробионтов велико содержание полиненасыщенных жирных кислот [1].

Известно, что для лососевых рыб, в том числе белорыбицы, характерна наиболее высокая по сравнению с другими гидробионтами степень ненасыщенности жирных кислот в сперматозоидах [2]. При криоконсервации в спермиях данных гидробионтов высока вероятность утраты не только липидов из-за реакций ПОЛ, но и белков [3].

Ранее установлена способность (4-гидрокси-3,5-ди-трет-бутилфенил)-метилендифосфоновой кислоты - фосфорсодержащего пространственно-затрудненного фенольного антиоксиданта (ФАО) снижать интенсивность ПОЛ спермий русского осетра и белуги при низкотемпературной криоконсервации при температуре жидкого азота [4]. Обнаружена отрицательная корреляция между уровнем ПОЛ спермы осетровых и временем движения спермий.

В данной работе проведено сравнительное исследование влияния данного фосфорсодержащего фенола, модифицированной криосреды Штайн [5], а также криосреды с добавкой ФАО на накопление карбонильных продуктов ПОЛ спермы белорыбицы, определяемых с помощью тиобарбитуровой кислоты – ТБК-активных продуктов (ТБК-АП) в условиях гипотермического хранения при температуре +4 °C в течение 72 часов.
Согласно полученным в работе данным (Рис.), с увеличением длительности хранения спермы без добавок (контроль) уровень накопления ТБК-АП в сперме белорыбицы монотонно повышался, что свидетельствует о развитии окислительного стресса в спермиях белорыбицы в процессе гипотермического хранения.

В работе не обнаружено значительных различий между снижением ПОЛ мембран спермиев белорыбицы в присутствии криосреды и при добавлении к сперме фенольного антиоксиданта. Учитывая, что при разбавлении спермы криозащитной средой возможны потери липидов и белков, второй вариант с использованием ФАО представляется более предпочтительным.

При гипотермическом хранении спермы, разбавленной криосредой с добавкой антиоксиданта, в течение 1 часа уровень ПОЛ недостоверно (р>0,05) повышался. На остальных этапах хранения зафиксировано снижение накопления ТБК-АП, наиболее значительное – после хранения в течение 48 часов. Только на данном этапе разбавление спермы криосредой с добавкой антиоксиданта оказалось более эффективным по сравнению с остальными вариантами (р<0,05).

Таким образом, полученные в работе данные позволяют сделать вывод о перспективности нового антиоксиданта для повышения резистентности липидов мембран спермиев белорыбицы к процессам пероксидного окисления в условиях гипотермического хранения без замораживания в течение 3 суток.

Работа выполнена при поддержке гранта РФФИ (№ 17-03-00434).
INFLUENCE OF PHOSPHOROUS-CONTAINING PHENOLIC ANTIOXIDANT ON INTENSITY OF PEROXIDE OXIDATION OF LIPIDS OF WHITEFISH SPERM IN HYPOTHERMAL STORAGE

Kolyada M.N.1, Antonova N.A.2, Berberova N.T.2
1SSC RAS, Rostov-on-Don, Russia, mnkolyada@mail.ru
2ASTU, Astrakhan, Russia

The paper shows the possibility of decreasing the level of peroxide oxidation of lipids of the membranes of whitefish in the presence of (4-hydroxy-3,5-di-tert-butylphenyl) – methylenediphosphonic acid – a new phosphorus-containing sterically hindered phenol at hypothermic storage at a temperature of +4 °C for 3 days. Adding this compound directly to the fish sperm can be an alternative to diluting the sperm with a modified Stein’s cryomedium. The data obtained in the work allow us to conclude that the new antioxidant is promising for increasing the resistance of lipids in the membranes of the sperm whitefish to peroxidation processes under hypothermic storage conditions without freezing for 3 days.
АКТУАЛЬНЫЕ АСПЕКТЫ СТАНДАРТИЗАЦИИ ЛЕКАРСТВЕННОГО РАСТИТЕЛЬНОГО СЫРЬЯ И ЛЕКАРСТВЕННЫХ РАСТИТЕЛЬНЫХ ПРЕПАРАТОВ, СОДЕРЖАЩИХ ФЕНОЛЬНЫЕ СОЕДИНЕНИЯ

Куркин В.А.
ФГБОУ ВО «Самарский государственный медицинский университет» Министерства здравоохранения Российской Федерации, Самара, Россия, Kurkinvladimir@yandex.ru

Аннотация. В настоящее время обоснованы новые подходы к стандартизации лекарственного растительного сырья и лекарственных растительных препаратов, содержащих фенольные соединения, с использованием стандартных образцов розавина, сирингина (элеутерозид Б), гамма-сизандрина, розмариновой кислоты, цикориевой кислоты, арбутина, силибина, лавандозида (фенилпропаноиды), рутина, гиперозида, изосалипурпороизда, ликуразида, пиностроина, цинарозида, тиланина, гинкгетина, 3,8-бияспигенина, никотифлорина, нарцисса, цианидин-3-О-глюкозида (флавоноиды), франгулина А, сеннозида В, 8-О-глюкозида эмодина, 1,7-дигидрокси-3-карбоксиантрахинона (антраценпроизводные), арбутина (простые фенолы). Разработаны методики качественного и количественного анализа исследуемых видов сырья и фитопрепаратов с использованием тонкослойной хроматографии (ТСХ), высокоэффективной жидкостной хроматографии (ВЭЖХ), спектрофотометрии.

Лекарственные растения, содержащие фенольные соединения, являются ценным источником адаптогенных, тонизирующих, ноотропных, антидепрессантных, анксиолитических, седативных, иммуномодулирующих, гепатопротекторных, желчегонных, антиоксидантных, противовирусных, антимикробных и противовоспалительных лекарственных средств [1-4]. В группе фенольных веществ наиболее распространенными являются фенилпропаноиды, флавоноиды, антраценпроизводные, простые фенолы, которые в силу большого структурного разнообразия обладают широким спектром биологической активности [1-9]. При этом следует
отметить, что на основе изучения физико-химических, спектральных и фармакологических свойств ранее была разработана современная классификация фенольных веществ [3, 10], а также обоснована необходимость введения в фармакогнозию фенилпропаноидов как самостоятельного класса биологически активных соединений (БАС) [3, 9, 10], что нашло отражение в учебнике «Фармакогнозия» [3].

В настоящее время одной из нерешенных в полной мере проблем является стандартизация лекарственного растительного сырья (ЛРС) и лекарственных растительных препаратов (ЛРП), содержащих фенольные соединения, в том числе в плане гармонизации методических и методологических подходов к анализу, причем эта проблема особенно актуальна для ЛРС, содержащего флавоноиды. За последние 15-20 лет число фармакопейных видов сырья, отнесенных к флавоноидам, увеличилось с 11 до 30 наименований [3, 6]. Кроме того, флавоноиды имеют статус второй группы БАС в 35 видах лекарственных растений, включая эфиромасличное сырье, а также виды, содержащие фенилпропаноиды, в частности, гидроксикоричные кислоты [3, 6].

Цель исследования – обоснование новых подходов к стандартизации ЛРС и ЛРП, содержащих фенольные соединения.

В качестве объектов использованы корневища и биомасса родиолы розовой (Rhodiola rosea L.), корневища и корн элеутерококка колючего [Eleuthrococcus senticosus (Rupr. et Maxim.) Maxim.], кора сирени обыкновенной (Syringa vulgaris L.), семена и плоды лимонника китайского (Schizandra chinensis Baill.), трава мелиссы лекарственной (Melissa officinalis L.), цветки лаванды колосовой (Lavandula spica L.), листья гинкго двулопастного (Ginkgo biloba L.), трава зверобоя продырявленного (Hypericum perforatum L.) и зверобоя пятнистого (Hypericum maculatum Grantz.), трава эхинацеи пурпурной [Echinacea purpurea (L.) Moench.], плоды расторопши пятнистой [Silybum marianum (L.) Gaertn.], листья гинкго двулопастного (Ginkgo biloba L.), цветки пижмы обыкновенной (Tanacetum vulgare L.), цветки бессмертника песчаного [Helichrysum arenarium (L.) Moench.], почки тополя черного (Populus nigra L.), цветки календулы лекарственной (Calendula officinalis L.), кора ивы остrolистной (Salix acutifolia Willd.), листья березы бородавчатой (Betula verrucosa Ehrh.), корни солодки

В результате изучения химического состава целого ряда лекарственных растений выделены и охарактеризованы с использованием УФ-, ЯМР-спектроскопии, масс-спектрометрии, ТСХ и ВЭЖХ, различных химических превращений фенилпропаноиды, флавоноиды, антраценпроизводные и простые фенолы, представляющие интерес с точки зрения химической стандартизации сырья и препаратов соответствующих лекарственных растений. На основе изучения химического состава целого ряда видов ЛРС сформулированы подходы к стандартизации сырья и фитопрепаратов соответствующих лекарственных растений. На основе изучения химического состава целого ряда видов ЛРС сформулированы подходы к стандартизации сырья и фитопрепаратов, заключающиеся в использовании в методиках анализа стандартных образцов розавина (родиола розовая), триандрина (биомасса родиолы розовой), сирингина (элеутерококк кульчий, сирень обыкновенная), сибилина (расторопша пятнистая), лавандозида (лаванда колосовая), розмариновой кислоты (мелисса лекарственная), цикориевой кислоты (экиназе пурпурная), гамма-сихизандрина (лимонник китайский), гинкгетина (гикго двулопастный), 3,811-бисапигенина (зверобой продырявленный), тилианина (pijma обыкновенная), цинарозида (pijma обыкновенная), гиперозида (береza бородавчатая,
зербовой пятнистой, никотифлорина (гинкго двулопастный), нарициссина (календула лекарственная), изосалипурпозида (бессмертник песчаный), ликуразида (солодка голая), пиностробина (тополь черный), цианидин-3-О-глюкозизда (черника обыкновенная, арония черноплодная), франгулина А (крушина ломкая, жостер слабительный), сеннозида В (кассия остролистная), 1,7-дигидрокси-3-карбоксиантрахинона, или неореина (кассия остролистная), 8-О-β-D-глюкопиранозизда эмодина (щавель конский), арбутина (толокнянка обыкновенная, брусника обыкновенная).

В ходе настоящих исследований нами разработаны проекты фармакопейных статей на виды сырья, содержащие фенилпропаноиды, флавоноиды и антраценпроизводные, которые включены в Государственную фармакопею Российской Федерации XIII издания [11].

Таким образом, в результате проведенных исследований обоснованы новые подходы к стандартизации лекарственного растительного сырья и фитопрепаратов, содержащих фенольные соединения (фенилпропаноиды, флавоноиды, антраценпроизводные, простые фенолы), с использованием ТСХ, ВЭЖХ, спектрофотометрии и соответствующих стандартных образцов, что будет способствовать совершенствованию нормативной документации на ЛРС и ЛРП.

Список литературы.
THE ACTUAL ASPECTS OF THE STANDARDIZATION OF MEDICINAL PLANT MATERIALS AND PHYTOPHARMACEUTICALS, CONTAINING OF PHENOLIC COMPOUNDS

Kurkin V.A.
Samara State Medical University, Samara, Russia,
Kurkinvladimir@yandex.ru

There were substantiated the new approaches to standardization of medicinal plant materials and phytopharmaceuticals, containing phenolic compounds, with the using of standard samples of rosavin, syringin (eleutherosoide B), γ-schizandrin, rosmarinic acid, chicory acid, silybin and lavandoside (phenylpropanoids), rutin, hyperoside, isosalipurposide, licuraside, pinostrobin, cynaroside, tilianin, ginkgetin, 3,811-biapigenin, nicotiflorin, narcissin, 5-O-glucoside of cyanidin (flavonoids), frangulin A, sennoside B, 8-O-glucoside of emodin, 1,7-dihydroxy-3-carboxyanthraquinone (anthracenderivatives) and simple phenols (arbutin). There were developed the techniques of qualitative and quantitative analysis of investigated medicinal plant materials and phytopharmaceuticals with the using of TLC, HPLC and spectrophotometry
ВЛИЯНИЕ ПОЛИФЕНОЛЬНОГО КОМПЛЕКСА ЭКСТРАКТА ИЗ МОРСКОЙ БУРОЙ ВОДОРОСЛИ SACCHARINA JAPONICA НА НАРУШЕНИЯ ФИЗИОЛОГО-БИОХИМИЧЕСКИХ ХАРАКТЕРИСТИК ЭРИТРОЦИТОВ ПРИ ДИСЛИПИДЕМИИ

Кушнерова Н.Ф. 1, Момот Т.В. 2
1 ФГБУН Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения РАН, Владивосток, Россия, natasha50@mail.ru.
2 Школа биомедицины Дальневосточного федерального университета, Владивосток, Россия, kushnerova83@mail.ru

Аннотация. Приведены данные по изучению мембранопротекторного действия экстракта из морской буровой водоросли сахарины японской (Saccharina japonica). Исследованы физиологические характеристики (объем, диаметр, осмотическая резистентность), содержание фракций фосфолипидов в эритроцитах крыс, находящихся в условиях гиперхолестеринового рациона. Показано, что гиперхолестеринемия сопровождалась увеличением объема и осмотической резистентности эритроцитов, коэффициента ХС/ФЛ, количества холестерина, сфингомелина, лизофракций фосфолипидов, а также снижением эфиров холестерина, фосфатидилинозита и фосфатидной кислоты. При введении экстракта из ламинарии отмечалась нормализация изученных параметров эритроцитов.

Перегруженность эритроцитарной мембраны холестерином может приводить к нарушению функции эритроцитов вследствие изменения физических свойств мембраны и активности мембранных белков, проницаемости мембраны, снижении скорости переноса кислорода [1]. Также увеличиваются их размеры и изменяется форма (превращение двоякоконечных в сфероциты) с резким снижением фильтрационной способности. Наличие больших эритроцитов служит надежным признаком атеросклеротического процесса. Одним из сырьевых источников получения фармакологических препаратов с высокой концентрацией полифенольных соединений являются морские водоросли. В связи с этим был выделен экстракт из
сахарины японской (*Saccharina japonica*) (ранее ламинарии японской) в состав которого входят полифенольные соединения (флоротаннини, их олигомерные и полимерные формы), минеральные вещества, полиненасыщенные жирные кислоты семейства n-3 и n-6, фосфолипиды и др.

Целью работы явилось использование экстракта из сахарины японской для коррекции физиолого-метаболических нарушений в эритроцитах крыс при гиперхолестериновом рационе.

Свежие водоросли *Saccharina japonica* собирали в б. Западная о. Попова зал. Петра Великого Японского моря и высушивали при температуре, не превышающей 50°C. Измельченное сырье экстрагировали 70% раствором водного ацетона при соотношении сырье:экстрагент (1:2). Полученный экстракт упаривали в вакууме до полного удаления ацетона и экстрагировали хлороформом для удаления липофильных веществ и пигментов. Водную фракцию сушили в вакууме досуха и ресуспендировали в воде. Содержание общих полифенолов (ОПФ) составляло 35% от сухого остатка экстракта. В эксперименте использовали белых крыс-самцов линии Вистар массой 180-200 г, содержащихся в стандартных условиях вивария. Экспериментальную гиперхолестеринемию вызывали в течение 6 недель введением в рацион животных повышенного содержания насыщенных жиров (растительное сало 25% от веса рациона), включающих 2,5% холестерина. Полифенольный комплекс из сахарины вводили перорально в дозе 100 мг общих полифенолов/кг массы в сутки [2]. В эксперименте, продолжительностью в 6 недель животные были разделены на 3 группы по 10 крыс в каждой: 1-я группа - контроль (интактные, стандартный рацион); 2-я группа - гиперхолестериновый рацион; 3-я группа - гиперхолестериновый рацион + экстракт сахарины.

Гиперхолестериновый рацион сопровождался увеличением в 2 раза количества холестерина (ХС) в крови, среднего диаметра эритроцитов (СДЭ) на 38% (p<0,001) и среднего объема эритроцитов (СОЭр) в 2 раза, что определяет развитие макроцитоза. При этом начало и завершение гемолиза эритроцитов происходило позже, чем у контрольных крыс. В мембране эритроцитов отмечалось снижение количества общих фосфолипидов на 23% (p<0,001) и увеличение уровня холестерина на 19% (p<0,01). В связи с этим увеличился коэффициент ХС/ФЛ до 0,54±0,04 (в контроле 0,35±0,02;
что предполагает усиление плотности и жесткости мембран, снижение их фильтрационной способности. В фосфолипидном спектре мембран эритроцитов (таблица) отмечалось достоверное снижение относительно контроля количества фосфатидилхолина на 11% (р<0,001) и фосфатидилинозита на 27% (р<0,01) при одновременном увеличении количества лизофосфатидилхолина и фосфатидной кислоты на 65% (р<0,001), что обусловлено активацией фосфолипаз.

Таблица

Влияние экстракта из сахарины на содержание фракций фосфолипидов в мембранах эритроцитов крыс при гиперхолестериновом рационе (в % от суммы всех фракций; M±m)

<table>
<thead>
<tr>
<th>Фракции фосфолипидов</th>
<th>1 группа (интактные)</th>
<th>2 группа (ГХС рацион)</th>
<th>3 группа (ГХС рацион + экстракт сахарины)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ФХ</td>
<td>37,83±0,71</td>
<td>33,67±0,82<sup>a</sup></td>
<td>36,80±0,86<sup>2</sup></td>
</tr>
<tr>
<td>ЛФХ</td>
<td>9,51±0,46</td>
<td>15,70±0,48<sup>a</sup></td>
<td>12,11±0,54<sup>3</sup></td>
</tr>
<tr>
<td>СМ</td>
<td>9,43±0,76</td>
<td>11,90±0,65<sup>6</sup></td>
<td>8,93±0,66<sup>1</sup></td>
</tr>
<tr>
<td>ФЭ</td>
<td>24,50±0,79</td>
<td>23,55±0,82</td>
<td>24,00±0,69</td>
</tr>
<tr>
<td>ЛФЭ</td>
<td>6,00±0,38</td>
<td>5,95±0,31</td>
<td>6,00±0,30</td>
</tr>
<tr>
<td>ФС</td>
<td>4,30±0,12</td>
<td>4,20±0,17</td>
<td>4,25±0,13</td>
</tr>
<tr>
<td>ФИ</td>
<td>5,48±0,10</td>
<td>4,00±0,11<sup>a</sup></td>
<td>5,30±0,07<sup>3</sup></td>
</tr>
<tr>
<td>ФК</td>
<td>2,95±0,22</td>
<td>1,03±0,06<sup>a</sup></td>
<td>3,61±0,11<sup>6,3</sup></td>
</tr>
</tbody>
</table>

Примечание: изменения статистически достоверны при:^{a,1} - p<0,05;^{6,2} - p<0,01;^{8,3} - p<0,001 – буквы - сравнение с контролем, цифры – со 2-й группой. Условные обозначения: ФХ – фосфатидилхолин, ЛФХ – лизофосфатидилхолин, СМ – сфингомиелин, ФЭ – фосфатидилэтаноламин, ЛФЭ – лизофосфатидилэтаноламин, ФС – фосфатидилсерин, ФИ – фосфатидилинозит, ФК – фосфатидная кислота.

При сравнении размерных характеристик эритроцитов крыс 3-й группы (ГХС+экстракт сахарины) относительно контрольных значений отмечается нормализация исследованных показателей. В то же время при сравнении изученных параметров с таковыми во 2-й группе (рацион без препарата) прослеживаются отличия с высокой степенью достоверности. Так, СДЭ составлял 6,43±0,10 мкм, а СОЭр – 53,17±1,61 мкм³ по сравнению с 8,55±0,17 мкм и
125,01±1,64 мкм3 (p<0,001), соответственно, при гиперхолестериновом рационе. Осмотическая резистентность эритроцитов имела более широкие границы устойчивости, чем таковые во 2-й группе, что составляло 0,40±0,02% NaCl при начале гемолиза (0,35±0,01% во 2-й группе; p<0,05) и 0,30±0,01% NaCl при его завершении (0,30±0,01% во 2-й группе; p<0,01). Следовательно, экстракт из сахарины не только восстановил устойчивость мембран к снижению концентрации NaCl, но и расширил границы осмотической резистентности на 0,05%. Отмечался более высокий уровень общих фосфолипидов, чем таковой во 2-й группе (63,19±1,76% против 50,00±1,82%; p<0,001), что обусловило уменьшение коэффициента ХС/ФЛ до 0,36±0,02 по сравнению с 0,54±0,04 во 2-й группе (p<0,001).

При введении экстракта сахарины одновременно с гиперхолестериновым рационом (3-я группа) отмечалось снижение ХС на 15% (p<0,001) по сравнению с таковыми величинами во 2-й группе. Анализ фосфолипидного спектра показал восстановление фракционного состава до контрольных значений, за исключением ФК, величина которого была выше на 22% (p<0,01). Это позитивный фактор, так как ФК является основой для синтеза фосфолипидных фракций, что необходимо для восстановления структуры мембран. Действие экстракта сопровождалось ростом уровня ФХ на 9% (p<0,01) и снижением СМ на 17% (p<0,05), ЛФХ на 36% (p<0,001), что свидетельствует об ингибиторизации фосфолипаз полифенолами экстракта [3].

Сопоставляя полученные результаты и оценивая позитивный эффект применения экстракта из сахарины, следует отметить его высокий мембранопротекторный эффект в условиях гиперхолестеринового рациона.

Список литературы:
INFLUENCE OF THE POLYPHENOLIC COMPLEX OF EXTRACT FROM THE SEA BROWN ALGA OF SACCHARINA JAPONICAHA OF VIOLATION OF FIZIOLOGO-BIOCHEMICAL OF CHARACTERISTICS OF ERYTHROCYTES AT DISLIPIDEMIYA

Kushnerova N.F.¹, Momot T.V.²
¹V.I. II’ichev Pacific Oceanological Institute FEBRAS, 690041, Vladivostok, Russia, natasha50@mail.ru.
² Far Eastern Federal University, School of biomedicine, 690950, Vladivostok, Russia, kushnerova83@mail.ru

Data on studying of membranoprotektorny effect of extract from a sea brown alga of *Saccharina japonica* are provided. Physiological characteristics (volume, diameter, osmotic resistance), the maintenance of fractions of phospholipids in erythrocytes of the rats who are in conditions of a hypercholesteric diet are investigated. It is shown that the hypercholesterolemia was followed by increase in volume and osmotic resistance of erythrocytes, coefficient of HS/FL, amount of cholesterol, a sphingomelin, lizofraktion of phospholipids, and also decrease in air of cholesterol, a phosphatidilinozitol and phosphatidic acid. At introduction of extract from a saccharina normalization of the studied parameters of erythrocytes was noted.

МИКРОБИОЛОГИЧЕСКАЯ АКТИВНОСТЬ ЭТИЛАЦЕТАТНЫХ ФРАКЦИЙ ДРЕВЕСИНЫ ЛИСТВЕННИЦЫ СИБИРСКОЙ

Левчук А.А., Беловежец Л.А., Онуична Н.А.
ФГБУН Иркутский институт химии им. А.Е. Фаворского СО РАН, Иркутск, Россия, levchuk@irioch.irk.ru

Аннотация. Проведено исследование антимикробной активности этилацетатных фракций различных частей лиственницы сибирской, а именно древесины и коры ствола и древесины корней. Установлено, что экстракты коры и древесины ствола проявляют антибактериальную активность по отношению к модельному грамположительному микроорганизму *Enterococcus durans*.
В настоящее время при переработке древесины лиственницы полезно используется не более половины ее биомассы, а такие части, как кора, зелень, шишки полностью являются отходом производства. В то же время, все эти отходы представляют большой интерес с точки зрения получения биологически активных веществ. Известно, что эфирные масла хвойных растений оказывают противовоспалительное и бактерицидное действие, применяются при лечении ран и гнойных поражениях кожи. Также антибактериальную активность проявляют и другие части дерева, такие как кора и шишки [1, 2]. Недостаточно изученными с точки зрения биологической активности остаются соединения, полученные из корней деревьев.

Целью нашей работы было проведение фракционирования образцов различных частей лиственницы и исследование их антимикробной активности относительно микроорганизмов различных таксономических групп.

Пробы образцов были отобраны в районе озера Байкал в октябре 2015 г. Отбор проб древесины и коры проводили с четырех деревьев, имеющих диаметр ствола не менее 20 см. Кору и древесину (ядровую, без луба и заболони) отбирали на высоте 1 м от земли в количестве 100 - 150 г. Пробы корней отбирали с боковых корней на расстоянии 20 см от стержневого корня. Идентификацию до вида проводили в Иркутском институте физиологии растений СО РАН.

Экстракцию исходного сырья проводили этилацетатом в колбе с обратным холодильником при температуре кипения растворителя (75-78 °C). Гидромодуль 1:10, время экстракции 4 часа. Высушенный экстракт обрабатывали гексаном (1:10) настаиванием без нагрева в течение суток. Обработку проводили дважды.

Таблица 1.

<table>
<thead>
<tr>
<th>Объект исследования</th>
<th>Выход этилацетатного экстракта, % от а.с.д.</th>
<th>Выход гексанового экстракта, % от а.с.д.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Древесина</td>
<td>2,57</td>
<td>0,83</td>
</tr>
<tr>
<td>Корни</td>
<td>2,54</td>
<td>1,27</td>
</tr>
<tr>
<td>Кора</td>
<td>8,65</td>
<td>0,69</td>
</tr>
</tbody>
</table>
Дальнейшим этапом работы стало изучение антимикробной активности этилацетатных фракций относительно микроорганизмов различных таксономических групп: *Enterococcus durans*, *Bacillus subtilis*, *Escherichia coli*, *Penicillium citreo-viride* диск-диффузионным методом на соответствующих твердых питательных средах. Образцы исследовались в концентрациях 2.0, 1.0, 0.5, 0.25, 0.12, 0.06 мг/мл 5 % спиртового раствора. Также были исследованы арабиногалактан, дигидрокверцетин и дигидрокверцетин-сырец, представляющий собой смесь, содержащую 70-75% дигидрокверцетина, родственные минорные флавоноиды и смолистые вещества.

Результаты по подавлению роста *Enterococcus durans* представлены в таблице 2.

Таблица 2

<table>
<thead>
<tr>
<th>№ образца</th>
<th>Концентрация действующего вещества, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Экстракт древесины ствола</td>
<td>-</td>
</tr>
<tr>
<td>Экстракт древесины корней</td>
<td>+</td>
</tr>
<tr>
<td>Экстракт коры ствола</td>
<td>-</td>
</tr>
<tr>
<td>Дигидрокверцетин</td>
<td>+</td>
</tr>
<tr>
<td>Арабиногалактан</td>
<td>-</td>
</tr>
<tr>
<td>Дигидрокверцетин-сырец</td>
<td>-</td>
</tr>
</tbody>
</table>

Показано, что экстракты древесины и коры ствола, арабиногалактан и дигидрокверцетин-сырец проявляют антибактериальную активность по отношению к тестовому грамположительному микроорганизму *Enterococcus durans*. Минимальная ингибирующая концентрация для этих образцов составляет 0.25 и 0.5 %. Интересно, что более чистая фракция дигидрокверцетина такой активности не проявила. Возможно, это связано с наличием минорных композиций в дигидрокверцетине-сырец или синергическим эффектом различных компонентов, которые отсутствуют в чистом дигидрокверцетине. Тем не менее, в ходе исследования антибактериальной активности в отношении к *Bacillus subtilis*, чистый дигидрокверцетин проявил активность в
концентрациях 1 и 2 %.

В отношении *Escherichia coli* и *Penicillium citreo-viride* исследуемые фракции показали полное отсутствие задержки роста во всех исследуемых концентрациях.

Таким образом, изученные нами экстракты представляют интерес с точки зрения использования их в качестве антимикробных агентов.

Список литературы
2. Гуляев Д.К. Фармакогностическое исследование ели обыкновенной, произрастающей в пермском крае. Диссертация кандидата фармацевтических наук, 2016 г.

MICROBIOLOGICAL ACTIVITY OF ETHYL ACETATE FRACTIONS OF WOOD SIBERIAN LARCH

Levchuk A.A., Belovezhets L.A., Onuchina N.A.

FRBI A.E. Favorsky Institute of Chemistry SB RAS, Irkutsk, Russia

The antimicrobial activity of ethyl acetate fractions of various parts of Siberian larch, namely wood trunk bark and root wood, has been carried out. It is found that the extracts of bark and wood trunk exhibit antibacterial activity against modeling gram-positive microorganism *Enterococcus durans*.

ДЕЙСТВИЕ ФЕНОЛЬНОГО ПРЕПАРАТА АНФЕН НА РАЗВИТИЕ КАРЦИНОСАРКОМЫ ЛЬЮИС

Миль Е.М., Ерохин В.Н., Бинюков В.И., Семёнов В.А., Албантова А.А.

Институт биохимической физики им. Н.М.Эмануэля, Москва, elenamil2004@mail.ru

Аннотация. Изучено влияние анфена (класс пространственно затрудненных фенолов) на уровень белка Bcl-2 при развитии карциномы Льюис у мышей-гибридов по сравнению с развитием опухоли без анфена. Методами ACM и по кривым роста объема опухоли не обнаружено
значительного влияния предварительного введения анфена, в то время как методом имmunоблотовинга показано, что при его введении происходит снижение уровня белка Bcl-2. Это дает основание предположить, что при определенных условиях препарат может оказывать изменение в системе антиапоптозных белков семейства Bcl-2, что будет приводить к апоптозу опухолевых клеток.

Ранее было показано, что по содержанию основных белков апоптоза p53 и Bcl-2 возможно охарактеризовать опухоловый процесс и его изменение под действием больших и малых доз антиоксиданта фенозана. Фенозан обнаружил противовоспалительное и противоопухолевое действие, что приводило к повышению содержания антиапоптозного белка Bcl-2 и снижению содержания двунитевых разрывов ДНК (1,2,3). Позднее этот препарат нашел применение в терапии как противосудорожное средство.

Было установлено, что препарат анфен (1-(Карбокси)-1-(метиламид)-2-(3',5'-ди-трез-бутил-4'-гидроксифенил)-пропанат натрия) также из класса пространственно затрудненных фенолов, синтезированный в Институте биохимической физики, проявляет противоопухолевую активность (4). Так, при введении препарата 11-ти кратно в дозе 10 и 100 мг/кг после трансплантации саркомы 37, было обнаружено практически 100%-ное торможение развития опухоли у мышей (4). В данной работе было исследовано влияние анфена на опухоловый процесс при трансплантации карциномы Льюиса при 4х кратном предварительном введении препарата.

За развитием злокачественной опухоли следили по измерению уровня антиапоптозного белка Bcl-2 в плазме крови, по изменению морфологии эритроцитов и объема ACM имиджа эритроцитов, а также по динамике роста опухоли. Известно, что атипоптозный белок Bcl-2 участвует в процессе апоптоза в митохондриях клеток, а также является поверхностным маркером многих иммунокомпетентных клеток крови, позволяя им избегать апоптоза (5). Кроме того, белок влияет на окислительно- восстановительные процессы. И, при повышении активных форм кислорода выполняет роль антиоксиданта и противовоспалительного белка (6). В ряде работ показано, что при опухоловом процессе, а также при старении организма наблюдается усиление процессов апоптоза над процессами...
репарации, при этом обнаружено снижение уровня Bcl-2 с возрастом у животных. Экспрессия белка p53 и снижение уровня Bcl-2 было выявлено в тканях различных опухолей, включая опухоли верхних дыхательных путей и легких, а также в ряде клеточных линий, например, карциномы легких человека TW2.6. Отмечается прогностическое значение индукции p53 и Bcl-2 в случае операбельного рака легких (7). В то же время показано, что в клетках с повышенной экспрессией Bcl-2 снижается уровень гидроксильных радикалов, повышается уровень глутатиона, подавляется перекисное окисление ПОЛ (5).

Методика эксперимента. В работе проводились исследования на мышах—гибридах C57Bl × DBA (возраст 3-4 месяца, масса 25 г.) с опухолью, которая трансплантировалась реципиентам внутримышечно, в дозе 7×10⁶ клеток на мышь. Объем подкожной опухоли определяли по трем осям опухоли. Анфен вводили в дозе 2,75×10⁻⁶ М предварительно 4-х кратно 4-х кратно до трансплантации карциномы Льюис.

Изучено влияние анфена на уровень белка Bcl-2 при развитии карциномы Льюс по сравнению с развитием опухоли без анфена. Содержание белка в препаратах сыворотки крови определяли методом иммуноблоттинга. В качестве первого антитела использовали моноклональные антитела “Monoclonal Anti-BCL-2 clone10C4”, второго антитела — меченный пероксидазой хреня anti-rabbit IgG (“Sigma”).

Для исследования изменения морфологии эритроцитов при опухолевом процессе с применением атомно-силовой микроскопии (ACM), эритроциты фиксировали 2% глutarовым альдегидом 30 мин, и исследовали воздушно сухие препараты эритроцитов на кремниевой подложке. Измерение проводили на приборе SOLVER P47 SMENA, на частоте 150 кгц в полуконтактном режиме, с использованием канттлебера NSG 11. Статистическая обработка результатов проводилась с помощью программ ImageAnalyzis и Statistica 6.

Результаты эксперимента. Обнаружено, что через 11 суток после трансплантации опухолевых клеток наблюдается снижение содержания антиапоптозного белка Bcl-2, а через несколько суток, примерно на 18 сутки, этот параметр снижается на 20-30% и вскоре происходит гибель животных. Это согласуется со снижением уровня Bcl-2 в лимфоцитах с возрастом и при опухолевом процессе. Таким образом, мы впервые наблюдали закономерное снижение уровня белка Bcl-2 при развитии
перевиваемой солидной карциномы Льюис на конечной стадии ее развития.

Рис. 1. Полосы антиапоптозного белка Bcl-2 на нитроцеллюлозной мембране (блоте) в плазме крови мышей после трансплантации карциномы Льюис: на 1-й день— колонки 1,2; на 8-й день —3,4; на 11-день — 5,6; на 18- день — 7,8, при введении анфена.

В тоже время, при 4х кратно предварительном введении анфена снижение содержания белка Bcl-2 происходит более резко (более 50%) особенно на последних стадиях роста опухоли, чем в контроле. Снижение Bcl-2 в контроле и опыте, вероятно, связаны с усилением процесса апоптоза при развитии опухоли, который усиливался при предварительном введении анфена.

Нами также методом АСМ было изучено изменение объема АСМ имиджа воздушно-сухих эритроцитов на подложке (1-18 сутки) после инъекции опухолевых клеток карциномы Льюис в контроле (А) и при предварительном введении анфена (Б) рис.2.

Рис. 2. Двумерное изображение АСМ имиджа эритроцитов, выделенных из крови мышей с перевиваемой карциномой Льюис на 4 сутки в контроле -А и после введения препарата анфен - Б.
Рис. 3. Кинетические кривые роста объема опухоли карциномы Льюис в контроле и после введения анфена существенно не различались.

Методом АСМ было обнаружено изменение морфологии эритроцитов, и снижение среднего объема нормоцитов, начиная с 11 суток, одинаковое как в контроле, так и в опыте. А непосредственно перед гибелью животных наблюдается фракция эритроцитов увеличенного объема и появление эхиноцитов, стоматоцитов и других форм. За развитием опухоли следили также по определению кинетики роста объема подкожной опухоли, измеряемой по трем осям (в приближении формы эллипсоидной опухоли). Обнаружено, что предварительное внутримышечное введение, анфена в концентрации (1мг/кг) не влияло на скорость развития опухоли и продолжительность жизни мышей.

Таким образом, хотя методами АСМ и по кривым роста объема опухоли мы не обнаружили значительного влияния предварительного введения анфена, в то же время, методом иммуноблоттинга было показано, что при введении анфена происходит снижение уровня белка Bcl-2. Это дает основание предположить, что при определенных условиях препарат может оказывать изменение в системе антиапоптозных белков семейства Bcl-2, что будет приводить к апоптозу опухолевых клеток. В настоящее время, современная химиотерапия опухолей часто базируется на усилиении апоптоза в раковых клетках, который как правило, подавлен. Одной из стратегий лечения является воздействие на систему белков семейства Bcl-2.

Показанное в работе (4) 100% торможение роста саркомы 37 при внутрибрюшинном введении препарата анфен после
трансплантации, может быть связано с тем, что введение препарата осуществлялось непосредственно в растущую опухолевую ткань и, вероятно, обусловлено усилением процессов апоптоза клеток асцитной опухоли. Поэтому изучение механизма действия препарата анфен и при различных способах его введения, может позволить предложить его в качестве противоопухолевого препарата.

Список литературы:
1. Миль Е.М., Каспаров В.В., Борисова В.А, Мышлякова О.М., Ерохин. В.Н. Изменение содержания белка р53, легких цепей иммуноглобулинов и комплексов железа при облучении малыми дозами мышей лейкозной линии АКР. Бофизика 2001,т.46.Вып.2.c.346-352.

ACTION OF PHENOLIC DRUG ANFEN ON THE DEVELOPMENT OF CARCINOSARCOMA LEWIS

Mil E.M., Erokhin V.N., Binyukov V.I., Semenov V.A., Albanova A.A.
Institute for Biochemical Physics (IBCP), Moscow, Russia, elenamil2004@mail.ru
In this paper, was investigated the effect of anfen on the tumor process in the transplantation of Lewis carcinoma with 4-fold preliminary administration of the drug. By AFM method, a change in the morphology of erythrocytes and a decrease in the average volume of normocytes, starting from 11 days, were found to be the same in both control and with anfen.

By the method of immunoblotting it was shown that with the introduction of anphene the level of Bcl-2 protein decreases. This suggests that, under certain conditions, the drug leads to changes in the system of anti-apoptotic proteins of the Bcl-2 family, which will lead to apoptosis of tumor cells.
нейродегенеративных заболеваний (НДЗ) факторам относится окислительный стресс (ОС) [1]. Веществом, препятствующим ОС в организме, служит витамин Е, основным компонентом которого является альфа-токоферол (ТФ), в связи с чем его нередко включают в схему лечения БА [2,3].

БА - многофакторное заболевание. Основные направления разработки новых лекарственных средств против БА включают как синтез новых мультитаргетных препаратов, так и поиск для известных старых лекарств новых свойств и мишеней, связанных с развитием БА.

Наиболее перспективные средства для лечения болезни Альцгеймера (БА) должны сочетать антиоксидантные (АО) и антихолинэстеразные свойства. В последнее время у многих растительных жирорастворимых фенольных соединений, обладающих сильным АО действием, обнаружены антихолинэстеразные свойства, в связи с чем эти вещества предлагаются для использования в терапии БА [4].

Альфа-токоферол

Рис. 1 Ингибитирование альфа-токоферолом АХЭ из Electric Eel (слева) и человеческой рекомбинантной АХЭ (справа). Зависимость степени ингибирования реакции (в стационарных условиях – после 30 и 15 мин преинкубации ферментов с ТФ соответственно) от концентрации ТФ. А₀ – скорость реакции в отсутствие ТФ, А – скорость реакции в присутствии ТФ). Звездочкой отмечено ингибитирование на 50 %.
Для отбора антихолинэстеразных препаратов часто используют растворимую АХЭ из Electric Eel или человеческую рекомбинантную АХЭ (human recombinant hAChE).

Целью нашей работы была оценка антихолинэстеразного действия ТФ на этих моделях и сравнение эффекта с его влиянием на активность АХЭ из других «источников», в том числе на молекулярные формы АХЭ, которые могут быть вовлечены в развитие BA.

В работе было изучено действие физиологических концентраций ТФ (10^{-5}-10^{-4}М) на активность растворимой АХЭ из Electric Eel, рекомбинантной человеческой АХЭ, коммерческого препарата мембраносвязанной эритроцитарной АХЭ, на активность мембранной АХЭ свежевыделенных эритроцитов крови мышей, а также на активность АХЭ цитоплазматической фракции и фракции синаптосом головного мозга мышей in vitro и in vivo. Активность АХЭ определяли методом Элмана [5] при 37° C, pH 8.2

Таблица.
Влияние физиологических концентраций альфа-токоферола (ТФ) на активность АХЭ эритроцитов крови и субклеточных фракций головного мозга.

<table>
<thead>
<tr>
<th>Источник АХЭ</th>
<th>Параметр</th>
<th>Контроль</th>
<th>Опыт</th>
<th>Эффект</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Синаптосомы (фракция нервных окончаний головного мозга мышей). ТФ in vivo за 24 ч 100 мкмоль/кг.</td>
<td>Vmax усл.ед.</td>
<td>417±40</td>
<td>478±1</td>
<td>Активация</td>
</tr>
<tr>
<td></td>
<td>Km мкМ</td>
<td>82±32</td>
<td>26.0±0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vmax/Km</td>
<td>5.1±1.9</td>
<td>18.2</td>
<td>n=5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>n=5</td>
<td>±1.0</td>
<td></td>
</tr>
<tr>
<td>2 Цитоплазма головного мозга мышей. ТФ in vivo за 24 ч 100 мкмоль/кг.</td>
<td>Vmax, усл.ед.</td>
<td>314±11</td>
<td>303±10</td>
<td>Не влияет</td>
</tr>
<tr>
<td></td>
<td>Km мкМ</td>
<td>42±6</td>
<td>45±6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vmax/Km</td>
<td>7.5±1.3</td>
<td>6.7±1.1</td>
<td>n=5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>n=5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Синаптосомы головного мозга мышей. ТФ in vitro 45 мкМ.</td>
<td>Скорость при насыщающей концентрации субстрата, усл.ед.</td>
<td>410±7</td>
<td>404±3</td>
<td>Не влияет</td>
</tr>
<tr>
<td></td>
<td></td>
<td>n=4</td>
<td>n=4</td>
<td></td>
</tr>
</tbody>
</table>
4 Цитоплазма головного мозга мышей. ТФ in vitro 45 мкМ. | Скорость при насыщающей концентрации субстрата, усл.ед. | 770±20 n=4 | 750±20 n=4 | Не влияет |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Мембраносвязанная АХЭ свежевыделенных эритроцитов мышей. ТФ 55 мк М</td>
<td>Vmax, усл. ед. Km мкМ</td>
<td>180±14 132±38 n=5</td>
<td>156±12 123±37 n=5</td>
<td>Ингибирование 13%, статистически недостоверно</td>
</tr>
<tr>
<td>6 АХЭ эритроцитов человека мембраносвязанная, Sigma ТФ in vitro 46 мкМ</td>
<td>Скорость при насыщающей концентрации субстрата, усл. ед.</td>
<td>164±8 n=4</td>
<td>144±8 n=4</td>
<td>Ингибирование 12 %, статистически недостоверно</td>
</tr>
</tbody>
</table>

ТФ проявляет себя как неконкурентный ингибитор АХЭ (уменьшает максимальную скорость V max, не влияя на константу Михаэлиса Km). Для фермента из угля Km контр. = 96±2мкМ, Km опыт = 90±6мкМ.

Неконкурентный характер ингибирования говорит о взаимодействии ТФ с периферическим анионным сайтом фермента (ПАС). Связывание, вероятно, происходит за счет фитильной цепи, т. к. в специальном эксперименте мы выявили, что тролокс (аналог ТФ без «хвоста») в соответствующей концентрации не оказал влияния на активность АХЭ.

В таблице показаны полученные нами данные по влиянию ТФ на активность ацетилхолинэстеразы из других источников, в частности, на АХЭ нервных окончаний (синаптосом) головного мозга, изменения которой наиболее важны при развитии БА.

При анализе таблицы видно, что для приведенных «источников», которые могут быть реально вовлечены в развитие БА (растворимая и мембранныя АХЭ головного мозга и эритроцитов), ТФ в физиологических концентрациях практически не ингибирует активность АХЭ in vitro. В случае мембраносвязанной АХЭ нервных окончаний при введении in vivo ТФ даже несколько ее стимулирует (вероятно, вследствие влияния на экспрессию соответствующих генов или на посттрансляционную модификацию).

Приведенные выше результаты говорят о том, что при разработке новых лекарственных средств терапии БА требуется...
Эффект альфа-токоферола на активность ацетилхолинэстеразы.

Молочкина Е.М.

Н.М. Емануэль Институт биохимической физики РАН, Москва, Россия,
молochkina1@mail.ru

Токсическое действие альфа-токоферола (ТФ) на коммерческие препараты ацетилхолинэстеразы (АЧЕ) - гуманного рекомбинантного (hAChE) и АЧЕ от электрической сомы была установлена. Однако, ТФ не ингибирует молекулярные формы фермента, которые важны для развития болезни Альцгеймера (БА), в частности, ACHE эритроцитов и "холинергического" AChE мозга мыши, который активируется в vivo введением ТФ в организм. При выборе модели для скрининга веществ с антихолинэстеразными свойствами в разработке новых препаратов для терапии БА необходимо учитывать, что не всегда ингибирование коммерческих препаратов ферментов свидетельствует о антихолинэстеразном действии в организме.
РАЗРАБОТКА СОСТАВА, ТЕХНОЛОГИИ И ОЦЕНКА КАЧЕСТВА ТАБЛЕТОК НА ОСНОВЕ ЛИГНАНСОДЕРЖАЩЕГО СЫРЬЯ - ЛИМОННИКА КИТАЙСКОГО СЕМЯН

Морозов Ю.А.¹, Зилфиакаров И.Н.², Леонтьев А.В.³

¹ФГБОУ «Северо-Осетинский государственный университет им. К.Л. Хетагурова», Владикавказ, Россия, moroz52@yandex.ru
² ФГБНУ «Всероссийский научно-исследовательский институт лекарственных и ароматических растений», Москва, Россия, dagfarm@mail.ru
³ЗАО «ВИФИТЕХ», Оболенск, Россия

Аннотация. Целью работы являлись исследования по выбору оптимальной композиции вспомогательных веществ, рациональной технологии и оценки качества таблеток из семян лимонника китайского. Выбранный оптимальный состав лимонника китайского семян таблеток для рассасывания, предложена рациональная технология и проведена оценка их качества.

Фенольные соединения представляют собой один из наиболее распространенных и многочисленных в растениях классов вторичных соединений с различной биологической активностью [1].

Лигнаны – это димерные соединения фенольной природы, состоящие из двух фенилпропановых фрагментов (C₆-C₃), связанных между собой β-углеродными атомами боковых цепей. Термин «лиганы» впервые введен У.Н. Хоуорсом в 1936 году. В настоящее время известно более 200 представителей этой группы. Разнообразие лиганнов обусловлено наличием различных заместителей в бензольных кольцах и характером связи между ними, а также степенью насыщенности боковых цепей и степенью окисления β-углеродных атомов. В состав ароматических колец входит не менее двух кислородных заместителей: гидроксилов, метоксилов, метилендиоксигрупп [2, 3, 4].

Наше внимание привлекают лиганы схизандринового ряда, являющиеся основными действующими биологически активными веществами лимонника китайского (Schisandra chinensis Turcz.
(Baill.) семейства лимонниковых (Schisandraceae).

Лекарственные препараты (ЛП) и биологически активные добавки к пище на основе лимонника китайского, не являясь допингом и не нанося ущерба здоровью, повышают умственную и физическую работоспособность, повышают адаптивность организма к негативным факторам, усиливают остроту зрения, особенно ночного, улучшают память, интеллектуальную активность, оптимизируют функции эндокринной системы, проявляют гиполипидемическое, гепатопротекторное, антиоксидантное действие [5-9].

Современный ассортимент ЛП на основе лимонника китайского, представленный на фармацевтическом рынке России, ограничен только настойкой из семян и плодов [10] и поэтому актуально его расширение.

Целью настоящей работы явились исследования по выбору оптимальной композиции вспомогательных веществ, рациональной технологии и оценки качества таблеток из семян лимонника китайского.

Материалы и методы. Для выбора оптимального состава рассматривались вспомогательные вещества различных групп: разбавители, разрыхлители, связующие, корригенты вкуса. Таблетирование осуществляли на ротационной таблеточной машине РТМ-10 прямым прессованием и прессованием с предварительным влажным гранулированием.

Оценку качества таблеток проводили по методикам, приведенным в Государственной Фармакопее Российской Федерации XIII издания, используя при этом соответствующее оборудование.

Результаты и их обсуждение. С помощью биофармацевтических исследований выбран оптимальный состав таблеток для рассасывания, включающий лимонника китайского семян 200 мг. В качестве рациональной технологии предложено прессование с предварительным влажным гранулированием таблеточной массы.

По внешнему виду изучаемые таблетки представляют собой таблетки плоскоцилиндрической формы, от белого с коричневатым оттенком до светло-коричневого цвета, с характерным запахом лимонника, допускаются вкрапления различной интенсивности окраски; диаметр – 12 мм, высота 5,8±0,4 мм. Средняя масса таблеток составила 0,814±0,016 г., прочность на истирание – 99,94±0,34 %, прочность на
раздавливание – 0,81-1,00±0,06 МПа; распадаемость – 26 мин., растворение - 85±4%; по микробиологической чистоте таблетки можно отнести к категории 3.А.

Таким образом, на основании всесторонних экспериментальных исследований выбран оптимальный состав лимонника китайского семян таблеток для рассасывания, предложена рациональная технология и проведена оценка их качества.

Список литературы.
DEVELOPMENT OF COMPOSITION, TECHNOLOGY AND QUALITY EVALUATION OF TABLETS BASED ON LIGNANDEGRADING RAW MATERIAL OF SCHISANDRA CHINENSIS SEEDS

Morozov Yu.A.¹, Zilfikarov I.N..², Leontiev A.B.³

¹ North Ossetian State University named after Kosta Levanovich Khetagurov Vladikavkaz, Russia, moroz52@yandex.ru
² The State scientific institution the All-Russia scientific research institute of medicinal and aromatic plants, Moscow, Russia, dagfarm@mail.ru
³ VIFITEH, Obolensk, Russia

The present study is devoted to the development of solid dosage forms – tablets for sucking on the basis of Schisandra Chinensis seeds. The authors selected the optimal composition and the optimal technology for producing tablets. Assessed the quality of the obtained dosage forms.

Keywords: Schisandra chinensis, tablets, lignans

ПОЛИФЕНОЛЫ РАСТЕНИЯ LINOSYRIS VILLOSA И ИХ БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ

Назарова В.Д. ¹, Бектемисова А.У.², Аханькова Е.В.³

¹ СКГУ им. М.Козыбаева, Петропавловск, Казахстан, abektemisova@mail.ru

Аннотация. Из воздушно-сухого сырья растения Linosyris villosa был получен водно-спиртовый экстракт, который исследовали на присутствие flavonoидов. На основании температуры плавления, качественных реакций, литературных данных и ИК-спектроскопии в его составе идентифицировали мирицетин.
Флавоноиды у растений являются активными участниками клеточного обмена, выполняют функции регуляторов роста, развития и репродукции растений. Флавоноиды интересны ученым в виду широкого спектра биологической активности. Они входят в состав многих фитопрепаратов к которым, в настоящее время проявляется пристальное внимание, как к наиболее безопасным лекарственным средствам. Содержание флавоноидов в растениях различно: в среднем от 0,5 до 20% (цветы софоры японской). В растениях флавоноиды встречаются в виде агликонов и гликозидов. Особенно богаты флавоноидами высшие растения, относящиеся к семействам сложноцветных, бобовых, гречишных и астровых.

Флавоноидные препараты таят в себе богатые резервы в борьбе за продление жизни человека, так как некоторые из них обладают противоватеросклеротическим и антиоксидантным действиями, замедляющими процессы старения организма. Флавоноиды в организме человека воздействуют как на ферментные системы, так и иммунные, обменные процессы, вызывая различные эффекты. Многие ученые утверждают, что широкий спектр биологических действий флавоноидов обусловлен их антиоксидантной активностью. Флавоноиды (кверцетин, мирциетин, кемферол и рутин) могут не только связывать, но и восстанавливать или окислять ионы металлов переменной валентности и, таким образом, стимулировать или ингибировать свободнорадикальные процессы, протекающие в организме [1].

Взаимосвязь структуры и антиоксидантной активности изучена у большинства флавоноидов, продуцируемых растениями. Установлено, что флавоноиды как полифенолы могут быть «ловушкой» свободных радикалов и тормозить перекисное окисление липидов. Наиболее активными оказались флавонолы кверцетин, мирциетин и морин, которые ингибируют окисление липидов на 78-83%. Флавоноиды как антиоксиданты играют важную роль в предупреждении нарушения структуры и функции печени при различной патологии, ускоряя регенерацию и восстанавливающую функциональную активность гепатоцитов, особенно в комплексной терапии остrego и хронического гепатита и цирроза печени.

В настоящее время в медицинской практике широко применяют флавоноидные препараты в виде различных лекарственных форм: таблетки, мази, настойки, экстракты,
порошки, драже и капсулы. Большое значение, на данный момент, предается противовоспалительному действию флавоноидов с которым, вероятно, связано их противовоспалительное, ранозаживляющее, жаропонижающее и вяжушие действия.

Привлекают внимание и антимикробные свойства флавоноидов. Так выявлено отрицательное влияние кверцетина и мирицетина на грамположительные бактерии, флавоны, а халконов на стафилококк. Антимикробными свойствами в отношении стафилококков, стрептококков обладают галлокатехин, эпигаллокатехин и окисленная сумма катехинов. Интересными в химическом и биохимическом качестве оказались изофлавоны, изофлавонолы и флавоны. Все они в разной степени обладают холестерической, диуретической, гипогликемической активностью. Широкий диапазон терапевтических возможностей флавоноидов позволяет считать их источниками средств общего действия.

Флавоноиды обладают ценным свойством быстрой эвакуации и отсутствием кумуляции. Флавоноидные препараты необходимы не только для лечения заболевания, но и для профилактики сосудистых нарушений у здоровых лиц. Прием флавоноидных препаратов показал хороший эффект при кавернозном туберкулезе в послеоперационный период, при глаукоме и при гиперфункции щитовидной железы [2].

В последнее время интенсивно изучается антиоксидантная активность флавоноидов. В связи с этим актуальной является проблема создания лекарственных препаратов с антиоксидантными свойствами, с целью их применения для профилактики и лечения заболеваний, сопровождающихся усилением свободнорадикальных реакций. В этом плане большой интерес представляют биофлавоноиды, занимающие ведущее место среди экзогенных природных антиоксидантов. Наиболее интересной в фармакологическом отношении оказалась группа препаратов с высоким содержанием агликонов и гликозидов: кверцетина, кемпферола, апигенина, лютеолина, изорамнетина и метоксилированных 6-оксифлавонолов [3,4].

Северный Казахстан является богатейшим регионом произрастания лекарственной флоры, представителем которой является растение Linosyris villosa (грудница мохнатая), собранная в фазу цветения на территории Северного Казахстана. В народной медицине Linosyris villosa применяется при лечении стенокардии, бронхиальной астмы и ревматических
болях. Химический состав растения изучается впервые.

Из растения Linosyris villosa получена субстанция «Витин», на основе которой созданы лекарственные формы: мазь, проявляющая антимикробное действие; настойка, обладающая антианемической активностью и лейкопластыри (перевязочный материал).

Из воздушно-сухого сырья был получен водно-спиртовый экстракт, который исследовали на присутствие флавононов. Качественный состав экстракта был изучен методом двумерной бумажной хроматографии в системах: БУФ в соотношении (4:1:5) (I) и 2%-ой уксусной кислоте (II). На хроматограмме обнаружили 20 веществ, из них 8 - флавонOIDной природы. Для отделения агликонов флавонOIDной природы использовали метод адсорбционной хроматографии на оксиде алюминия. Полученная агликоновая фракция использовалась для разделения агликонов на полиамиде. Собрали 1,2,3 фракции и исследовали методом двумерной бумажной хроматографии. Во фракции 3 обнаружили одно пятно с Rf в системе (I) - 0,50; в системе (II) - 0,00. Для полученного агликона сняли ИК-спектр в таблетках КBr.

В ИК-спектре присутствовали полосы поглощения в области 1650 см\(^{-1}\), соответствующие колебаниям карбонильной группы (C=O); в области 3450 см\(^{-1}\), соответствующие колебаниям гидроксильных групп (–OH); в области 2850, 2940 см\(^{-1}\), соответствующие колебаниям (C-H) ароматического цикла; в области 1480, 1520, 1610 см\(^{-1}\), соответствующие колебаниям (C=C) ароматического кольца.

Таким образом, на основании температуры плавления, качественных реакций, литературных данных и ИК-спектроскопии полученный агликон идентифицировали как мирицетин (3,5,7,3′,4′,5′-гексооксифлавон) [2].

Список литературы:
POLYPHENOLS OF THE PLANT LINOSYRIS VILLOSA THEIR BIOLOGICAL ACTIVITY

Nazarova V.D., Bektemisova A.U., Akhankova E.V.
North Kazakhstan State University named after M.Kozybaev, Petropavlovsk, Republic of Kazakhstan

Flavonoid preparations have an antioxidant effect. In the human body, they affect both the enzyme and immune systems. Flavonoids slow down the aging process and prolong the life of a person.

Key words: flavonoids, aglycons: quercetin, kaempferol, myricetin, antioxidant activity.

ФЕНОЛЬНЫЕ СОЕДИНЕНИЯ ЛИСТЬЕВ ГИНОСТЕММЫ ПЯТИЛИСТНОЙ

Низамова А.А., Галиахметова Э.Х., Кудашкина Н.В.
ФГБОУ ВО «Башкирский государственный медицинский университет»
МЗ РФ, Уфа, Россия, alfina.nizamova@bk.ru

Аннотация. Изучен состав фенольных соединений листьев гиностеммы пятилистной (Gynostemma pentaphyllum (Thunb.)), выращенной на территории Республики Башкортостан. В сырье обнаружены флавоноиды, дубильные вещества и катехины. Спектрофотометрическим методом, в исследуемых листьях, определено количественное содержание флавоноидов в пересчете на рутин, дубильных веществ в пересчете на галловую кислоту и катехинов. Подобраны условия для проведения хроматографического исследования флавоноидов, из которых идентифицированы рутин и кверцетин.

Фенольные соединения играют важную роль в жизнедеятельности растений и являются основными компонентами многих лекарственных средств растительного происхождения с широким диапазоном фармакологического

491
действия. Многие ученые в современном мире ведут исследования, посвященных поиску растений, которые могут быть источниками фенольных соединений, в частности, флавоноидов, обладающих различным биологическим действием, например, противовоспалительным, кровоостанавливающим, гепатопротекторным и др.

В традиционной китайской медицине широко используется такое лекарственное растение, как гиностемма пятилистная («Цзяо Гу-лань»), которая обладает рядом ценных фармакологических свойств: повышает иммунитет, влияет на уровень холестерина и сахара в крови, используется при онкологических заболеваниях, оказывает антиоксидантное и ноотропное действие и др.

Оказалось, что гиностемма пятилистная прекрасно интродуцируется в условиях Урала и нами было заготовлено достаточное количество сырья. На данном этапе фармакогностического исследования нами были изучены фенольные соединения в листьях гиностеммы пятилистной, интродуцированной на территории Республики Башкортостан, что явилось целью наших исследований.

Материалы и методы. В качестве объекта исследования использовали высушенные воздушно-теневым способом до постоянной массы листья гиностеммы пятилистной (Gynostemma pentaphyllum (Thunb.))

Качественный анализ проводили характерными химическими реакциями. Для идентификации флавоноидов использовали хроматографический метод в тонком слое сорбента [2, 4]. Количественное определение флавоноидов, дубильных веществ и катехинов проводили спектрофотометрическим методом на спектрофотометре «Shumadzu 1800» [1, 3, 4].

Результаты. При выполнении качественных реакций на флавоноиды (цианидиновая проба, с раствором алюминия хлорида, ванилином и др.) и на дубильные вещества (с раствором железоаммонийных квасцов, со средней солью ацетата свинца и др.) получены характерные результаты в исследуемом образце, подтверждающие их присутствие.

По результатам проведения тонкослойной хроматографии подобраны следующие оптимальные условия хроматографирования: наилучшее разделение 70% спиртового извлечения произошло в системе этилацетат:метанол:вода
(16:9:1) на хроматографической бумаге "Силуфол UV-254". Выявлено два видимых пятна и два, невидимых невооруженным глазом. У полученных видимых пятен рассчитывали значения Rf. Второе пятно со значением Rf=0,63±0,03 идентифицировано относительно свидетеля как рутин (0,63±0,03), а пятно четвертое со значением Rf=0,78±0,04 идентифицировано относительно свидетеля как кверцетин (0,81±0,04).

Для определения количественного содержания действующих веществ фенольной природы спектрофотометрическим методом были приготовлены спиртовые растворы (для флавоноидов, дубильных веществ и катехинов). В ходе количественного определения содержание суммы флавоноидов в пересчете на рутин составило 1,3±0,06%, дубильных веществ в пересчете на галловую кислоту – 0,950% ± 0,025, катехинов – 2,820% ± 0,003.

Исследования на содержания кумаринов и антоцианов дали достоверно неточные результаты.

Выводы. В листьях гиностеммы пятилистной, интродуцированной на территории Республики Башкортостан экспериментально определено содержание следующих фенольных соединений: флавоноидов, дубильных веществ и катехинов, которые обуславливают определенное фармакологическое действие. Полученные результаты свидетельствуют о перспективности использования листьев гиностеммы пятилистной в качестве источника фенольных соединений.

Список литературы.
3. Технические условия 9377-158-04868244-2005 «Сабельника болотного корневища с корнями»
PHENOLIC COMPOUNDS OF THE LEAVES OF GYNOSTEMMA PENTAPHYLLUM

Nizamova A.A., Galiakhmetova E.H., Kudashina N.V.
Department, Bashkir state medical university, Ufa, Russia, alfina.nizamova@bk.ru

Studied is the composition of phenolic compounds of the leaf Gynostemma pentaphyllum (Thunb.) grown on the territory of the Republic of Bashkortostan. Flavonoids, tannins and catechins were found in the raw material. The quantitative content of flavonoids in terms of rutin, tannins in terms of Gallic acid and catechins was determined by spectrophotometric method in the studied leaves. The conditions for the chromatographic study of flavonoids, of which rutin and quercetin were identified, were selected.

СОДЕРЖАНИЕ ЛИГНАНОВ - АНТИОКСИДАНТОВ В ПИЩЕВЫХ ПРОДУКТАХ

Нифантьев Н.Э.1, Яшин А.Я.1, Яшунский Д.В.1, Веденин А.Н.1, Немзер Б.В.2, Яшин Я.И.1
1 Институт органической химии им. Н.Д.Зелинского РАН, Москва, Россия, yashin@interlab.ru
2 Future Ceuticals, Inc., Momence, USA.

Аннотация. Интерес к лигнанам в последние годы постоянно растет в связи с их значительными антиоксидантными свойствами. Разработаны методы извлечения, идентификации и определения лигнанов, определены виды лигнанов и их количество в пищевых продуктах, в ряде стран (Финляндия, Голландия, США, Канада, Великобритания, Япония, Испания) создаются базы данных о содержании лигнанов в пищевых продуктах.

Лиганы – класс природных полifenольных соединений. К лиганам относят дифенольные производные растительного происхождения, состоящие из двух пропилбензольных (C3-C6) структурных фрагментов, соединенных между собой между атомами C8 и C8'.
Лиганы обнаружены в самых разнообразных растениях, включая большинство съедобных. Основные лиганы
содержащие в пищевых продуктах, изображены на схеме 1.

Схема 1. Структура наиболее распространенных лигнанов, идентифицированных в пищевых продуктах.

Хроматографическими методами определено содержание лигнанов во многих пищевых продуктах и созданы национальные базы данных в Голландии [1], США [2], Канаде [3], Финляндии [4], Испании [5], Японии [6], Великобритании [7]. Наибольшее количество лигнанов обнаружено в зернах льна и кунжута. Предложено создание функциональной пищи на основе зерен льна. Ниже приведены результаты национальных исследований по содержанию лигнанов.

Определено содержание (мкг/100 г) матеирезинола и секоизоцирезинола в пищевых продуктах Финляндии [4]: в цельных зернах найдено 48–112, в отрубях 96–261, в овощах 16–3874, во фруктах и ягодах 5–1510, в бобах 0–476, листьях чая 770–3050, в кофе 396–716.

В 112 пищевых продуктах США методом ВЭЖХ–МС определено содержание матеирезинола и секоизоцирезинола [2]. В числе основных источников лигнанов — апельсиновый сок,
кофе.

Содержание четырех лиганнов (секо, пино, мери и мат) определено в 86 пищевых продуктах и 26 напитках Голландии методом ВЭЖХ–МС/МС [1]. Содержание лиганнов наибольшее в зернах льна (от 30 до 129 мг/100 г), преимущественно секо, в зернах кунжута (298 мг/100 г) – преимущественно пино и лари. Содержание лиганнов в зерновых, овощах, фруктах и бобовых колебалось в пределах 7–764 мкг/100 г. Средний прием лиганнов в Голландии оценивается в 979 мкг/день (колебания 43–7758 мкг/день). В некоторых овощах содержание лиганнов колебалось в пределах 185–2321 мкг/100 г. Уровень лиганнов в напитках варьировался в пределах 0 (кола)–91 мкг/100 г (красное вино).

В 121 пищевом продукте Канады методом ГХ–МС определено 9 фитоэстрогенов [3], в том числе четыре лиганна (мат, лари, пино и секо). Много лиганнов содержится в сухих абрикосах – 400, сухих финиках – 313, хлебе с зернами льна – 7239, многозерновом хлебе – 4785 мкг/100 г.

Содержание шести лиганнов (секо, лари, пино, мат, сур, мед) определено методом ГХ–МС в 86 пищевых продуктах, употребляемых в Японии [6]. Содержание в овощах колебалось от 18 до 1724 мкг/100 г. В японской диете много корнеплодов, содержание лиганнов в них колебалось в пределах 25–954 мкг/100 г, содержание в фруктах – 31–1292 мкг/100 г.

В 240 пищевых продуктах Великобритании на основе фруктов и овощей методом ВЭЖХ–МС определены изофлаванолы, лиганны и куместрол [7].

Найдено содержание лиганнов в основных злаковых культурах и гречихе (в мкг/100г): лен 335000, кунжут 371500, рожь 1891, гречиха 867, овес 859, пшеница 507, ячмень 370, просо 245.

В заключение можно еще раз подчеркнуть, что лиганны как сильные антиоксиданты наряду с флавоноидами, фенольными кислотами присутствуют в пище человека и способствуют укреплению здоровья и профилактике заболеваний. Сведения о
содержании лиганнов в пищевых продуктах и их влиянии на здоровье человека должны быть известны населению. К сожалению, пока сведений о лиганнах в специализированной литературе, особенно в российской, недостаточно.

Список литературы

CONTENTS OF LIGNANS - ANTIOXIDANTS IN FOODSTUFF

Nifantyev N.E. 2, Yashin A.Ya. 1, Yashunsky D.V. 2, Vedenin A.N. 1, Nemzer B.V. 3, Yashin Ya.I. 1

1 International analytical center, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia, yashin@interlab.ru
2 Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
3 FutureCeuticals, Momence, USA.

Interest to lignans constantly grows in recent years in connection
with their considerable antioxidant properties. Methods of extraction, identification and determination of lignans are developed, types of lignans and their quantity in foodstuff, in a number of the countries are determined (Finland, Holland, the USA, Canada, Great Britain, Japan, Spain) databases about the content of lignans in foodstuff are created.

ИССЛЕДОВАНИЯ ПО РАЗРАБОТКЕ МЕТОДИКИ СТАНДАРТИЗАЦИИ ТРАВЫ РАСТОРОПШИ ПЯТНИСТОЙ Silybum Marianum (L.) Gaertn.

Росихин Д.В.1, Куркин В.А.1, Правдивцева О.Е.1, Рязанова Т.К.1, Рыжов В.М.1, Авдеева Е.В.1, Шарипов И.М.2

1 ФГБОУ ВО СамГМУ Минздрава России Самара, Россия, Kurkinvladimir@yandex.ru
2 ФГБОУ ВО БГМУ Минздрава России, Уфа, Россия, ishar@hotbox.ru

Аннотация. Трава расторопши пятнистой [(Silybum marianum (L.) Gaertn., сем. Сложноцветные Asteraceae)] содержит фенилпропаноиды и flavonoиды и является, на наш взгляд, перспективным видом лекарственного растительного сырья. Предложена методика количественного определения суммы фенилпропаноидов методом прямой спектрофотометрии в пересчете на хлорогеновую кислоту. Разработана также методика количественного определения суммы flavonoидов методом дифференциальной спектрофотометрии в пересчете на цинарозид. Установлено, что оптимальным экстрагентом для травы расторопши пятнистой является 70% этиловый спирт.

Введение. Одним из перспективных видов сырья расторопши наряду с плодами расторопши пятнистой, на наш взгляд, являются листья и верхушечные побеги. В настоящее время эти части сырья не используются в медицинской и фармацевтической практике, хотя широко используется в народной медицине [4,5]. При этом с точки зрения ресурсосберегающих технологий и использования всей биомассы растения является, на наш взгляд, является нерациональным. Биологически активными соединениями (БАС)
травы расторопши, которые вносят определенный вклад в спектральные характеристики, на наш взгляд, являются фенилпропаноиды и флавоноиды [7]. Учитывая, что максимум поглощения извлечения травы расторопши составляет 330 нм, возможным методом анализа для суммы фенилпропаноидов является прямая спектрофотометрия в пересчет на хлорогеновую кислоту [1]. Кроме того, максимум поглощения извлечения травы расторопши с раствором хлорида алюминия приближается к 400 нм. Поэтому возможным методом анализа для определения суммы флавоноидов травы расторопши является дифференциальная спектрофотометрия в пересчет на цинарозид [6].

Целью нашего исследования явилась разработка методик количественного определения фенилпропаноидов и флавоноидов в траве расторопши пятнистой.

Экспериментальная часть. Проведено исследование зависимости различных параметров экстракции на выход действующих веществ из сырья. При этом спирт этиловый 70% концентрации был выбран в качестве оптимального экстрагента. Это согласуется с литературными данными, для сырья, содержащего фенилпропаноиды и флавоноиды [7].

Нами изучен также вопрос относительно продолжительности экстракции на кипящей водяной бане. Определено, что оптимальными параметрами экстракции являются: извлечение 70 % этиловым спиртом на кипящей водяной бане в течение 60 минут в соотношении «сырьё-экстрагент» - 1:100. Следует отметить, что, по нашим данным степень измельчения от 1 до 3 мм сильного влияния на экстракцию не оказывает, однако, нами выбрана степень измельчения 2 мм в качестве оптимальной.

Методика анализа суммы фенилпропаноидов в листьях расторопши пятнистой. Испытуемый раствор для анализа фенилпропаноидов готовят следующим образом: 1 мл полученного извлечения из травы расторопши помещают в мерную колбу вместимостью 25 мл и доводят объем раствора до метки 70% этиловым спиртом (испытуемый раствор A). Раствором сравнения служит 70% этиловым спиртом (раствор сравнения A).

Измерение оптической плотности проводят при длине волны 330 нм. Содержание суммы фенилпропаноидов в пересчете на хлорогеновую кислоту и абсолютно сухое сырье в
процентах (X) вычисляют по формуле:
\[
D \times 100 \times 25 \times 100
\]
\[
X = \frac{497 \times m \times 1 \times (100-W)}{497 \times m \times 1 \times (100-W)}
\]
D – оптическая плотность испытуемого раствора;
497 – удельный показатель поглощения хлорогеновой кислоты;
m – масса сырья, в граммах;
W – потеря в массе при высушивании, в процентах.

Методика анализа суммы флавоноидов в листьях расторопши пятнистой. Испытуемый раствор для анализа флавоноидов готовят следующим образом: 1 мл полученного извлечения помещают в мерную колбу вместимостью 25 мл, прибавляют 1 мл 3% спиртового раствора алюминия хлорида и доводят объем раствора до метки 70% этиловым спиртом (испытуемый раствор A). Растор растворения готовят следующим образом: 1 мл полученного извлечения помещают в мерную колбу на 25 мл, доводят объем раствора до метки 70% этиловым спиртом (раствор сравнения A).

Измерение оптической плотности проводят при длине волны 400 нм через 40 мин после приготовления всех растворов. Содержание суммы флавоноидов в пересчете на цинарозид и абсолютно сухое сырье в процентах (X) вычисляют по формуле:
\[
D \times 100 \times 25 \times 100
\]
\[
X = \frac{350 \times m \times 1 \times (100-W)}{350 \times m \times 1 \times (100-W)}
\]
D – оптическая плотность испытуемого раствора;
350 – удельный показатель поглощения цинарозида;
m – масса сырья, в граммах;
W – потеря в массе при высушивании, в процентах.

Выводы.
1. Трава расторопши пятнистой содержит фенилпропаноиды и флавоноиды, как потенциальные биологические соединения.
2. Результаты проведенных нами исследований наглядно свидетельствуют о том, что оптимальным подходом к анализу листьев расторопши пятнистой является экстракция в течение 60 мин на кипящей водяной бане, где в качестве экстрагента используется 70% этиловый спирт в соотношении «сыре-экстрагент» - 1:100.
3. Установлено, что содержание суммы фенилпропаноидов
в траве расторопши составляет 1,23-2,81%, а содержание flavоноидов лежит в пределах от 1,17-1,37%.

4. Листья расторопши пятнистой являются перспективным источником нового вида лекарственного растительного сырья.

Список литературы

STUDY ON THE DEVELOPMENT OF THE METHODIC OF STANDARDIZATION OF HERB OF Silybum Marianum (L.) GaERTN.

Rosikhin D.V.¹, Kurkin V.A.¹, Pravdivtceva O.E.¹, Ryazanova T.K.¹, Ryzhov V.M.¹, Avdeeva E.V.¹, Sharipov I.M.²
¹Samara State Medical University, Samara, Russia, Kurkinvladimir@yandex.ru
²Bashkir State Medical University, Ufa, Rep. Bashkortostan, Russia

The Herb of Mill thistle [Silybum marianum (L.) Gaertn., Composite family]) contains phenylpropanoids and flavonoids, and it is a promising the type of the medicinal plant material, in our opinion. The method of
quantitative determination of the total of phenylpropanoids by direct spectrophotometry calculated on chlorogenic acid was proposed. The method of quantitative determination of the total of flavonoids by the method of differential spectrophotometry on Cynaroside was developed. There was determined, that 70% ethanol is optimal extragent.

ПЕРСПЕКТИВЫ РАЗРАБОТКИ ОТЕЧЕСТВЕННЫХ ЛЕКАРСТВЕННЫХ ПРЕПАРАТОВ НА ОСНОВЕ КУРКУМИНОИДНОГО КОМПЛЕКСА КОРНЕВИЩ КУРКУМЫ ДЛИННОЙ

Рязанова Т.К.1, Куркин В.А.1, Авдеева Е.В.1, Гиварш Н.2, Сазонова О.В.1

1Самарский государственный медицинский университет; Самара, Россия, avdeeva.ev@gmail.com
2Университет Туря им. Франсуа Рабле, Тур, Франция, nathalie.guivarch@univ-tours.fr

Аннотация. На основании сравнительного изучения куркуминоидного состава корневищ куркумы длинной (Curcuma longa L.), заготовленных от культивируемых на территории Северного Кавказа растений, и коммерческих образцов сырья из Индии и Вьетнама установлена их идентичность по компонентному составу и соотношению куркуминоидов. Корневища куркумы длинной целесообразно рассматривать в качестве лекарственного растительного сырья и источника получения лекарственных препаратов.

Экспериментально обосновано получение нативного куркуминоидного комплекса в форме густого экстракта методом циркуляционной экстракции с использованием подкисленного 95 % спирта этилового. Доказана высокая антиоксидантная активность экстракта (в модельных системах). С учетом крайне низкой биодоступности куркуминоидов предложено использование полученного куркуминоидного комплекса в форме суппозиториев ректальных (для дальнейшего изучения и применения для лечения колоректального рака). Обсуждены перспективы разработки отечественных лекарственных препаратов и использования растения в других сферах народного
В ряду пищевых растений, перспективных для рассмотрения в качестве лекарственного растительного сырья (ЛРС) и использования в отечественной научной фармации, выделяется популярная в нашей стране пряность - куркума длинная. Это растение является ценным источником биологически активных соединений (БАС) с разнородной фармакологической активностью (антиоксидантные, бактерицидные, желчегонные, противовоспалительные, противовоспалительные и другие свойства). Пищевая и терапевтическая ценность куркумы связана с высоким содержанием куркуминоидов (на уровне 2%-4%), заслуживает внимания и эфиромасличная составляющая [3]. В некоторых странах растение включено в национальные фармакопеи (в России данный вид куркумы вводил в фармакопею 1-3 изданий), за рубежом из куркумы производят ряд лекарственных препаратов и БАД (к категории последних относятся и некоторые отечественные разработки). Учитывая высокую лекарственную ценность, актуальным представляется изучение корневищ куркумы длинной как источника БАС (в этом плане хороший задел уже создан российскими учеными) [1] и создание отечественных лекарственных препаратов (отсутствуют на отечественном фармрынке).

Обсуждение результатов. В ходе фитохимических исследований сырья с использованием экстракционных методов и колоночной хроматографии были выделены три основных куркуминоида (куркумин, дезметоксиккуркумин и бисдезметоксиккуркумин), для которых на основании данных 1H-ЯМР-, 13С-ЯМР-, масс-, ИК- и УФ-спектров установлены химические структуры, изучены физико-химические свойства. Доминирующий куркумин предложен в качестве отечественного стандартного образца, для него предложена схема получения, изучены параметры качества, обосновано применение в...
методиках анализа сырья. При изучении химического состава корневищ методами ВЭЖХ и ТСХ выделенные куркуминоиды были использованы в качестве достоверно известных образцов веществ. Проведено количественное определение отдельных куркуминоидов и их суммы: для культивируемых образцов оно составило не менее 2,0 % (подтверждено и спектрофотометрически), выявлено характерное для вида соотношение: куркумин, дезметоксикуркумин и бисдезметоксикуркумин (63%:22%:15%), - что показывает возможность использования в качестве ЛРС отечественного сырья.

С учетом данных зарубежных авторов [4] выполнены собственные исследования по созданию лекарственных средств, в частности, разработана схема получения и изучены параметры качества густого экстракта. Обосновано применение метода циркуляционной экстракции с использованием 95% спирта этилового, подкисленного хлороводородной кислотой, что обеспечивает стабильность и содержание суммы куркуминоидов в продукте не менее 45 %.

Учеными Башкирского государственного медицинского университета на базе ЦНИЛ выполнены исследования антиоксидантной активности данного экстракта путем определения прямого влияния на Fe$^{2+}$– индуцированную хемилюминесценцию в двух тест-системах, инициирующих образование активных форм кислорода (АФК) и перекисное окисление липидов (ПОЛ) [2]. Подтверждена высокая антиоксидантная активность экстракта, в 6-10 раз по ряду параметров превосходящая препарат сравнения (α-токоферола ацетат).

Из-за нестабильности куркуминоидов в желудочно-кишечном тракте и низкой биодоступности для применения густого экстракта в медицинской практике в качестве лекарственной формы предложены суппозитории ректальные (известна высокая эффективность куркуминоидов при колоректальном раке). Показано, что преимущества в плане введения наибольшего количества экстракта (проведены эксперименты в диапазоне концентраций 1,0%-6,25%) и фармацевтической биодоступности (разделительный метод и диффузии в гель) имеет желатино-глицериновая основа - обеспечивает высокую скорость и степень высвобождения БАС.

С учетом обозначенных свойств куркуминоидов дальнейшие
исследования могут быть связаны с выявленной исключительно высокой антиоксидантной активностью в модельных системах раствора экстракта куркумы густого в ДМСО (практически полное подавление ПОЛ и АФК), что может служить основанием для разработки средств наружного применения. Целесообразным также представляется включение экстракта в моделиных системах раствора экстракта куркумы густого в ДМСО (практически полное подавление ПОЛ и АФК), что может служить основанием для разработки средств наружного применения. Целесообразным также представляется включение экстракта в нанолипосомы, и в продолжение некоторых зарубежных работ - сочетание куркуминоидов с адьювантами (экстрактом черного перца - пиперином, некоторыми flavonoидами – кверцетин и др.), получение комплексов с фосфолипидами (с фосфатидил холином - Мерива или ВСМ-95), с Твином-80 (БАД производства «Эвалар»), наночастиц куркумина (Теракумин), солюбилизация куркуминоидов (глицирризиновой кислотой и др.). Кроме создания лекарственных препаратов на основе куркуминоидного комплекса перспективы использования растения, на наш взгляд, лежат еще в трех областях: первая – продукты функционального питания с антирадикальными, органопротекторными и стабилизирующими вес свойствами; вторая – парфюмерно-косметическая промышленность – включение разнообразных фитосубстанций куркумы в состав масок, кремов, духов, шампуней для предотвращения микробной порчи и придания лечебно-профилактических свойств; третья - сельское хозяйство (животноводство) и ветеринария – использование в кормах и лекарственных препаратах по поводу широкого спектра заболеваний у животных.

Список литературы.
1. Орловская Т.В. Фармакогностическое исследование некоторых культивируемых растений с целью расширения их использования в фармации: дисс. на соискание уч. ст. д.фарм.н. – ГОУ ВПО "Пятигорская государственная фармацевтическая академия". - Пятигорск, 2011.
THE PERSPECTIVES OF THE DEVELOPMENT OF THE DOMESTIC PHARMACEUTICALS ON THE BASIS OF CURCUMINOID COMPLEX OF CURCUMA LONGA L. RHIZOMES

Ryazanova T.K.¹, Kurkin V.A.¹, Avdeeva E.V.¹, Guivarc'h N.², Sazonova O.V.¹
¹Samara State Medical University, Samara, Russia, avdeeva.ev@gmail.com
²Université François Rabelais de Tours, Tours, France, nathalie.guivarch@univ-tours.fr

As the results of the comparative study of the curcuminoid composition of the rhizomes of the turmeric (Curcuma longa L.), cultivated in the territory of the North Caucasus, and also commercial samples of raw materials from India and Vietnam the determined of its the identity of on the component composition and the relation of curcuminoids. The rhizomes of Curcuma longa are useful to consider as a medicinal raw material and source of obtaining drugs.

The production of native curcuminoid complex in the form of a fluid extract by means of circulating extraction using acidified 95% ethyl alcohol is experimentally substantiated. The high antioxidant activity of the extract (in model systems) is proved. Taking into account the extremely low bioavailability of curcuminoids, it was proposed to use the resulting curcuminoid complex in the form of rectal suppositories (for further study and using for the treatment of colorectal cancer). The perspectives for the development of domestic pharmaceuticals and the use of plants in other sectors of the economy were discussed.
ФЕНОЛЬНЫЕ СОЕДИНЕНИЯ В ЭКСТРАКТАХ ЧАЯ И РАСТИТЕЛЬНЫХ ДОБАВОК. АНТАГОНИЗМ В ИХ СМЕСЯХ

Сажина Н.Н.
ФГБУН Институт биохимической физики им Н.М. Эмануэля РАН, г. Москва, Россия, Natnik48s@yandex.ru

Аннотация. Целью работы явилось определение суммарного содержания фенольных антиоксидантов (АО) в водных экстрактах некоторых видов чая и растительных добавок, и исследование возможного влияния друг на друга компонентов их смесей. Использование оперативного амперометрического метода позволило проследить динамику их изменения в водных экстрактах чая, мяты и лимонных корок, а также в 10 экстрактах их бинарных смесей. Выявлено заметное снижение содержания АО (на 20-25%) в экстрактах чая и его смесей в течение нескольких минут после заварки. Для экстрактов смесей обнаружено значительное отклонение измеренных значений содержания АО в большинстве экстрактов смесей от значений, рассчитанных по аддитивности их компонентов.

В настоящее время большое внимание уделяется изучению содержания и активности антиоксидантов (АО) в экстрактах чая, лекарственных растений и растительных добавок, поскольку они являются наиболее популярными напитками. Наиболее типичными представителями АО в чаях являются водорастворимые фенольные соединения. Хотя их антиоксидантная активность связана с различными механизмами, наиболее распространенным механизмом является повышенная реакционная способность полифенолов, особенно в зеленом чае, по отношению к активным свободным радикалам. За последнее время появились многочисленные публикации о предотвращении и подавлении онкологических заболеваний полифенолами чая [1] и значительном снижении риска развития ишемической болезни сердца и других сердечно-сосудистых заболеваний [2]. Исследованию антиоксидантных свойств экстрактов чая и различных растительных добавок посвящено большое количество работ. Авторами монографии [3]
приведен широкий обзор этих работ, в которых разными методами измерены состав различных видов чая, суммарное содержание АО в них и их биологическая активность. Однако результаты измерений суммарного содержания и активности АО в экстрактах смесей чая и различных добавок практически отсутствуют. Такие исследования могли бы обнаружить и оценить возможное влияние природных полифенолов при экстрагировании смесей чая и добавок друг на друга, так как известно, что АО фенольного типа могут проявлять эффекты синергизма и антагонизма, усиливающая или ослабляя тем самым свое действие [4-6].

Целью настоящей работы явилось определение суммарного содержания фенольных АО в водных экстрактах некоторых видов чая и растительных добавок, и исследование возможного влияния друг на друга компонентов их смесей. Для этого использовался оперативный амперометрический метод измерений. Этот метод позволил также проследить динамику изменения содержания фенольных АО в исследуемых образцах непосредственно после экстракции. Объектами исследования были водные экстракты трех видов чая: 1 - китайского зеленого «Ресницы красавицы», 2 - серого с бергамотом «Earl grey tea» и 3 - черного цейлонского «Real», мяты перечной (Mentha piperita L.) и высушенных лимонных корок. Были исследованы 10 экстрактов бинарных смесей перечисленных образцов с разным соотношением компонентов. Для проведения исследований образец измельчали до размера частиц 1-2 мм и навеску 1,0 г заливали дистиллированной водой объемом 100 мл с температурой 95⁰C. Экстрагирование проводили в течение 10 минут без термостатирования, а экстракты быстро отфильтровывали через бумажный фильтр. Использованный в работе амперометрический метод, реализованный в приборе «Цвет Яуза-01-АА» [5], позволяет определить суммарное содержание АО фенольного типа в исследуемых образцах. Сущность его заключается в регистрации электрического тока, возникающего при окислении исследуемого АО (или смеси АО) на поверхности рабочего электрода при определенном потенциале. При потенциале (0 – 1,3V) происходит окисление, главным образом, групп ОН природных АО фенольного типа. Измеренный сигнал (площадь под кривой тока) сравнивается с сигналом индивидуального АО – галловой кислоты (ГК) с известной концентрацией, полученным в тех же условиях.
Погрешность измерения содержания АО составила не более 10%. Подробное описание этого метода приведено в [5,8].

Рис.1. Динамика изменения содержания фенольных АО (С, в мг/г ГК) в зависимости от времени хранения экстрактов: 1 – зеленого китайского чая, 2 – серого чая с бергамотом, 3 – черного цейлонского чая, 4 – мяты, 5 – лимонных корок (для 5 С увеличено в 5 раз).

На рис. 1 показана динамика изменения суммарного содержания фенольных АО (С, мг/г, ГК) в течение 8 мин после экстракции для 5 исследуемых образцов. Наиболее значительное снижение С за это время наблюдается в экстрактах чая (20-25%), особенно зеленого, что, по-видимому, связано с распадом в них нестойких фенольных соединений (катехинов, теафлавинов, теарубигинов и др.). Для экстракта
лимонных корок содержание фенольных АО значительно меньше и практически не меняется в первые минуты после экстракции.

На рис. 2 представлены результаты измерений суммарного содержания фенольных АО С (в мг/г ГК) для экстрактов чая и добавок (а) и экстрактов их смесей (б). Содержание АО в смесях (р) рассчитано по аддитивному вкладу содержания АО компонентов смеси, взятому из рис. 2а в соответствии с их соотношением. Приведенные на рисунках значения С получены усреднением содержания АО за 8 минут после экстракции (рис. 1).

Из диаграмм на рис. 2а видно, что наибольшее содержание АО фенольного типа имеет экстракт китайского зеленого чая (43,5±2,2 мг/г), наименьшее – экстракт лимонных корок (1,4±0,1 мг/г). Для смесей чая и добавок (рис. 2б) экспериментально измеренные значения содержания фенольных АО в экстрактах смесей исследуемых объектов (э) значительно снизились по сравнению с аддитивным вкладом содержания фенольных соединений компонентов смеси (р), т.е. наблюдается их антагонизм. Особенно он сильно проявляется для экстрактов смесей чая или мяты с лимонными корками (образцы 4, 7, 9 и 10).

Как известно из литературы [5], в чая содержится большое количество различных фенольных и других органических соединений. Основные из них это: катехины, являющиеся сильными АО (в зеленом чая – 15-30% от сухого листа, в черном чая – 9%), теафлавины, которые отвечают за интенсивность оранжево-красного цвета чая, и теарубигины – высокомолекулярные соединения, придающие более интенсивное окрашивание заварке чая, чем теафлавины. В черном чая теафлавинов содержится 3-6% от сухого листа, а в зеленом чая этих соединений мало, т.к. они образуются в процессе ферментации при участии катализаторов из катехинов. Теарубигины также образуются в процессе ферментации (в черном чая их 12-18% от сухого веса). Кроме этих соединений, в чаях содержатся кофеин (в черном чая 1,5-4%) и различные аминокислоты, содержание которых, особенно в зеленом чая, является критерием его качества и составляет 0,1-10,0 мг/г. Это глутамин, аланин, аспарагин, метионин, тиразин, теанин и др. В чая также содержатся сахара (глюкоза, фруктоза), витамины (C, E, K, Р и группы В), фенольные кислоты (основная – галловая кислота), катионы и анионы щелочных и щелочноземельных металлов и металлокомплексы [5]. Что касается мяты, то она
содержит эфирное масло (2-3%), основным компонентом которого является ментол, определяющий вкус и анестезирующие свойства мяты, а также дубильные и смолистые вещества, каротин (0,01%), аскорбиновую кислоту (0,01%), рутин (0,015%) и другие соединения. В корках лимона содержится лимонное масло (α-лимонен, терпен, цитраль), лимонная и аскорбиновая кислоты, тиамин, рибофлавин, горькое вещество лимонин и др.

При экстрагировании смесей чая и добавок, в экстрактах происходят сложные биохимические реакции взаимодействия компонентов смесей между собой, приводящие к образованию менее эффективных соединений, окисляемость которых, регистрируемая амперометрическим детектором, ниже. Это – химический антагонизм [6]. Возможно, при экстракции смесей происходит конкуренция различных веществ, приводящая к меньшему экстрагированию некоторых из них. Кроме того, некоторые экстракты, например смесей чая с лимонными калками, всегда более обесцвечены по сравнению с чистыми экстрактами чая, что говорит о возможном разрушении теарубигинов, теафлавинов и катехинов лимонной кислотой или другими соединениями лимона. Вероятно, эти причины и приводят к уменьшению содержания фенольных АО в экстрактах смесей по сравнению с аддитивными значениями содержания АО в компонентах смесей.

Таким образом, использование оперативного амперометрического метода позволило проследить динамику изменения содержания фенольных АО в водных экстрактах чая, мяты и лимонных корок, а также в 10 экстрактах их бинарных смесей. Выявлено заметное снижение содержания АО (на 20-25%) в экстрактах чая и его смесей в течение нескольких минут после заварки. Для экстрактов смесей обнаружено значительное отклонение измеренных значений содержания АО в большинстве экстрактов смесей от значений, рассчитанных по аддитивности их компонентов.

Список литературы
3. Яшин Я.И., Рыжнев В.Ю., Яшин А.Я., Черноусова Н.И. Природные антиоксиданты. Содержание в пищевых продуктах и их влияние на здоровье и старение человека. // Москва. 2009. ТрансЛит. С. 70-84.
Аннотация. Целью данной работы явилось изучение влияния полифенолсодержащих экстрактов лекарственных растений на интенсивность биопленкообразования в культурах зрелых биопленок Escherichia coli при инкубации на свежей питательной среде. Выявлен дозозависимый стимулирующий характер экстрактов A. uva-ursi, V. vitis-idaea и зеленого чая на валовое биопленкообразование.

Полифенолы (ПФ) – обширный класс вторичных метаболитов растений, привлекающий все большее внимание исследователей. Накоплены многочисленные данные о положительном влиянии диеты, обогащенной ПФ, на здоровье человека. Поступающие в организм ПФ оказывают противовоспалительное, противоопухолевое, антиоксидантное действие, а также положительные эффекты при заболеваниях сердечно-сосудистой и нервной системы [1]. Молекулярные механизмы действия ПФ не всегда понятны и интенсивно изучаются. Предполагается что один из путей положительного действия ПФ на макроорганизм может быть связан с их стимулирующими эффектами на микрофлору кишечника [2, 3]. Образование биопленок бактериями на стенках эпителия кишечника препятствует адгезии болезнетворных микроорганизмов и способствует участию симбионтов в процессах обмена веществ (синтез витаминов, переваривание
отдельных компонентов пищи и т.д.) [4, 5]. Одним из актуальных направлений является разработка ПФ-содержащих композиций, стимулирующих биопленкообразование полезной микрофлоры и повышающих сопротивляемость макроорганизма к действию неблагоприятных факторов окружающей среды. В этом отношении высокий потенциал имеют экстракты растений, которые широко применяются в народной медицине для профилактики и лечения различных заболеваний.

Ранее нами было изучено антиоксидантное действие экстрактов растений и индивидуальных полифенолов на планктонные культуры бактерий E. coli [6, 7, 8], а также влияние ПФ-содержащих растительных субстратов на образование планктонными культурами E. coli биопленок [9].

Целью данной работы явилось изучение влияния полифенолсодержащих экстрактов лекарственных растений на зрелые биоплены E. coli при росте на свежей питательной среде.

Изменение интенсивности биопленкообразования (БПО) определяли модифицированным методом окрашивания биопленок генцианвиолетом [10, 11]. Выявлен дозозависимый стимулирующий характер экстрактов A. uva-ursi (толокнянка), V. vitis-idaea (брюника) и зеленого чая на валовое БПО. Через три часа инкубации в присутствие указанных экстрактов (6.64 мг сухого вещества/мл) показатель БПО (OD540) увеличивался, соответственно, в 12, 17 и 7 раз по сравнению с биопленками, необработанными экстрактами. Одновременно установлено, что экстракт зеленого чая увеличивал на 70% колониеобразующую способность клеток в составе биофильмов.

В настоящее время проводится изучение механизмов наблюдаемых стимулирующих эффектов.

Исследование выполнено при поддержке грантами Президента МК-3376.2018.4 и РФФИ №16-04-00762.

Список литературы

BIOFILM FORMATION BY ENTERIC BACTERIA IN THE PRESENCE OF POLYPHENOL-CONTAINING MEDICINAL PLANT EXTRACTS

Samoilova Z.Y., Smirnova G.V., Oktyabrsky O.N.
PFSC, Ural Branch of Russian Academy of Sciences, Perm, Russia, samzu@mail.ru

Effects of polyphenol-containing medicinal plant extracts on biofilm formation intensity in mature biofilms of Escherichia coli during incubation on a fresh nutrient medium were investigated. A dose-dependent
stimulating activity was found under treatment with the extracts of A. uva-ursi, V. vitis-idaea and green tea.

ПОЛИФЕНОЛОЫ ИЗ МОРСКОЙ БУРОЙ ВОДОРОСЛИ SARGASSUM PALLIDUM КАК ГЕПАТОПРОТЕКТОРЫ ПРИ ТОКСИЧЕСКОМ ПОРАЖЕНИИ ПЕЧЕНИ

Спрыгин В.Г.
ФГБУН Тихookeанский океанологический институт им. В.И. Ильичева ДВО РАН, Владивосток, Россия, vsprygin@poi.dvo.ru

Аннотация. Из таллома Sargassum pallidum получен экстракт, обогащенный полифенольными соединениями и содержащий комплекс флоротаннинов. Показан его антиоксидантный и гепатозащитный эффект в условиях поражения печени ЧХУ. Исследуемый экстракт из саргассума представляет собой перспективный объект для изучения в качестве фармакологического средства при токсических гепатозах, который не только не уступает по своей эффективности эталонному гепатопротектору «Легалон®», но и превосходит его по ряду показателей.

Механизмы действия гепатотропных ядов многообразны, но все они связаны с нарушением дезинтоксикационной функции печени. В настоящее время ведется активный поиск фармакологических средств, которые могли бы усилить дезинтоксикационную функцию печени, а также восстановить структуру мембран гепатоцитов, в частности, при отравлении промышленными токсикантами [1].

Перспективным объектом исследования при поиске гепатопротекторов являются буре водоросли, которые представляют собой ценный пищевой ресурс и важный источник сырья для получения фармакологических субстанций. Они имеют низкую токсичность и являются уникальным источником комплексов морских полифенолов – флоротаннинов [2], обладающих высоким уровнем антиоксидантной активности. В качестве объекта исследования нами была выбрана морская бурая водоросль Sargassum pallidum, слоевища которой содержат значительные количества флоротаннинов невысокой
степени полимеризации (димеры и тримеры) [3], что предполагает их высокую биодоступность и биологическую активность. Из таллома Sargassum pallidum нами был получен экстракт, обогащенный полифенольными соединениями, которые в значительной степени определяют антиоксидантную активность и связанное с ней фармакологическое действие. О наличии флоротанинов в составе полифенольного комплекса выделенного из саргассума судили по присутствию характерных полос поглощения в УФ спектре в области 264 нм и поглощения атомов водорода фенольных гидроксилов в спектре 1H ЯМР в области 5,5-6,5 м.д. Содержание общих полифенолов в экстракте по методу Фолина-Чиокалтео составило 450 мг-экв флороглюкина на г сухого экстракта. Антирадикальная активность по отношению к пероксил-радикалу составила 0,62 мкмоль тролокса/мг.

Целью настоящей работы явилось оценка протективного действия экстракта из S. pallidum на показатели антиоксидантного статуса и обмена нейтральных липидов в печени крыс при острой интоксикации четырёххлористым углеродом (ЧХУ).

Экспериментальную модель интоксикации животных ЧХУ воспроизводили путем введения животным в дорсальную шейную складку 50% раствора ЧХУ на оливковом масле в дозе 2 мл/кг на протяжении 4-х дней. С 5-го дня эксперимента одной группе крыс внутривенно через зонд в течение 7 дней вводили экстракт саргассума (ЭС), а другой группе крыс препарат сравнения - эталонный полифенольный гепатопротектор "Легалон®". Доза для обоих препаратов составляла 100 мг общих полифенолов на кг массы тела. Животные были разделены на 5 групп: 1 группа – контроль; 2 группа – введение ЧХУ в течение 4 дней; 3 группа – введение ЧХУ с последующей отменой токсиканта в течение 7 дней; 4 группа – введение легалона в период отмены токсиканта в течение 7 дней; 5 группа – введение экстракта саргассума в период отмены токсиканта в течение 7 дней.

Интоксикация ЧХУ (2-я группа) сопровождалась увеличением относительной массы печени и симптомами выраженной жировой инфильтрации. В печени наблюдались выраженные изменения липидного обмена, сопровождающиеся 3-х кратным увеличением общих липидов и достоверным ростом содержания триацилглицеринов (ТАГ), свободных жирных кислот.
(СЖК) и холестерина (ХС) при одновременном снижении относительного содержания их этерифицированных форм (таблица 1).

Таблица 1.
Влияние экстракта из бурой водоросли Sargassum pallidum и гепатопротектора "Легалон" на биохимические показатели печени крыс с токсическим гепатитом, индуцированным четыреххлористым углеродом (M ± m)

<table>
<thead>
<tr>
<th>Показатели</th>
<th>1 группа Контроль</th>
<th>2 группа ЧХУ</th>
<th>3 группа Отмена</th>
<th>4 группа Отмена +легалон</th>
<th>5 группа Отмена +саргассу</th>
</tr>
</thead>
<tbody>
<tr>
<td>МДА (нмоль/г)</td>
<td>36,89 ±1,43</td>
<td>71,94 ±2,93</td>
<td>63,48 ±2,43</td>
<td>45,23 ±1,92а</td>
<td>45,24 ±2,46а</td>
</tr>
<tr>
<td>СОД (Ед/мг белка)</td>
<td>16,12 ±0,49</td>
<td>9,65 ±0,52</td>
<td>11,13 ±0,623</td>
<td>14,95 ±0,746</td>
<td>16,35 ±0,69а</td>
</tr>
<tr>
<td>Г-ШН (мкмоль/г ткани)</td>
<td>3,15 ±0,11</td>
<td>1,65 ±0,093</td>
<td>1,12 ±0,053</td>
<td>2,65 ±0,102,в</td>
<td>3,01 ±0,12в</td>
</tr>
<tr>
<td>АРА (мкмоль тролокса/г)</td>
<td>5,45 ±0,25</td>
<td>2,81 ±0,133</td>
<td>3,05 ±0,183</td>
<td>4,47 ±0,241,в</td>
<td>5,13 ±0,28в</td>
</tr>
</tbody>
</table>

Нейтральные липиды

ТАГ	22,74 ±0,81	26,90 ±0,952	27,20 ±0,782	23,35 ±0,84а	23,15 ±0,69а
СЖК	14,10 ±0,27	16,85 ±0,562	17,90 ±0,843	14,70 ±0,485	13,95 ±0,41в
ЭЖК	16,89 ±0,39	14,11 ±0,452	13,45 ±0,483	16,11 ±0,425	17,15 ±0,56в
ХС	16,56 ±0,44	20,75 ±0,863	19,76 ±0,452	16,87 ±0,386	16,30 ±0,29в
ЭХС	18,24 ±0,25	13,65 ±0,473	13,56 ±0,363	17,24 ±0,318	17,95 ±0,24в
Остаточная фракция	11,47 ±0,50	8,09 ±0,53	8,13 ±0,58	11,73 ±0,53	11,50 ±0,69

Примечание: различия статистически достоверны при 1,а - p<0,05, 2,б - p<0,01; 3,в - p<0,001. Цифры справа – сравнение с контрольной группой, буквы справа – сравнение с 3-й группой (отмена). Условные обозначения: МДА – малоновый диальдегид, СОД –...

Инициированный в ходе восстановительной дегалоизации ЧХУ поток свободных радикалов вызывал резкий рост перекисного окисления липидов и процессов дезорганизации мембран гепатоцитов, о чем свидетельствовало 2-кратное увеличение содержания МДА в печени и более, чем 6-кратный рост активности АлАТ в плазме крови (288,28±25,82 Ед/л против 44,35±2,87 Ед/л в контроле; р<0.001). Отмечали снижение активности глутатион редуктазы (ГР), глутатионпероксидазы (ГП) в плазме крови на фоне 2-кратного снижения содержания восстановленного глутатиона (Г-Ш) и уровня антирадикальной активности (АРА) в печени. Это указывает на истощение потенциала антиоксидантной системы защиты организма.

В период отмены токсиканта в течение 7 дней (3-я группа) отмечали дальнейший рост отклонения исследуемых биохимических показателей от контрольного уровня, что свидетельствует о нарастании симптомов токсического стресса. При анализе фракционного состава нейтральных липидов отмечалась тенденция к дальнейшему росту содержания ТАГ и СЖК на фоне повышенного содержания ХС и продолжающейся тенденции к снижению ЭХС и ЭЖК (таблица). О сохранении высокой активности свободно-радикальных процессов и уровня ПОЛ свидетельствует почти двукратное превышение значения МДА по сравнению с контролем. По-видимому, это обусловило дальнейшее истощение пула восстановленного глутатиона (на 64%; р<0.001), а также низкий уровень активности СОД и значений АРА (на 31 и 44% ниже контроля, соответственно; р<0.001).

При введении животным ЭС в период отмены ЧХУ (4-я группа) наблюдали восстановление большинства исследуемых параметров. До контрольных значений снизился индекс массы печени и количество общих липидов, т.е. препарат обладал выраженным гепатопротекторным эффектом, проявляющимся в снятии жирового перерождения печени. Подтверждением этого является уменьшение содержания ТАГ, СЖК и ХС на 15-20% (р<0.01), на фоне роста относительного количества их этерифицированных форм. Уровень МДА в печени снизился на 37% (р<0.001) на фоне повышения АРА на 68% (р<0.001) и
содержания Г-ШН до уровня контроля. Активность ферментов глутатионового цикла ГП и ГР восстанавливалась до контрольных показателей, что отражает снижение уровня свободнорадикальных процессов в организме и восстановление потенциала системы антиоксидантной защиты при введении ЭС в период отмены токсиканта. Гепатопротекторный эффект ЭС обусловлен действием входящих в его состав полифенолов бурых водорослей (флоротаннинов), которые, являясь высокоактивными антиоксидантами, восстанавливают метаболические реакции печени и биохимические показатели системы антиоксидантной защиты после интоксикации ЧХУ.

При введении препарата сравнения легалона (5-я группа) направленность изменений изученных биохимических показателей была сопоставима с таковой у животных 4-й группы, но отличалась по степени выраженности и наличии достоверных отличий исследуемых показателей от контрольных величин.

На основании выше изложенного следует, что экстракт из морской буровой водоросли *Sargassum pallidum*, обогащенный полифенольными соединениями и содержащий комплекс флоротаннинов, обладает выраженным антиоксидантным и гепатозащитным эффектом в условиях поражения печени ЧХУ. Исследуемый экстракт из саргассума представляет собой перспективный объект для изучения в качестве фармакологического средства при токсических гепатозах, который не только не уступает по своей эффективности эталонному гепатопротектору «Легалон®», но и превосходит его по ряду показателей.

Список литературы.

POLYPHENOLS FROM THE SEA BROWN KELP
SARGASSUM PALLIDUM AS HEPATOPROTECTORS AT TOXIC LIVER DAMAGE
Sprygin V.G.
V.I. Il'ichev Pacific Oceanological institute, Vladivosotk, Russia, vsprygin@poi.dvo.ru

We studied the influence of the extract enriched with polyphenol substances from the brown algae *Sargassum pallidum* and commercial reference preparation “Legalon” on to the liver biochemical indexes at acute carbon tetrachloride liver injury in rats. Rats were treated with *S. pallidum* and legalon intragastrically in amount of 100 mg of total polyphenols per kg of body weight for 7 days after intoxication with carbon tetrachloride (50% solution in olive oil, 2 ml/kg for 4 days). Administration of *S. pallidum* extract exhibited significant antioxidant and hepatoprotective effect displayed in significant reduction of AIAT activity in blood, normalizing of Superoxide Dismutase activity, Reduced Glutathione contents, level of lipids peroxidation and liver antiradical activity. We observed the normalizing of lipids metabolism and resolving of the liver fatty degeneration. The therapeutic efficacy of the *S. pallidum* extract was as effective as referenced hepatoprotector legalon and in ability to recover the phospholipids metabolism even surpassed it.

The hepatoprotective effect of *S. pallidum* extract is specified by the action of available in its contents polyphenols of brown algae – phlorotannins, which are being the high active antioxidants recover the liver metabolic reactions after toxic liver injury by carbon tetrachloride. The results obtained in this study suggest that a polyphenol enriched extract from *Sargassum pallidum*, containing phlorotannins, is a promising source for effective hepatoprotectors.

ИДЕНТИФИКАЦИЯ ИЗОМЕРНЫХ СОЕДИНЕНИЙ В СОСТАВЕ КОМПЛЕКСНОГО ФИТОПРЕПАРАТА АНГИОНОРМ МЕТОДОМ ВЭЖХ-МС-МС

Стручков П.А.1, Мельников Е.С.1, Белобородов В.Л.1, Воскобойникова И.В.2, Колхир В.К.2
1ФГАОУ ВО Первый МГМУ им. И. М. Сеченова, Москва, Россия, peter455@yandex.ru
2ФГБНУ ВИЛАР, Москва, Россия, kolkhir@pharmvilar.ru

Аннотация. С помощью ВЭЖХ-МС-МС с использованием внешних стандартов и мониторинга множественных реакций идентифицированы 15 соединений различных классов в составе сухого экстракта Ангионорм (экстракт смеси семян
каштана конского, корней солодки, плодов боярышника и плодов шиповника). Качественно в составе экстракта определены изомеры эсцина, β-глицирризиновой кислоты, хлорогеновой кислоты, гиперозида, ликивитина и ликуразида.

Ангионорм представляет собой покрытые оболочкой таблетки на основе одноименного сухого экстракта смеси 4 видов ЛРС: семян каштана конского (Fructus Hippocastani), корней солодки (Radices Glycyrrhizae), плодов боярышника (Fructus Crataegi) и плодов шиповника (Fructus Rozae) в массовом соотношении 30:15:20:35 соответственно. В качестве экстрагента используется 25% водный раствор этанола.

Цель работы заключалась в идентификации основных компонентов сухого экстракта с использованием СВЭЖХ с тандемным масс-спектроскопическим детектированием (UHPLC-ESI-MS-MS). Трехквадрупольный масс-спектрометрический детектор позволяет применять метод мониторинга множественных реакций (MRM), что дает возможность не только повысить чувствительность и селективность анализа, но и выявить изомеры определяемых веществ, которые фрагментируются схожим образом.

В ходе пробоподготовки навеску сухого экстракта растворяли в 25% (об.) водном растворе этанола и центрифугировали, супернатант разводили пятикратно 0,1% (об.) водным раствором муравьиной кислоты. Оптимального разделения удалось достичь с использованием колонки Phenomenex Kinetex 2,6 μm C18 100A (150×3,00 мм, 2,6 мкм) в режиме градиентного элюирования.

С помощью стандартных образцов (CO) с применением MRM идентифицированы 15 соединений различных классов: галловая, 2,4-дигидроксибензойная, хлорогеновая, п-кумаровая кислоты (фенолокислоты); ликивитин, гиперозид, рутин, ликуразид (гликозиды флавоноидов), кверцетин, формунонетин, кемпферол, нарингенин, апигенин (флавоноиды), глицирризиновая кислота и β-эсцин (сапонины).

Эсцин представляет собой смесь сапонинов, основными из которых являются изомеры эсцин Ia и Ib (β-эсцин), и изоэсцин Ia и Ib (α-эсцин). Все четыре изомера были идентифицированы по порядку элюирования с учетом литературных данных [2]. Три изомера β-глицирризиновой кислоты в соответствии с [3]
являются α-глицирризиновой кислотой, ликорице-сапонинами H2 и K2.

Список литературы.
ISOMERIC COMPOUNDS IDENTIFICATION BY HPLC-MS-MS METHOD IN ANGIONORM COMPLEX HERBAL PREPARATION

Struchkov P.A.1, Melnikov E.S.1, Beloborodov V.L.1, Voskoboynikova I.V.2, Kolkhir V.K.2

1Sechenov University, Moscow, Russia, peter455@yandex.ru
2 National Institute of Therapeutic and Aromatic Plants (VILAR), Moscow, Russia, kolkhir@pharmvilar.ru

Angionorm is the dry extract of the mixture of horse chestnut fruits, licorice roots, hawthorn fruits and dog rose fruits. 15 compounds of different classes were identified by HPLC-MS-MS method using external standards and multiple reaction monitoring. The isomers of escin, β-glycyrrhizic acid, chlorogenic acid, hyperoside, liquiritin, licuraside were also identified.

__

ПЕРСПЕКТИВЫ ПРАКТИЧЕСКОГО ИСПОЛЬЗОВАНИЯ КОМПЛЕКСНЫХ СОЕДИНЕНИЙ ДИГИДРОКВЕРЦЕТИНА С БИОГЕННЫМИ ЭЛЕМЕНТАМИ

Трофимова Н.Н., Столповская Е.В., Бабкин В.А.
ФГБУН Иркутский институт химии им. А.Е. Фаворского СО РАН,
Иркутск, Россия, stel@irioch.irk.ru

Аннотация. Исследованы комплексные соединения (КС) дигидрокверцетина (ДКВ) с ионами цинка, меди (II) и кальция. Выявлена более выраженная антирадикальная активность КС по сравнению с базовым флавоноидом, высокая антиоксидантная активность КС в экспериментах in vitro. Установлено противовирусное действие цинк- и медьюсодержащих производных ДКВ. Показана ранозаживляющая активность фармацевтической композиции на основе КС цинка с ДКВ. Совокупность полученных данных демонстрирует перспективы практического использования КС дигидрокверцетина с ионами цинка, меди (II) и кальция для создания эффективных лекарственных средств.
Флавоноиды представляют собой полиfenольные соединения, широко распространенные в растительном мире. Дигидрокверцетин ((2R,3R)-2,3-дигидро-3,5,7-тригидрокси-2-(3,4-дигидроксифенил)-4H-1-бензопиран-4-он) привлекает особое внимание исследователей благодаря проявлению различных видов биологической активности и высокому содержанию в древесине лиственницы сибирской (Larix sibirica Ledeb.).

В лаборатории химии древесины Иркутского института химии получены комплексные соединения ДКВ с ионами биогенных двухвалентных металлов – цинка, меди и кальция [1]. Для синтеза образцов КС в качестве исходных реагентов использовали ДКВ производства ООО ИНПФ «Химия древесины», выделенный из древесины лиственницы по технологии [2], предполагающей максимальное сохранение 2R,3R-конфигурации флавоноида, и водорастворимые соли. С использованием комплекса физико-химических методов установлено строение КС [3]. Доказано, что в структурах комплексов сохранены фрагменты молекулы флавоноида, отвечающие за антиоксидантную активность, и транс-2R,3R-конфигурация асимметрических центров молекулы ДКВ.

Выявлено, что полученные КС проявляют более выраженную антирадикальную активность, превосходящую активность ДКВ, в реакции с триарилгидразильным радикалом 2,2-дифенил-1-пикрилгидразилом [4]. Показана высокая антиоксидантная активность КС в экспериментах in vitro на сливной плазме крови здоровых доноров. Снижение содержания малонового диальдегида в плазме крови по сравнению с контролем под влиянием цинкодержащего КС превосходит в 2 раза этот показатель для ДКВ [5].

В ФГБУ «НИИ гриппа» Министерства здравоохранения РФ (Санкт-Петербург) было изучено защитное действие КС цинка и меди (II) с ДКВ на стандартной модели летальной гриппозной инфекции белых мышей. Установлено, что оба соединения проявляют непосредственную активность в отношении вирусов гриппа A/Аichi/2/68 (H3N2), а медьюодержащий комплекс проявляет прямую вирулицидную активность по отношению к вирусу A/Duck/Potsdam (H5N2). На основании полученных результатов можно рекомендовать использовать полученные КС дигидрокверцетина для разработки оригинальных эффективных препаратов для лечения и профилактики гриппа и ОРВИ [6].

В ФГБНУ Иркутском научном центре хирургии и
травматологии на базе научного отдела экспериментальной хирургии исследована оригинальная фармацевтическая композиция, разработанная на основе КС цинка с ДКВ. На модели термического ожога 2 и 3А степени в экспериментах in vivo выявлены высокая ранозаживляющая активность, выраженная противовоспалительная активность и положительное влияние композиции на микрофлору ожоговой раны. Доказано, что по эффективности средство не уступает препарату сравнения Куриозин® (гиалуронат цинка, производство Gedeon Richter (Венгрия): гель 0,103 %), что предполагает перспективность его использования для лечения различных видов ран, в том числе и ожоговых. [7].

В настоящее время проводится оценка возможности применения комплексных соединений ДКВ для лечения стоматологических заболеваний. В лаборатории продолжается работа по созданию и исследованию новых производных дигидрокверцетина с биогенными металлами, перспективных для использования в медицине.

Основные результаты получены с использованием оборудования Байкальского аналитического центра коллективного пользования СО РАН.

Список литературы:
5. Столповская Е.В., Трофимова Н.Н., Бабкин В.А. Оценка антиоксидантной активности комплексных соединений дигидрокверцетина с ионами биогенных металлов // Химия растительного сырья. 2016. № 4. С. 65-70.
PROSPECTS OF PRACTICAL USE OF DIHYDROQUERCETIN COMPLEXES WITH BIOGENIC ELEMENTS
Trofimova N.N., Stolpovskaya E.V., Babkin V.A.
FRBI A.E. Favorsky Institute of Chemistry SB RAS, Irkutsk, Russia, stel@irioch.irk.ru

Complex compounds (CC) of dihydroquercetin (DHQ) with zinc, copper (II) and calcium ions have been investigated. More pronounced antiradical activity of the complexes was revealed in comparison with the base flavonoid. A high antioxidant activity of the CC was found in in vitro experiments. The antiviral effect of zinc- and copper-containing derivatives of DHQ has been established. Wound healing activity of a pharmaceutical composition based on a zinc complex with DHQ is shown. The totality of the obtained data demonstrates the prospects of practical use of dihydroquercetin complexes with zinc, copper (II) and calcium ions to the effective drugs creation.

COВРЕМЕННЫЕ ТЕНДЕНЦИИ СОЗДАНИЯ ЛЕКАРСТВЕННЫХ СРЕДСТВ НА ОСНОВЕ ФЛАВОНОИДОВ

Тюкавкина Н.А., Селиванова И.А., Терехов Р.П.
ФГАОУ ВО Первый МГМУ им. И.М. Сеченова Минздрава России (Сеченовский университет), Москва, Россия, irinaselivanova@yandex.ru

Аннотация. В представленном материале рассматриваются современные тенденции создания лекарственных средств на основе flavonoидов. Уделено внимание молекулярному моделированию (in silico) при создании новых лекарств; проведению трансляционных исследований, которые осуществляются поэтапно: in silico, in vitro, ex vivo, in vivo; работам по синтезу flavonoидов с целью расширения потенциальных кандидатов на роль фармацевтических субстанций; повышении растворимости flavonoидов на примере
Исследования действия флавоноидов на организм человека и создание лекарственных средств на их основе привлекают внимание многих ученых. Эта группа соединений характеризуется широким диапазоном фармакологической активности и приемлемым профилем безопасности [1]. Несмотря на неоспоримые достоинства, перечень фитопрепаратов на базе флавоноидов в Государственном реестре лекарственных средств ограничен [2]. В настоящее время многие вопросы, такие как биохимические механизмы действия флавоноидов, взаимосвязь структура-биологическая активность, биодоступность, фармакокинетика и метаболизм, широко обсуждаются в научной литературе.

Молекулярное моделирования (in silico). Дизайн исследований по созданию новых лекарств уже невозможно представить без этапа in silico. Наблюдается экспоненциальный рост числа публикаций, в которых с помощью компьютерной химии решаются вопросы, касающиеся механизмов биологической активности флавоноидов во взаимосвязи с их структурой и пространственным строением. Работы по молекулярному докингу флавоноидов существенно различаются числом объектов. Например, при точечном сравнении взаимодействия двух лигандов с ферментом уреазой установлено, что дигидромирицитин, содержащий пирогалловую группу в кольце В, лучше связывается с белком-мишенью, чем дигидрокверцитин (ДКВ), имеющий пирокатехиновую группу [3]. В широкомасштабном скрининговом исследовании, по результатам молекулярного докинга с белками вируса Эболы из 450 соединений наибольшая способность связывания выявлена для ДКВ и госсипетина [4]. В целом, установлено, что за счет отсутствия кратных связей в кольце С создается более гибкая конформационная структура и расширяется диапазон белков-мишеней. Информация о программном обеспечении исследования флавоноидов методом in silico, взаимосвязи эффективности докинга со структурой и пространственным строением лигандов приведена в обзоре [5].

Трансляционные исследования. Положительным моментом является появление работ в рамках трансляционных исследований, которые осуществляются поэтапно: in silico, in vitro, ex vivo, in vivo. Например, противоопухолевая активность
ДКВ по отношению к раку кожи, индуцированному воздействием ультрафиолетового излучения, сначала изучалась путем вычисления сайтов связывания лиганда и рецептора эпидермального фактора роста. В завершении работы в опытах на крысах показано, что аппликации с ДКВ снижают число и размер опухолей [6].

Модификация и синтез флавоноидов. Важной проблемой является производство флавоноидов как фармацевтических субстанций в промышленных масштабах. Экстракция флавоноидов из природных растительных источников довольно трудоемкая и дорогая процедура. В настоящее время проводятся работы по синтезу флавоноидов с целью расширения потенциальных кандидатов на роль фармацевтических субстанций. Так по реакции Кляйзена-Шмидта были получены различные производные 2-гидроксихалкона, а из них синтезировано 30 дигидрофлавонолов, в том числе ДКВ. При сравнении их противовоспалительной активности было выявлено три соединения лидера. Первое отличалось от ДКВ наличием дополнительной гидроксилной группы в положении 6, второе — вместо кольца В содержало пиридиновую структуру, а третье — пфторофенильное кольцо. В опытах ex vivo на культуре клеток ни у одного из 30 соединений не было обнаружено токсических эффектов [7].

В некоторых работах осуществлена химическая модификация природных флавоноидов и показано, что аминометилированное производное ДКВ в опытах in vitro проявляет более высокую антиоксидантную активность по сравнению с ДКВ и аскорбиновой кислотой [8].

Повышение растворимости. Многие биофлавоноиды характеризуются низкой растворимостью в воде при комнатной температуре, что, по мнению многих ученых, негативно сказывается на биодоступности и ограничивает использование в медицине. Информация о некоторых способах повышения растворимости флавоноидов на примере ДКВ, таких как микронизация и получение водорастворимых комплексов со вспомогательными веществами была систематизирована ранее [9]. В работах, выполненных за последние два года показано улучшение физико-химических свойств ДКВ в комплексах с лецитином и β-циклогексстрином [10]. А ученые Санкт-Петербурга подготовили подарок к чемпионату мира по футболу 2018 г., который будет проведен в России, и получили комплекс
фуллерена C₆₀ (напоминает по форме футбольный мяч) и ДКВ, обладающий антиоксидантными свойствами [11].

Еще одним направлением модификации растворимости флавоноидов служит инженерия кристаллов — направление химии, нацеленное на дизайн твердых структур с желаемой супрамолекулярной (надмолекулярной) организацией и заданными свойствами [12]. Нековалентные типы взаимодействия, чаще всего водородные связи, являются основой создания сложных молекулярных ансамблей. На базе концепции инженерии кристаллов получены ко-кристаллы кверцетина (КВ) с кофеином и изоникотинамидом и гесперитина с никотиновой кислотой, характеризующиеся повышенной растворимостью [13]. Среди флавоноидов ДКВ впервые использован как фармацевтически активный ингредиент для получения ко-кристаллов с ко-формерами, в качестве которых были подобраны азотсодержащие соединения и соединения с карбонильными группами, способные к образованию супрамолекулярных гетеросинтонов с ДКВ [14]. С точки зрения физико-химических параметров, для фармакологического скрининга наиболее перспективными являются ко-кристаллы ДКВ с ванилином, полученные путем выпаривания растворителя и сонокристаллизации, а также лиофилизаты ДКВ с никотиновой кислотой.

На растворимость и биодоступность соединений существенно влияет полиморфизм [15] и в Государственную фармакопею XIII издания впервые введена ОФС 1.1.0017.15 Полиморфизм [16]. Интересно отметить, что для флавоноидов описаны, так называемые, псевдополиморфные формы, в которых при формировании кристаллической структуры участвуют молекулы растворителя. Так для КВ, в Кембриджской базе данных имеется информация о гидратных (код FEFBEX) и формамид сольватных структурах (код EVIJUO). Кристаллическая форма (2R,3R)-ДКВ также по данным рентгеноструктурного анализа является гидратной (код LORKEI) [17]. Недавно полученные полиморфные модификации ДКВ — аморфная и микротрубки — характеризуются повышенной растворимостью в воде, по сравнению с гидратной формой и различаются морфологически и технологическими параметрами [18, 19]. Кроме того, в аморфной форме ДКВ методом хромато-масс-спектрометрии наряду с (2R,3R)-изомером установлено наличие его σ-диастереомера, которому
по данным in silico приписана (2R,3S)-конфигурация [20].

Биодоступность и метаболизм. Постоянное совершенствование и внедрение высокочувствительных инструментальных методов в область исследования флавоноидов, таких как высокоэффективная жидкостная хроматография, в сочетании с тандемным масс-спектрометрическим детектированием, привело к расширению данных по биодоступности и метаболизму. Впервые были разработаны и валидированы методики анализа, позволяющие обнаруживать флавоноиды и их метаболиты в биообъектах в концентрации 5 нг/мл. При сравнении биодоступности ДКВ и его водорастворимой формы после перорального введения крысам абсолютная биодоступность составляла 0,49% и 0,75%, соответственно[21]. Такая низкая биодоступность ДКВ может быть объяснена высокой степенью его метаболизма. В результате биотрансформации после перорального введения ДКВ крысам был обнаружен 191 метаболит, из них 17 метаболитов покрывали, практически, весь диапазон фармакологической активности ДКВ. Путем компьютерного моделирования были предсказаны потенциальные мишени ДКВ и 63 метаболитов и показано, что 60 метаболитов способны связываться с одними и теми же 5 мишенями [22].

Заключение. Процесс разработки фитопрепаратов на базе флавоноидов в настоящее время характеризуется переходом от инвентаризационного накопления фактов, к формированию представлений о биохимических механизмах их действия и трансляции этих исследований в область практического применения.

Список литературы

16. Государственная фармакопея РФ XIII, ч.1. 2015. М.: НЦ ЭСМП.

MODERN TRENDS OF FLAVONOID DRUGS DEVELOPMENT

Tyukavkina N.A., Selivanova I.A., Terekhov R.P.
Sechenov First Moscow State Medical University, Moscow, Russia
irinaselivanova@yandex.ru

The review presents the current state of issues related to the development of flavonoid drugs. Currently, there is a transition from the accumulation of facts, to the formation of ideas about biochemical mechanisms of their action and the translation of these investigations into a practical application.

ПОЛУЧЕНИЕ НАНО- И МИКРОСТРУКТУРИРОВАННЫХ ФОРМ ДИГИДРОКВЕРЦЕТИНА

Тюкавкина Н.А., Терехов Р.П., Селиванова И.А.
ФГАОУ ВО Первый МГМУ им. И.М. Сеченова Минздрава России (Сеченовский университет), Москва, Россия, r.p.terekhov@yandex.ru

Аннотация. Сообщается о разработке способа получения стабильных нано- и микроструктурированных трубчатых
форм дигидрокверцетина. Они могут найти применение в химико-фармацевтической промышленности и использоваться при создании лекарственных препаратов, в том числе и с адресной доставкой, а также при производстве молекулярных сепараторов, биосенсоров и материалов поддержки в тканевой инженерии.

Согласно современным представлениям, к нанообъектам относят дискретные части материи, у которых хотя бы одно измерение находится в нанодиапазоне [1]. Одним из наиболее распространённых и изученных нанообъектов являются углеродные нанотрубки [2]. Получение нано- и микроструктурированных трубчатых форм молекулярных веществ относится к нетривиальным задачам супрамолекулярного синтеза.

Промышленно доступный природный флавоноид дигидрокверцетин (ДКВ) – 2,3-дигидро-3,5,7-тригидрокси-2-(3,4-дигидроксифенил)-4H-1-бензопиранон-4) характеризуется широким спектром фармакологической активности [3]. В литературе описан способ получения суспензии фибрилл ДКВ путем осаждения его водой из раствора в диметилсульфоксиде [4], однако данные структуры неустойчивы и быстро деградируют на воздухе после фильтрования.

Цель работы. Разработка способа получения стабильных нано- и микроструктурированных трубчатых форм ДКВ.

Материалы и методы. Для скрининговых исследований готовили механическую смесь ДКВ (ФС №000388-270812, ЗАО Аметис, Россия) и мочевины (99,6%, Carl Roth GmbH, Германия) в различных соотношениях, растворяли ее в этаноле денатурированном (99,8%, Carl Roth GmbH, Германия). Колбу с раствором помещали на нагревательный столик MR Hei-Standart (Heidolph Instruments GmbH, Германия) с магнитной мешалкой и прибавляли по каплям воду дистиллированную при интенсивном перемешивании. Маточный раствор выдерживали при различных температурах в течение 36 ч, полученный осадок отфильтровывали, высушивали и подвергали микроскопическому анализу с использованием инверторного оптического микроскопа Axiosvert S100 с микрокамерой AxioCam MRc (Германия) при увеличении в 400 раз.

Результаты и обсуждение. Дизайн исследования базировался на оптимизации следующих параметров:
соотношение компонентов, значение рН маточного раствора, температурный режим и временной фактор.

Опытным путем установлено, что оптимальными условиями для получения нано- и микроструктурированных форм ДКВ является значение рН среды маточного раствора, равное 7, которое достигается при компонентном составе ДКВ: мочевина 70:30 (табл. 1).

Таблица 1.

Влияние значения рН на выход трубчатых форм ДКВ

<table>
<thead>
<tr>
<th>Соотношение ДКВ: мочевина (масс.%)</th>
<th>Значение рН маточного раствора</th>
<th>Выход продукта, (масс.%)</th>
<th>Размеры трубок, мкм</th>
<th>Стабильность</th>
</tr>
</thead>
<tbody>
<tr>
<td>100:0</td>
<td>6</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>85:15</td>
<td>6</td>
<td>2,3</td>
<td>215,29 х 12,89</td>
<td>стабильны</td>
</tr>
<tr>
<td>70:30</td>
<td>7</td>
<td>67,1</td>
<td>234,40 х 22,84</td>
<td>стабильны</td>
</tr>
<tr>
<td>65:35</td>
<td>8</td>
<td>0,1</td>
<td>218,61 х 13,09</td>
<td>стабильны</td>
</tr>
<tr>
<td>55:45</td>
<td>8</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Таблица 2.

Влияние температуры на размеры трубчатых форм ДКВ

<table>
<thead>
<tr>
<th>Температурный режим, °C</th>
<th>Выход продукта, (масс.%)</th>
<th>Средние размеры трубок, мкм</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ 5</td>
<td>66,5</td>
<td>20,70 х 2,24</td>
</tr>
<tr>
<td>+ 15</td>
<td>66,8</td>
<td>40,99 х 3,77</td>
</tr>
<tr>
<td>+ 25</td>
<td>67,1</td>
<td>234,40 х 22,84</td>
</tr>
<tr>
<td>+ 35</td>
<td>66,2</td>
<td>1998,70 х 64,20</td>
</tr>
</tbody>
</table>

В результате исследования влияния температуры выдерживания маточного раствора при соотношении ДКВ:мочевина 70:30 (масс.%) на морфологию осаждаемых трубчатых форм ДКВ установлено, что изменение данного параметра позволяет манипулировать уровнем их организации от макро- до наноуровня (табл. 2).

В условиях заниженных температур наблюдается перенасыщение маточного раствора и увеличение числа точек кристаллизации, способствующих более интенсивному переходу вещества из растворенного состояния в твердую фазу, поэтому
наблюдающиеся формы имеют меньший размер (рис. 1а). В то же время при более высоком нагреве повышается растворимость субстанции и фазовое равновесие смешается в сторону образования трубчатых форм большего размера (рис. 1б).

Рис. 1. Различные уровни организации трубчатых форм ДКВ: а) микротрубки; б) нанотрубки.

Рис. 2. Зависимость массы микротрубок от времени выдерживания маточного раствора.

Оптимальное время установлено по кривой зависимости массы выпавшего осадка микротрубок от времени выдерживания маточного раствора (соотношение ДКВ:мочевина 70:30 (масс.%), температуре 25 °C), которая выходит на плато через 36 ч (рис. 2). Способ получения микротрубок ДКВ запатентован на территории РФ [5].
Исследование физических и физико-химических свойств полученных материалов, а также введение их в оптимальную лекарственную форму является перспективным направлением дальнейшей работы.

Нано- и микроструктурированные трубчатые формы ДКВ могут найти применение в химико-фармацевтической промышленности и использоваться при создании лекарственных препаратов, в том числе и с адресной доставкой, а также при производстве молекулярных сепараторов, биосенсоров и материалов поддержки в тканевой инженерии.

Выводы
1. Установлено, что оптимальными условиями для получения микротрубок ДКВ является осаждение их водой дистиллированной из этанольного раствора смеси компонентов ДКВ: мочевина 70:30 (масс.%) и выдерживании маточного раствора не менее 36 ч.
2. Выявлена зависимость уровня организации трубчатых форм ДКВ от температурного режима: понижение температуры способствует уменьшению размеров трубок и переходу от микро- к наноуровню.

Список литературы:
1. Словарь нанотехнологических и связанных с нанотехнологиями терминов / Под. ред. С.В. Калюжного // ФИЗМАТЛИТ. 2010. 528 с.
АНТИОКСИДАНТНЫЙ ЭФФЕКТ ПОЛИФЕНОЛОВ ИЗ БУРОЙ ВОДОРОСЛИ SARGASSUM PALLIDUM ПРИ СТРЕСС-ВОЗДЕЙСТВИИ

Фоменко С.Е.
ФГБУН Тихоокеанский океанологический институт им. В.И. Ильичева
ДВО РАН, Владивосток, Россия, fomenko29@mail.ru

Аннотация. Исследовано влияние экстракта, обогащенного полифенольными соединениями, из морской буровой водоросли Sargassum pallidum на показатели антиоксидантной системы в плазме крови и печени мышей на модели стресс-воздействия. Экспериментальный стресс моделировали путем вертикальной фиксации животных за дорсальную шейную складку на 24 часа. Экстракт саргассума и препарат сравнения элеутерококк вводили до вертикальной фиксации и через 6 часов после. Применение экстракта саргассума сопровождалось увеличением значений АРА и активности СОД, снижением уровня МДА, а также восстановлением показателей глутатионового звена. Экстракт саргассума по эффективности не уступал действию экстракта элеутерококка, но превосходил его по способности стабилизировать активность глутатионпероксидазы и глутатионредуктазы при стрессе.

В настоящее время доказана роль стресса в патогенезе различных болезней, включая заболевания пищеварительной, кровеносной, нейроэндокринной, иммунной систем. При интенсивном воздействии стрессовых факторов, в первую очередь, активизируется антиоксидантная система из-за избытка реактивных оксигенных радикалов, образующихся при стрессе. Одним из путей восстановления нарушенных стрессом метаболических реакций организма является использование природных комплексов, обладающих высокой антиоксидантной активностью. В последнее время внимание исследователей привлекают морские водоросли, как потенциальные источники биологически активных веществ. Они содержат полисахариды, липиды, стеролы, протеины, минералы, каротиноиды, полифенолы и др.
Особое место занимают полифенолы, как соединения,
обладающие высокой антиоксидантной активностью. Доминирующей группой полиfenольных соединений в морских водорослях являются флоротанины - продукты полимеризации флороглюкинала (1,3,5-тригидроксибензола). Согласно проведенным скрининговым исследованиям среди водорослей, встречающихся в акватории прибрежных вод Японского моря, наибольшее содержание полифенолов отмечалось в бурых водорослях, в частности сем Sargassaceae [1].

Представитель этого семейства Sargassum pallidum (Turner) C.Agardh относится к массовым видам морских водорослей, традиционно используемых в странах Юго-восточной Азии, как пищевой продукт с высокой биологической ценностью, а также как сырье для получения фармацевтических препаратов. Согласно нашим исследованиям, содержание общих полифенолов составляло до 50% от сухого остатка экстракта S. pallidum. Известно, что препараты из саргассовых водорослей проявляют широкий спектр фармакологических свойств (антибактериальные, антивирусные, противоопухолевые, и dr.) [2]. Однако, биологическая активность экстракта из S. pallidum, обогащенного полиfenольными соединениями, в отношении стресс-протекторного действия, до настоящего времени не получило должного развития. Целью настоящей работы явилось исследование профилактического влияния водно-спиртового экстракта, выделенного из таллома морской водоросли Sargassum pallidum, на состояние антиоксидантной системы мышей в условиях стресса.

Экстракт получали из высушенного таллома S. pallidum методом реперколяции 70% этиловым спиртом, где из 1 кг сырья выход экстракта составлял 1 л. Стандартизацию экстракта из саргассума проводили по суммарному содержанию полифенолов (ПФ). Эксперимент проводили на белых беспородных мышах-самцах массой 20 - 30 г, содержащихся в стандартных условиях вивария. Острый стресс моделировали путем вертикальной фиксации животных за дорзальную шейную складку на 24 часа. Контрольные животные содержались в стандартных условиях вивария. Препараты вводились в желудок через зонд дважды: непосредственно перед вертикальной фиксацией и через 6 часов после первого введения. В качестве препарата сравнения использовали аптечный экстракт элеутерококка - известного адаптогена и стресс-протектора. Экстракты саргассума и элеутерококка освобождали от спирта, доводили
дистиллированной водой до требуемого объема и вводили мышам в/ж через зонд в виде водной взвеси. Терапевтическая доза составляла 100 мг общих ПФ/кг массы. Животные из группы «чистый стресс» получали дистиллированную воду в объеме, равном объему вводимых препаратов.

Таблица

Влияние стресса на показатели антиоксидантной защиты печени и плазмы крови мышей и их коррекция экстрактом из буровой водоросли Sargassum palidum и элеутерококком (M±m)

<table>
<thead>
<tr>
<th>Показатели</th>
<th>1 группа Контроль</th>
<th>2 группа Стресс</th>
<th>3 группа Стресс +саргассум</th>
<th>4 группа Стресс +элеутерококк</th>
</tr>
</thead>
<tbody>
<tr>
<td>Г-SH (мкмоль/г печени)</td>
<td>4,70±0,15</td>
<td>2,50±0,14</td>
<td>3,51±0,18*</td>
<td>3,48±0,31*</td>
</tr>
<tr>
<td>ГР (нмоль / мин / мл плазмы)</td>
<td>88,21±4,26</td>
<td>65,17±3,60*</td>
<td>89,82±7,09*</td>
<td>72,70±1,34*</td>
</tr>
<tr>
<td>ГП (нмоль / мин / мл плазмы)</td>
<td>139,0±4,83</td>
<td>90,5±3,25*</td>
<td>139,2±4,08*</td>
<td>110±5,07*</td>
</tr>
<tr>
<td>АРА (ед.троп. / мг белка)</td>
<td>13,15±0,21</td>
<td>7,10±0,13*</td>
<td>12,75±0,15*</td>
<td>12,28±0,12*</td>
</tr>
<tr>
<td>СОД (усл. ед)</td>
<td>678±6,47</td>
<td>405±10,74*</td>
<td>591±13,07*</td>
<td>611±3,79*</td>
</tr>
<tr>
<td>МДА (мкмоль / мл)</td>
<td>3,70±0,10</td>
<td>6,21±0,19*</td>
<td>4,14±0,13*</td>
<td>4,25±0,06*</td>
</tr>
</tbody>
</table>

Примечание. Изменения статистически достоверны: ¹р<0,05, ²р<0,01, ³р<0,001 – при сравнении с контролем; ⁴р<0,05, ⁵р<0,01, ⁶р<0,001 – со 2-й группой.

Оценивая состояние антиоксидантной системы животных, подвергнутых стрессовому воздействию (см. таблицу), было выявлено снижение величины антирадикальной активности (АРА) плазмы крови на 46%, и на 40% ниже контрольного уровня была зафиксирована активность супероксиддисмутазы (СОД). Также отмечалось снижение уровня восстановленного глутатиона (Г-SH) печени почти в 2 раза и активности глутатионредуктазы (ГР) на 26%. Активность другого ключевого фермента глутатионового звена – глутатионпероксидазы (ГП) также была снижена на 35%. Такие нарушения в показателях системы антиоксидантной защиты можно определить как ее истощение.

Нарушения антиоксидантной защитной системы в условиях
стресса проявлялись также в увеличении количества малонового диальдегида (МДА) на 68%, что обусловливает активизацию процессов ПОЛ и сопровождается повышением проницаемости клеточных мембран. При введении экстрактов из саргассума и элеутерококка (3-я и 4-я группы) на фоне стресса, исследуемые антиоксидантные показатели имели тенденцию к стабилизации и приближались к контрольным значениям. При сравнении со 2-й группой (чистый стресс) значительно повысился уровень АРА (на 73-79%) и активность СОД (на 46-50%), снизилось содержание МДА (на 32-34%). В свою очередь, показатели глутатионовой системы у мышей, получавших элеутерококк, были существенно ниже контрольных величин и уступали аналогичным параметрам в группе животных, получавших экстракт саргассума. Так, активности ГП и ГР плазмы крови у этих животных была ниже в среднем на 19-21% по сравнению с показателями в группе мышей, получавших водорослевый экстракт.

Данный эффект обусловлен, по нашему мнению, тем, что в составе экстракта S. palidum присутствуют флоротанины, которые являются мощными ловушками свободных радикалов и примерно вдвое эффективнее, чем растительные катехины, аскорбиновая кислота и α-токоферол [2]. На основании полученных данных можно констатировать, что при стрессовом воздействии экстракт из саргассума не уступал экстракту элеутерококка, а по некоторым исследованным параметрам антиоксидантной защиты даже превосходил таковой. Бурая водоросль Sargassum pallidum является перспективным видом сырья для создания препаратов, способных активизировать антиоксидантную защиту организма для предупреждения стресс-индуцированных расстройств.

Список литературы:
ANTIOXIDANT EFFECT OF POLYPHENOLS FROM THE BROWN SEA ALGA OF SARGASSUM PALLIDUM AT STRESS IMPACT

Fomenko S.E.
V.I. Il'ichev Pacific Oceanological Institute FEBRAS, Vladivostok, Russia, fomenko29@mail.ru

It was studied the influence of an extract, enriched with polyphenolic connections, from brown algae Sargassum pallidum on antioxidant system indexes in plasma of blood and a liver of mice at stress impact. Experimental stress was simulated by suspending animals in the upright position by their neck dorsal skin fold for 24 hours.

S. pallidum extract and drug of comparison Eleutherococcus extract was administered right before retention of mice in upright position and in 6 hours after it. Administration of the S. pallidum extract resulted in increasing of the ARA value and activity of SOD, reducing of MDA, and also restoration of indicators of a glutathione link. The extract from S. pallidum was not only as effective as Eleutherococcus extract at stress impact, but also surpassed it in ability to stabilize the activity of a glutathione peroxidase and glutathione reductase.

КОМПЛЕКСНЫЙ ПОДХОД ПО ИССЛЕДОВАНИЮ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ ЛЕКАРСТВЕННОГО СЫРЬЯ

Хабибрахманова В.Р.1,2, Коваленко С.А.1, Пермякова А.А.1, Сидорова К.О.1, Капитонова А.Ю.1, Карамова Н.С.3, Сысоева М.А.1

1ФГБОУ ВО «Казанский национальный исследовательский технологический университет», Казань, Россия, venerakhabirakhmanova@gmail.com
2Обособленное структурное подразделение ФИЦ КазНЦ РАН «Казанский институт биохимии и биофизики», Казань, Россия
3ФГАОУ ВО «Казанский (Приволжский) федеральный университет», Казань, Россия

Аннотаиця. Разработан комплексный подход по исследованию фенольных соединений шрота корня солодки и меланина чаги, включающий получение экстрактов, содержащих различные группы фенольных соединений,
применение инструментальной высокоэффективной тонкослойной хроматографии в сочетании с биоавтографией для их идентификации, количественного определения и установления биологической активности.

Фенольные соединения различных классов являются основными биологически активными веществами во многих видах лекарственного сырья. Поэтому для их стандартизации используются различные методики определения качественного состава и количества фенольных соединений. Это обуславливает актуальность усовершенствования применяемых методик, а также разработки новых, позволяющих получить более точные и информативные результаты. Отдельной важной задачей в фармакогнозии является исследование лекарственного сырья с целью расширения знаний о его химическом составе, биосинтезе важнейших веществ, в том числе и фенольных соединений, для создания более эффективных лекарственных средств. Несомненно, для решения этой задачи должен разрабатываться комплексный подход, предусматривающий подбор условий выделения соединений из исследуемого лекарственного сырья, их эффективному разделению, идентификации и определению биологической активности.

Целью работы являлось исследование и идентификация фенольных соединений, извлекаемых из лекарственного сырья.

Объектами исследования были выбраны – Glycyrrhizae radix (корень солодки) и Inonotus obliquus (березовый гриб чага). Они являются ценными видами лекарственного сырья и содержат различные биологически активные фенольные соединения.

Корень солодки богат различными flavonoidsами, которые обладают доказанным капилляроукрепляющим, противовоспалительным, антиязвенным, спазмолитическим, антимикробным и антиоксидантным действием. Их состав в сырье довольно полно изучен. Однако остаётся неизвестным состав фенольных соединений, содержащихся в шроте корня солодки после его промышленной переработки. Проведение этих исследований позволит обосновать перспективу переработки шрота с получением новых ценных продуктов и биологически активных фенольных соединений.

Чага отличается от других видов трутовых грибов тем, что накапливает высокое количество меланина. Это
высокомолекулярные пигменты, которые имеют нерегулярную структуру и сложный химический состав. Фенольные соединения занимают большую долю в меланине. При этом исследование их состава затруднено тем, что они прочно связаны с белково-полисахаридным матриксом частицы меланина. Для извлечения фенольных соединений из меланина требуется использовать различные виды гидролиза, что приводит к их разрушению и потере биологической активности. В связи с этим актуальным является поиск способов по извлечению фенольных соединений из меланина с сохранением их структуры и свойств.

Извлечение фенольных соединений проводили из шрота корня солодки и меланина чаги путем их последовательного исчерпывающего экстрагирования органическими растворителями возрастающей полярности. Такой подход позволяет провести фракционирование извлекаемых веществ, что облегчит их последующий анализ и идентификацию. Определение качественного состава и количества отдельных фенольных соединений проводили с помощью высокоэффективной тонкослойной хроматографии, осуществляемой на оборудовании фирмы «CAMAG» (Швейцария). Этот лабораторный комплекс позволяет автоматически осуществлять нанесение объектов исследования на пластины в виде треков путем распыления, элюирование в системе растворителей и денситометрическую обработку полученных хроматограмм.

Для идентификации фенольных веществ в исследуемых экстрактах на хроматограммы вместе с ними наносили растворы веществ-стандартов в различном количестве. После проведения денситометрии по полученным данным определяли количество обнаруженных фенольных соединений по калибровочным графикам, построенным по веществам-стандартам.

Уникальной опцией «TLS Scanner 4» («CAMAG») является возможность снятия электронных спектров поглощения веществ в пиках, имеющих разное значение коэффициента удерживания на хроматограмме. Для всех пиков, обнаруженных в исследуемых экстрактах из шрота корня солодки и меланина чаги, были сняты электронные спектры поглощения в диапазоне длин волн от 200 до 700 нм. Полученные спектры позволили провести идентификацию фенольных соединений, присутствующих в образцах, к конкретным классам фенольных соединений.
В экстрактах из шрота корня солодки были обнаружены изофлавоны – 4,32 %, флавоны – 1,67 %, халконы – 1,52 %, флавоны/флавонолы – 0,98 %, простые фенолы/оксибензойные кислоты – 1,04 %. В экстрактах из меланина чаги были идентифицированы гидрохинон, п-оксибензойная, ванилиновая и сиреневая кислоты, различные гиспидинподобные соединения.

Проведенный анализ фенольных соединений шрота корня солодки и меланина чаги, показал, что их состав разнообразен. Идентификация всех обнаруженных соединений – это сложная и трудоемкая задача. В работе предлагается использовать такой подход, который на первом этапе позволит выявить в составе исследуемых экстрактов фенольные соединения, обладающие биологической активностью, а на втором этапе – будет проведена их идентификация с использованием современных аналитических приборов.

Для определения в составе исследуемых экстрактов фенольных веществ, обладающих биологической активностью, была применена биоавтография. Этот метод предполагает сочетание высокоэффективной тонкослойной хроматографии для разделения веществ и определение их биологической активности путем обработки пластины различными специфическими реагентами и системами. Непосредственно в работе метод биоавтографии позволил выявить в составе экстрактов из шрота корня солодки и меланина чаги фенольные соединения, обладающие антибактериальным действием и высокой антиоксидантной активностью в отношении радикала ДФПГ.

COMPREHENSIVE APPROACH TO RESEARCH PHENOLIC COMPOUNDS OF OF NATURAL CRUDE DRUG

Khabibrakhmanova V.R.1,2, Kovalenko S.A.1, Permyakova A.A.1, Kapitonova A.YA.1, Karamova N.S.3, Sysoeva M.A.1

1 Kazan National Research Technological University, Kazan, Russia, venerakhabibrakhmanova@gmail.com
2 Kazan Institute of Biochemistry and Biophysics, Kazan, Russia
3 Kazan Federal University, Kazan, Russia

A complex approach to study phenolic compounds of licorice root meal and melanin Chaga was developed. The method includes preparation of extracts containing various groups of phenolic compounds, use of instrumental high-performance thin layer chromatography in
combination with bioautography to identify them, quantify and establish biological activity.

ИССЛЕДОВАНИЕ БИОЛОГИЧЕСКОЙ АКТИВНОСТИ ИГРИСТОГО ВИНА IN VITRO, IN VIVO

Черноусова И.В. 1, Зайцев Г.П. 1, Огай Ю.А. 1, Фомочкина И.И. 2, Шрамко Ю.И. 2

1 Всероссийский национальный научно-исследовательский институт виноградарства и виноделия «Магарач» РАН, Ялта, Крым, Россия, chernblack@mail.ru
2 Медицинская академия им. С.И. Георгиевского Крымского Федерального Университета им. В.И. Вернадского», Симферополь, Крым, julianashramko@rambler.ru

Аннотация. Экспериментально получены сравнительные характеристики продуктов переработки винограда (вина игристые белые, красные) по суммарному содержанию полифенолов и их антиоксидантной активности. Получено уравнение аппроксимации, характеризующее зависимость антиоксидантной активности образцов вин игристых от содержания в продукте суммарных полифенолов винограда. Проведена оценка биологической активности образца вина игристого красного, с использованием метода in vivo на модели гипоксии средней тяжести. Экспериментально установлено, что применение вина игристого выдержанного полусладкого красного «Премиум Каберне» с массовой концентрацией фенольных веществ 2,35 г/дм3 и антиоксидантной активностью 1,42 г/дм3 (производство ООО «Абрау-Дюрсо», Краснодарский край) в коррекции гипоксических состояний, выявило комплексное положительное влияние данного продукта переработки винограда на показатели антиоксидантной и антипротеолитической защиты организма.

В рамках Федеральной Целевой программы “Исследования и разработки по приоритетным направлениям развития научно-технического комплекса России на 2014-2020 годы” Институтом «Магарач» период 2014-2016 гг. проведены комплексные научно-исследовательские работы по созданию технологий...
производства новых видов продукции из винограда красных сортов, обладающих антиоксидантными свойствами, для применения в энотерапии. Установлено, что антиоксидантная активность красных тихих сухих столовых вин и полифенольных концентратов из винограда Каберне-Совиньон, Саперави, Мерло, производимых в Крыму и на Кубани, зависит от количества суммарных полифенолов, содержащихся в этой продукции. Установлено, что разработанные экспериментальные вина, напитки и экстракт, насыщенные полифенолами винограда на уровне не ниже 2,5 г/дм³ для вина и напитков, и не ниже 20 г/дм³ для экстракта, обладают выраженным цитопротекторным действием, сохраняют структуру миокарда [1-4].

Аналогичная технологическая доработка может потребоваться и для других типов вин традиционного отечественного виноделия, содержащих в своём составе полифенолы винограда. К таким винам относятся вина игристые, представленные широким ассортиментом белых и красных марок. Информации о фактическом содержании в игристых винах фенольных веществ нет, в связи с отсутствием контроля такого показателя по нормативной документации на производство продукции. Также отсутствует информация об уровне показателя антиоксидантной активности, косвенно характеризующего биологическую активность, которая позволяет дать предварительную оценку in vitro функциональных свойств игристых вин.

С целью наработки экспериментальных данных о биологической активности традиционных продуктов переработки винограда для создания научных основ технологии производства пищевых продуктов из винограда функциональной направленности были исследованы 26 образцов белых и красных игристых вин из торговой сети Республики Крым [5]. Установлено, что все проанализированные игристые вина соответствуют требованиям [6]. Массовая концентрация фенольных веществ по Фолину –Чокальтеу составляет: в вине игристом брют, полусухом белом до 0,3 г/дм³; в полусладком от 0,3 до 0,4 г/дм³; в вине игристом брют, полусухом, полусладком красном от 1,2-2,4 г/дм³.

Компоненты фенольного комплекса игристых вин представлены антоцианами, оксибензойными кислотами, оксикоричными кислотами, флavan-3-олами, олигомерными и полимерными процианидинами. Содержание олигомерных и
полимерных процианидинов в винах игристых белых составило в процентном отношении от суммы всех фенольных компонентов- 23% и 63 % соответственно; в винах игристых красных- 6,7 % и 88 % соответственно.

Исследована антиоксидантная активность вин игристых белых и красных по содержанию водорастворимых антиоксидантов. Показано, что антиоксидантная активность вин игристых красных в 1,5-2 раза выше аналогичных показателей вин игристых белых и составляет 0,8-1,4 г/дм³ в пересчете на стандартный антиоксидант тролокс. Получено уравнение аппроксимации, характеризующее зависимость антиоксидантной активности образцов вин игристых от содержания в продукте суммарных полифенолов винограда: Y=0,53+0,139×X+0,08×X²-0,00064×X³, где Y – расчетное значение показателя антиоксидантной активности в пересчете на стандартный антиоксидант тролокс, г/дм³, X - массовая концентрация фенольных веществ по Фолину- Чокальтеу в пересчете на галловую кислоту, г/дм³.

Объектом экспериментальных исследований по изучению биологических эффектов полифенольных продуктов переработки винограда являлись образец вина игристого полусладкого красного «Премиум Каберне» с массовой концентрацией фенольных веществ 2,35 г/дм³ и антиоксидантной активностью 1,42 г/дм³ (производство ООО «Абрау-Дюрсо», Краснодарский край) и белые крысы-самцы линии Wistar в количестве 25 особей с массой тела 180-200 г (возраст 10-12 недель), разделенные на 4 группы. Группа 1 (контроль, К) - интактные животные; Группа 2 (опыт, К/П) - получали питьевую воду и подвергались кровопусканию; Группа 3 (опыт, К/П+Ш) - на первой неделе эксперимента получали питьевую воду и подвергались кровопусканию, со второй недели получали разбавленное игристое вино и подвергались кровопусканию; Группа 4 (опыт, Ш) - получали разбавленное игристое вино и не подвергались кровопусканию. Экспериментальные исследования проводились на базе Медицинской академии имени С.И. Георгиевского ФГАОУ ВО «Крымский федеральный университет им. В.И. Вернадского». Содержание животных и постановку экспериментов проводили в соответствии с требованиями приказов № 1179 МЗ СССР от 11.10.1983 года и № 267 МЗ РФ от 19.06.2003 года, а также международными правилами «Guide for the Care and Use of Laboratory Animals [7-10]. Исследования
проводили с соблюдением принципов Европейской конвенции о защите позвоночных животных, используемых для экспериментов или в иных научных целях (Страсбург, 1986).

Моделирование гипоксии путем кровопускания привело к изменениям в состоянии окислительно-антиоксидантного гомеостаза крови. Прежде всего, наблюдалось повышение содержания ТБК-активных продуктов в 2,1 раза, повышение ППА в 2 раза, повышение трипсиноподобной активности и кислотостабилизирующих ингибиторов (соответственно в 1,4 и 2 раза по отношению к контрольной группе животных) по сравнению с контрольной группой. Применение вина игристого на фоне кровопускания привело к достоверному снижению ТБК-активных продуктов более чем в 8 раз по сравнению таковыми в группе с моделируемой гипоксией (p<0,05). Также в данной группе произошло достоверное увеличение СОД в 2 раза и ККА в 3 раза и (p<0,05) по сравнению с группой без коррекции, что может объясняться воздействием полифенолов, содержащихся в вине игристом, а также в этой группе имелось достоверное снижение ЭПА в 2,4 раза (p<0,05).

В группе животных, получавших вино игристое без кровопускания, наблюдалось выраженное увеличение антиоксидантного потенциала. Это выражалось в следующих достоверных изменениях: снижении содержания ТБК-А в 10 раз; росте концентрации ЦП в 1,6 раза; увеличении СОД и КПА в 2 раза и ТПА в 1,1 раза по сравнению с группой с моделируемой гипоксией. Следует отметить также, что показатели СОД, КПА и ТПА в данной группе были выше таковых у интактных животных, что указывает на положительное влияние полифенолов винограда, содержащихся в вине игристом, на антиоксидантный потенциал организма даже условно здоровых индивидуумов.

Таким образом, применение вина игристого красного в коррекции свободно-радикального и протеолитического повреждения, характерных для гипоксии, выявило комплексное положительное влияние на целый ряд важнейших показателей антиоксидантной и антипротеолитической защиты организма. Это свидетельствует о возможности его применения для коррекции различных гипоксических состояний и перспективности проведения дальнейших экспериментальных и клинических исследований в указанном направлении.

Список литературы
1. А. Кубышкин, Ю. Огай, Г. Зайцев, И. Черноусова, А. Кацев, И. Фомочкина, Ю. Шрамко /Антиоксидантные и антирадикальные
4. Эффективность использования насыщенных полифенолами продуктов переработки винограда для профилактики метаболических нарушений в эксперименте/ А.В. Кубышкин, А.М. Авидзба, И.И. Фомочкина и др.// Вопросы питания, том 86,- №1.- 2017.-с. 100-107
5. Исследование фенольного состава и антиоксидантной активности игристых вин / И.В. Черноусова, Г.П. Зайцев, Т.В. Меледина и др. // Виноградарство и виноделие Изд-во «Пищевая промышленность»- 2017.-№ 5.-С.11-16
6. ГОСТ 33336 -2015 Вина игристые. Общие технические условия. Москва. Стандартинформ.- 2011.- с.16
8. Международные правила «Guide for the care and Use of Laboratory Animals (2009 г.)

INVESTIGATION OF THE BIOLOGICAL ACTIVITY OF A PLUMBING WINE IN VITRO, IN VIVO
Chernousova I.V.¹, Zaitsev G.P.¹, Ogai Yu.A.¹, Fomochkina I.I.², Shramko Yu.I.²
¹ Federal State Budget Scientific Institution “All- Russian National Research of Institute of Viticulture and Winemaking “Magarach of RAS, Russia, chernblack@mail.ru
² Medical Academy named after S. I. Georgievsky Federal State Autonomous educational institution of higher education "Crimean
Experimental studies present the comparative characteristics of grape fermentation products (red and white sparkling wines) in terms of total polyphenol concentration in them and their respective antioxidant capacity. We have obtained the fitted equation that characterizes the dependence of the antioxidant capacity of sparkling wines on the concentration of total grape polyphenols in the product in view.

The assessment of the biological activity of the red sparkling wine experimental samples, done in vivo on the model of the moderately severe hypoxia, has been conducted. As experimentally proved, the application of vintage semi-sweet sparkling red wine “Premium Kaberne” with the mass concentration of phenolic substances of 2,35 g/dm3 and the antioxidant capacity of 1,42 g/dm3 (“Abrau-Durso”, Krasnodar Region) in the correction of hypoxia has shown a general positive impact of the given product of grape fermentation on the indices of the antioxidant and antiproteolytic activity of the body.
окислительный стресс, вызванный воздействием некоторых неблагоприятных факторов. Естественная система антиоксидантной защиты человека при этом с ними не справляется. Это состояние организма характеризуется избыточным содержанием свободных радикалов, реакционных соединений кислорода и азота. Свободные радикалы начинают окислять жизненно важные молекулы ДНК, белков, жиров, что приводит к возникновению опасных заболеваний.

Потребление пищевых продуктов и напитков с большим содержанием антиоксидантов защищает человека от этих процессов, что подтверждается многочисленными эпидемиологическими исследованиями. В связи с этим возник интерес к определению содержания антиоксидантов в пище. В некоторых странах созданы банки данных содержания антиоксидантов в пищевых продуктах и напитках [1]. Нами измерено содержание антиоксидантов в 1400 различных пищевых продуктах и напитках [2,3]. Продолжается поиск продуктов с высоким содержанием антиоксидантов.

В последние годы возрос интерес к семенам фруктов, ягод, овощей как к источнику природных антиоксидантов. Особенно много публикаций по измерению содержания антиоксидантов в косточках (семенах) винограда [4-6]. В косточках винограда (а они составляют 5% от общего веса ягод), особенно черного, высокое содержание сильных антиоксидантов, таких как проантоцианидини, катехины, галловая кислота, ресвератрол. Экстракты косточек винограда имеют высокую антибактериальную и антимикробную активность и могут быть использованы для предохранения от порчи пищевых продуктов [6], они эффективнее синтетических фенольных антиоксидантов. Фирма «Магарач» (Ялта) выпускает экстракт из косточек и кожиц черного винограда «Эноант», обладающий противоонкологическими свойствами и улучшающий работу сердечно-сосудистой системы. [7]. Экстракт косточек винограда при концентрации 800 -1100 ppm полностью ингибирует действие грамположительных бактерий, а при концентрации 1250-1300 и действие грамотрицательных бактерий [7,8]. Активно изучаются антиоксидантные свойства и антibiактериальная активность семян грейпфрута [9,10].

Экспериментальная часть. Измерения ССА в семенах ягод, фруктов, овощей проводили на приборе «Цвет-Яуза-01-АА», представляющем собой проточно-инжекционную систему с
амперометрическим детектированием [2]. Окисление антиоксидантов в анализируемой пробе происходит на рабочем стеклоуглеродном электроде при постоянном потенциале 1,3 В. Стандартное вещество - галловая кислота. Этот метод обладает высокой селективностью, позволяющей определять в сложных смесях только антиоксиданты. Предел детектирования полифенолов, флавоноидов на этом приборе очень низок и составляет 10^{-12} – 10^{-9} г. Среднеквадратическое отклонение (СКО) последовательных измерений обычно не превышает 5 %. Измерение занимает всего несколько минут.

Перед проведением измерений готовили экстракты анализируемых семян. Предварительно измельченные в ступке семена экстрагировали 70 %-ным этанолом в течение 1 часа встряхиванием на установке Лаб-ПУ-02. При необходимости полученные экстракты перед анализом разбавляли бидистиллатом. Полученные результаты пересчитывались на навеску семян.

Обсуждение результатов. В приведенных выше литературных ссылках измерялись разными методами ССА или антиоксидантная активность только мякоти ягод, фруктов и овощей.

В таблице приведены впервые измеренные амперометрическим методом значения суммарного содержания антиоксидантов (ССА) в их семенах.

Таблица. ССА в семенах ягод, фруктов и овощей.

<table>
<thead>
<tr>
<th>№№пн/п</th>
<th>Анализируемый объект</th>
<th>Страна произрастания</th>
<th>ССА, мг/100 г</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Семена манго</td>
<td>Таиланд</td>
<td>424</td>
</tr>
<tr>
<td>2</td>
<td>Косточки белого винограда сорта «Тайфи»</td>
<td>‟…‟</td>
<td>221</td>
</tr>
<tr>
<td>3</td>
<td>Косточки черного винограда</td>
<td>Молдавия</td>
<td>180</td>
</tr>
<tr>
<td>4</td>
<td>Семена груши сорта «Санта-Мария»</td>
<td>Испания</td>
<td>125</td>
</tr>
<tr>
<td>5</td>
<td>Семена мандарина</td>
<td>Турция</td>
<td>86</td>
</tr>
<tr>
<td>6</td>
<td>Семена апельсина</td>
<td>Египет</td>
<td>69</td>
</tr>
<tr>
<td>7</td>
<td>Косточки граната</td>
<td>Узбекистан</td>
<td>55</td>
</tr>
<tr>
<td>8</td>
<td>Семена яблока сорта «Антоновка»</td>
<td>Подмосковье</td>
<td>51</td>
</tr>
<tr>
<td>9</td>
<td>Семена лимона</td>
<td>Узбекистан</td>
<td>50</td>
</tr>
</tbody>
</table>
Ожидаемо высокие значения ССА косточек винограда обусловлены высоким содержанием в них сильных антиоксидантов, таких как, ресвератрол, катехины, кверцетин. Значения ССА семян манго, винограда и груши довольно высокие и сопоставимы со значениями ССА некоторых трав, экстрактов ягод, фруктов и овощей [2]. Необходимо отметить, что ССА зависит от сорта растения, степени зрелости, мест произрастания и условий хранения.

На рисунке приведены вольтамперограммы, т.е. зависимости сигнала (ССА) от приложенного потенциала, для экстрактов семян манго и мандарина. Вольтамперометрические характеристики иногда более информативны, чем УФ-спектры.

Рис. 1. Вольтамперограммы экстрактов семян манго и мандарина

Эти зависимости могут показать, какие антиоксиданты преобладают в семенах. Фенольные кислоты начинают окисляться уже при потенциале 0,2 В, тогда как флавоноиды – при 0,6-0,8 В. Из полученных вольтамперограмм видно, что в семенах исследованных продуктов присутствует смесь фенольных кислот и флавоноидов.

Выводы. Проведенные измерения показали, что семена ягод, фруктов и овощей характеризуются высоким содержанием антиоксидантов. Это делает перспективным их использование в качестве дополнительного источника природных антиоксидантов в диетическом питании и производстве БАДов для антиоксидантной терапии. Экстракты косточек винограда уже активно используются для этих целей.
Список литературы:
2. Яшин Я.И., Рыжнев В.Ю., Яшин А.Я., Черноусова Н.И., Природные антиоксиданты. Содержание в пищевых продуктах и их влияние на здоровье и старение человека. М., ТрансЛит, 2009, 192 с.

DETERMINATION OF THE TOTAL MAINTENANCE OF ANTIOXIDANTS IN FRUIT, BERRIES, VEGETABLES SEEDS BY AMPEROMETRIC METHOD.
Chernousova N.I.¹, Yashin Ya.l.²
¹NPO «Chimavtomatika», Moscow, Russia
²International analytical center, N. D. Zelinsky Institute of Organic
Chemistry, Russian Academy of Sciences, Moscow, Russia

In this work the total amount of antioxidants (TAA) in seeds of grapes, apples, pears, citrus, pomegranate, red pepper and other fruit and vegetables is determined for the first time. Preliminary extraction antioxidants from seeds it was spent by 70 % ethanol in standard conditions. Measurement TAA in extracts was spent by a flow-injection method with amperometric detection.

The obtained data have shown, that TAA seeds are comparable with TAA pulps of berry, fruit and vegetables. Hence, seeds can be an additional source of natural antioxidants in antioxidant of therapy of the person.

Keywords: extracts, seeds, fruit, vegetables, antioxidants, amperometric detector.

ВЛИЯНИЕ КУРСОВОГО ВВЕДЕНИЯ ДИГИДРОКВЕРЦЕТИНА НА ВЯЗКОСТЬ КРОВИ, МИКРОЦИРКУЛЯЦИЮ И МИКРОВАСКУЛЯРИЗАЦИЮ В КОРЕ ГОЛОВНОГО МОЗГА КРЫС SHR В ПЕРИОДЫ ВОЗРАСТАНИЯ И СТАБИЛЬНО ВЫСКОГО АРТЕРИАЛЬНОГО ДАВЛЕНИЯ

Шаманаев А.Ю., Алиев О.И., Сидехменова А.В., Анищенко А.М., Плотников М.Б.
НИИФиРМ им. Е.Д. Гольдберга, Томск, Россия, shamanaev7@mail.ru

Аннотация. Данная работа была направлена на изучение влияния курсового введения дигидрокверцетина (ДГК) на реологические параметры крови, микроциркуляцию и микроваскуляризацию коры головного мозга у крыс SHR в период развития и стабильной артериальной гипертензии (АГ). Животным опытной группы внутрижелудочно вводили ДГК в дозе 50 мг/кг в течение 6 недель. Результаты работы продемонстрировали эффективность ДГК как средства, ослабляющего тяжесть синдрома гипервязкости крови у крыс SHR в период стабильной АГ. Было выявлено, что ДГК частично препятствовал развитию микроциркуляторных нарушений в коре головного мозга крыс SHR в период развития АГ, оказывая положительное влияние на
микрососудистое русло.

В последние годы уделяется все большее внимание изучению микроциркуляторных нарушений при артериальной гипертензии (АГ) [1]. Известно, что нарушения микроциркуляции появляются очень рано, постепенно развиваются и, в конечном итоге, приводят к тяжелым осложнениям АГ. При этом особую опасность представляют нарушения микроциркуляции и микроваскуляризации коры головного мозга, так как поражение головного мозга является наиболее опасным и часто фатальным [2]. Согласно современным представлениям, важную роль в появлении и прогрессировании микроциркуляторных нарушений при АГ играет изменение реологических параметров крови и, прежде всего, поведения ее форменных элементов – эритроцитов [3]. В связи с этим представляется актуальным углубленное экспериментальное исследование нарушений микроциркуляции и микроваскуляризации на разных стадиях АГ и поиск веществ, способных корригировать данные нарушения.

Одним из наиболее подходящих веществ является дигидрокверцетин (ДГК), который показал высокую эффективность в качестве средства для коррекции синдрома повышенной вязкости крови как in vitro, так и in vivo на различных моделях сердечно-сосудистых патологий [4]. Кроме того показана эффективность применения ДГК в медицинской практике для лечения микроциркуляторных расстройств [5].

Методы исследования. В работе использовали ДГК, выделенный из древесины лиственницы даурской (Larix dahurica Turcz.), с чистотой 98%. Эксперименты проведены на 40 крысах SHR. Возраст крыс на начало эксперимента для исследований в период развития АГ составлял 5 недель, в период стабильной АГ – 17 недель. Животные в первой возрастной категории были разделены на группы контроль 1 и опыт 1, во второй – контроль 2 и опыт 2. Крысы опытных групп получали внутрижелудочно ДГК в дозе 50 мг/кг в 1% крахмальной слизи ежедневно в течение 6 недель.

Систолическое давление (СД) регистрировали до и после курса введения исследуемого вещества. Измерение гемореологических параметров подробно описано ранее [6]. У животных определяли вязкость крови, вязкость плазмы, гематокрит, агрегацию и деформируемость эритроцитов. Локальный мозговой кровоток (ЛМК) в области зрительной коры
головного мозге крыс оценивали методом лазер-допplerовской флоуметрии. Микроциркуляторное русло коры головного мозга исследовали методом микроскопии и определяли плотность капиллярного русла (расчете на 1 мм²), средний диаметр капилляров, а также структуру капиллярной сети. Для количественной оценки капилляры распределяли на четыре интервальные группы: до 3, от 3 до 5, от 5 до 7 и от 7 до 9 мкм. Для оценки достоверности межгрупповых различий использовали непараметрический критерий Mann-Whitney U test.

Результаты исследования. Уровень СД у крыс SHR на 11 неделе жизни (контроль 1) был достоверно ниже на 16% по сравнению с его уровнем у 23 недельных животных (контроль 2). Также с возрастом происходило значимое ухудшение гемореологических параметров.

У крыс SHR в период развития АГ не наблюдалось изменений СД, макро- и микрореологических показателей после 6 недельного курса ДГК. У крыс SHR со стабильной АГ введение ДГК приводило к достоверному снижению СД на 18% относительно группы контроль 2. У этих животных также наблюдалось ослабление агрегации эритроцитов и увеличение их деформируемости. Улучшение агрегации и деформируемости эритроцитов у крыс SHR в группе опыт 2 отразилось в достоверном снижении вязкости цельной крови относительно группы контроль 2.

Значения ЛМК у крыс SHR в возрасте 11 недель и 23 недель достоверно не различались (таблица). У животных, получавших ДГК (опыт 1), ЛМК было достоверно выше на 53% по сравнению с контролем.

В группе контроль 1 не наблюдалось значимых изменений среднего диаметра капилляров, плотности капиллярного русла и количества капилляров по сравнению с группой контроль 2 (таблица). В группе опыт 1 наблюдался достоверно больший средний диаметр капилляров (на 11%), увеличивались плотность капиллярной сети на (23%) и процент капилляров диаметром 3–5 мкм (на 43%) и 5–7 мкм (на 37%). В группе опыт 2 не наблюдалось достоверных изменений среднего диаметра капилляров и плотности капиллярной сети (таблица). Количество капилляров диаметром 0–3 мкм было выше на 73% по сравнению с группой контроль 2, однако не наблюдалось изменений капилляров большего диаметра.
Таблица 1.
Влияние курсового внутрижелудочного введения дигидрокверцетина на локальный мозговой кровоток (ЛМК), средний диаметр капилляров и плотность капиллярного русла у крыс SHR в период развития и стабильной АГ

<table>
<thead>
<tr>
<th>Показатели</th>
<th>Контроль 1 (n=10)</th>
<th>Опыт 1 (n=10)</th>
<th>Контроль 2 (n=10)</th>
<th>Опыт 2 (n=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ЛМК, BPU</td>
<td>1865±229</td>
<td>2865±334*</td>
<td>2325±521</td>
<td>2906±489</td>
</tr>
<tr>
<td>Средний диаметр капилляров, мкм</td>
<td>3,5±0,1</td>
<td>3,9±0,1*</td>
<td>3,4±0,1</td>
<td>3,3±0,1</td>
</tr>
<tr>
<td>Плотность капиллярного русла, капилляров на мм²</td>
<td>115±8</td>
<td>142±6*</td>
<td>106±5</td>
<td>107±8</td>
</tr>
</tbody>
</table>

* – достоверные различия по сравнению с группой контроль 1 (p<0,05).

Таким образом, результаты работы свидетельствуют об эффективности ДГК как средства, ослабляющего тяжесть синдрома гипервязкости крови у крыс SHR в период стабильной АГ. Кроме того, было выявлено, что ДГК частично препятствовал развитию микроциркуляторных нарушений в коре головного мозга крыс SHR в период развития АГ.

Список литературы.
4. Плотников М.Б., Тюкавкина Н.А., Плотникова Т.М. Лекарственные препараты на основе дигидрокверцетина. Томск: Изд-во Том. ун-та, 2005, 228 с.
EFFECT OF DIHYDROQUERCETIN ON BLOOD VISCOSITY, LOCAL CEREBRAL BLOOD FLOW, AND BRAIN CORTEX MICROVASCULARIZATION PARAMETERS IN SHRS DURING THE STAGES OF DEVELOPING AND STABLE ARTERIAL HYPERTENSION

Shamanaev A.Y., Aliev O.I., Sidehmenova A.V., Anishchenko A.M., Plotnikov M.B.
E.D. Goldberg Institute of Pharmacology and Regenerative Medicine, Tomsk, Russia, shamanaev7@mail.ru

The present study was aimed to investigate the effect of dihydroquercetin (DHQ) administration on rheological parameters of blood, microcirculation and microvascularization of brain cortex in SHR during the stages of developmental and stable arterial hypertension (HT). SHRs were treated intragastrically with DHQ at a dose of 50 mg/kg for 6 weeks. It was shown that administration of DHQ attenuated the severity of hyperviscosity syndrome in SHRs with stable HT. It was found that DHQ partially prevented the development of microcirculatory disorders in the cerebral cortex of SHRs during the development of HT, because of positive effects on the microvascular bed.

ИММУНОСТИМУЛИРУЮЩЕЕ ДЕЙСТВИЕ ПОЛИФЛАВАНОВ РАСТЕНИЙ РОДА POLYGONUM L.

Шевченко А.С.1, Статникова Н.И.2, Корулькин Д.Ю.1, Музычкина Р.А.1
1Казахский национальный университет им. аль-Фараби, Алматы, Казахстан
2Медицинский центр Vita Vent, Алматы, Казахстан, rmuz@mail.ru

Аннотация. В статье представлены результаты выделения конденсированных дубильных веществ растений рода Polygonum L., имеющих промышленные запасы на территории Казахстана. Приведены результаты
исследования иммуностимулирующих свойств выделенных соединений.

Природные полифлаваны представляют важную группу biologически активных соединений с широким спектром biологического действия. Эти соединения проявляют низкую токсичность даже при высоких концентрациях, обладая выраженным дубящим, противоопухолевым, противовоспалительным, вяжущим, антибактериальным и Р-витаминным действием [1].

Объектом нашего исследования были конденсированные дубильные вещества казахстанских видов Polygonum hydropiper L. и Polygonum aviculare L.

Для выделения суммы полифлаванов использовали последовательную экстракцию сырья бензолом (для удаления хлорофилла, неполярных веществ, смол), эфиром, этилацетатом и этиловым спиртом. Концентрат этилацетатного экстракта был рехроматографирован на колонке с сефадексом LH-20, элюируя компоненты экстракта водно-спиртовыми смесями состава от 1:9 до 1:1.

Спиртовый концентрат повторно рехроматографировали на колонке с сефадексом HW-40, используя в качестве элюента водный метанол (10–20–30–40–50% MeOH) и метанол-водно-ацетон (7:1:2). Контроль за разделением полифлаванов Polygonum L. осуществляли методом ТСХ на пластинах Silufol UV-254 в системах: бензол - этаноловый спирт (1:1) и бензол-ацетон (1:3), элюаты объединяли и концентрировали. Конденсированные дубильные вещества выделяли обработкой полученных фракций 10% раствором свинца ацетата с последующим отделением осадка полифлаванов центрифугированием и гидролизом солей 5% кислотой серной. В результате, в индивидуальном виде удалось выделить 5 полифлаванов: полиэпиффалексин и полиэпиффалексингаллат; полиэпикатехин и полиэпикатехингаллат; полиэпикатехин.

Для исследования иммуностимулирующих свойств выделенных полифлаванов, в медицинском центре Vita Vent была подобрана группа из 30 человек в возрасте от 16 до 60 лет. Все пациенты были осмотрены с помощью метода электропунктурной диагностики Фолля-Сарчука. Во время осмотра измерялся электрический потенциал на энергетическом канале сосудисто-паренхиматозно-эпителиальной дегенерации.
(СПЭД), на его контрольной точке, которая характеризует общебиоэнергетическое состояние организма человека, т.е. характер и степень дегенеративных процессов, проявляющихся в различных тканях.

Величина показателя на этом энергетическом канале полностью зависит от эмоционального состояния человека, иммунитета организма, наличия хронических или острых процессов, новообразований.

Для определения иммуностимулирующего действия фитотерапевтиков, использовались их наезды в стеклянных пробирках. В ходе исследования фитотерапевтики, обладающие иммуностимулирующим действием повышали или нормализовали уровень энергетики на канале СПЭД. Достоверность исследований контролировалась с помощью наезда с растворителем - этанолом.

Результат испытания: полиэпикатехин - у 26 (86,6 %) человек наблюдалось снижение показателей на канале СПЭД и у 4 (13,3 %) человек отмечалась нормализация энергетики; полиэпикатехингаллат - у 28 (93,3 %) пациентов из 30 отмечалось повышение показателей на общеэнергетическом канале, на остальных - препарат не оказывал никакого действия; полиэпиафцелехингаллат - у 20 (66,6 %) пациентов наблюдалось повышение показателей, у 10 (33,4 %) человек снижение таких; полиэпиафцелехин - у 25 (83,3 %) человек препарат не влиял на состояние общеэнергетического канала, у 5 (17 %) человек, отмечена нормализация энергетики; полигаллокатехин - у всех 30 пациентов отмечался стабильный эффект повышения общей энергетики.

Таким образом, можно предположить, что изученные полифлаваны могут быть эффективны при заболеваниях, связанных со снижением сопротивляемости и иммунитета организма. Из анализа полученных данных также следует, что повышение иммуностимулирующего эффекта находится в прямой пропорциональности от увеличения степени гидроксилирования кольца В элементарного звена конденсированных танинов; в меньшей степени на рост указанной активности влияет наличие 3-О-галлоильного фрагмента в структуре полифлаванов.

Список литературы.

IMMUNOSTIMULATING ACTION OF POLYFLAVANS OF POLYGONUM L. PLANTS
Shevchenko A.S.¹, Statnikova N.I.², Korulkin D.Yu.¹, Muzychkina R.A.¹
¹al-Farabi Kazakh National University, Almaty, Kazakhstan
²Vita Vent Medical Center, Almaty, Kazakhstan, rmuz@mail.ru

The article represents the results of isolation of condensed tannins of Polygonum L. plants growing in Kazakhstan in commercial reserves at the territory of Kazakhstan. The results of research of immunostimulating action of isolated compounds have been represented.

ВЛИЯНИЕ ФЛАВОНОИДОВ НА ФОРМИРОВАНИЕ ФИБРИЛЛ КОЛЛАГЕНА
Ягольник Е.А.¹, Ким Ю.А.², Тараховский Ю.С.³, Гайдин С.Г.², Музафаров Е.Н.¹
¹ФГБОУ ВО Тульский государственный университет, Тула, Россия, yea_88@mail.ru
²ФГБУН Институт биофизики клетки РАН, Пущино, Россия
³ФГБУН Институт теоретической и экспериментальной биофизики, РАН, Пущино, Россия

Аннотация. Использовали спектрофотометрию, дифференциальную сканирующую калориметрию, электронную микроскопию и молекулярное моделирование для исследования влияния flavonoids с различным числом гидроксильных групп на образование фибрилл коллагена-1, полученного из хвостов молодых крыс. На основании полученных данных предполагается значительное влияние структуры электронных орбиталей в молекулах flavonoids на формирование фибрилл коллагена.

Фибриллярный белок коллаген 1-го типа является важным компонентом соединительной ткани, ответственным за ее прочность и эластичность. Фибриллы коллагена образуются из
мономеров коллагена и под электронным микроскопом в структуре фибрилл наблюдается поперечная полосатость, которая присутствует не только в тканях животных, но также при формировании фибрилл коллагена in vitro.

Он находит широкое применение как биоматериал в хирургии, тканевой инженерии, косметологии (Liu et al., 2015; Sarker et al., 2015). Известно, что нарушения в упаковке молекул коллагена связаны со многими заболеваниями соединительных тканей, из которых наиболее распространенными являются остеопороз (Wu et al., 2015), сколиоз (He et al., 2006), синдром Элерса-Данлоса (Byers and Murray, 2012), синдром Марфана (Cui et al., 2014) и др. Повышенная растяжимость кожи при синдроме Элерса-Данлоса коррелирует с увеличением диаметра фибрилл до 110-140 нм, который в норме равен 90-100 нм (Kucharz, 1992). Кроме того, в фибриллах нарушается регулярная D-периодическая упаковка молекул.

Фибриллы разной плотности упаковки и размеров необходимы для выполнения защитной функции при заживлении ран (Lee et al., 2013). Влияние различных физических и химических факторов на процесс формирования фибрилл коллагена, а также на структуру формирующихся фибрилл были достаточно детально исследованы в ряде работ (Depalle et al., 2015; Kemp et al., 2012; Park et al., 2012; Quan and Sone, 2015). В последние годы все большее внимание привлекает исследование влияния флавоноидов на процесс формирования фибрилл коллагена (Depalle et al., 2015; Kemp et al., 2012; Park et al., 2012; Quan and Sone, 2015; He et al., 2011; Jackson et al., 2010; Madhan et al., 2005) что находит применение в области биомедицины при лечении патологий различных органов (Bahramsohtani et al., 2014; Bedran-Russo et al., 2014). Образование водородных связей полифенолов с коллагеном повышает его термостабильность, при этом не нарушая структуры белка (He et al., 2011).

Полифенолы растений: танины и флавоноиды, давно используются для стабилизации и повышения прочности материалов, содержащих коллаген. Например, использование этих агентов при выделке кож имеет многовековую историю. В последние годы особое внимание уделяется влиянию флавоноидов на свойства фибрилл коллагена, которые могут быть использованы в биомедицине. Стабилизирующее влияние флавоноидов на белок осуществляется через взаимодействие

563
гидроксилов флавоноидов с остатками серина, гидроксипролина, карбоксильными группами аспарагиновой кислоты, аминогруппами лизина и амидными группами аспарагина.

В представленной работе мы использовали спектрофотометрию, дифференциальную сканирующую калориметрию, электронную микроскопию и молекулярное моделирование для исследования влияния флавоноидов с различным числом гидроксильных групп на образование фибрилл коллагена-I, полученного из хвостов молодых крыс.

Было обнаружено, что флавон, таксифолин и кемпферол ускоряют формирование фибрилл коллагена, характеризующихся поперечной полосатостью, аналогичной контрольному препарату коллагена, тогда как кверцетин и мирицетин замедляют агрегацию белка и препятствуют формированию фибрилл. Анализ показывает, что для формирования фибрилл большое значение имеют количество гидроксильных групп, липофильно, структура НОМО-орбиталей и распределение зарядов в молекулах флавоноидов. А именно, формированию фибрилл коллагена коррелирует с наличием НОМО-орбиталей в области В-кольца. Таким образом, предполагается значительное влияние структуры электронных орбиталей в молекулах флавоноидов на формирование фибрилл коллагена.

Список литературы.
6. Cui,JZ, A Y Tehrani, K A Jett, P Bernatchez, C van Breemen, M Esfandiarei, 2014, Quantification of aortic and cutaneous elastin and collagen morphology in Marfan syndrome by multiphoton microscopy:
THE EFFECT OF FLAVONOIDS ON THE FORMATION OF THE
COLLAGEN FIBRILS

Yagolnik E.A.¹, Kim Yu.A.², Tarakhovsky Yu.S.³, Gaydin S.G.², Muzafarov E.N.¹
¹Tula State University, Tula, Russia
²Institute of Cell Biophysics, RAS, Pushchino, Moscow Region, Russia
³Institute of Theoretical and Experimental Biophysics, RAS, Pushchino, Moscow Region, Russia

Collagen fibrils are produced from collagen monomers not only in vivo, but also in vitro. The ability to have an influence on the structure and properties of fibrils may find medical application and can be useful for controlling the formation of collagen gels and sheets in tissue engineering. Here we investigated the influence of flavonoids, distinguished by the number of hydroxyl groups in the B-ring, on the formation of collagen fibrils.

A correlation was found between the number of hydroxyl groups, lipophilicity of molecules and their ability to influence the fibril formation. The molecules with a smaller number of hydroxyls (flavone and kaempferol) were more lipophilic and accelerated the formation of fibrils, whereas molecules with a larger number of hydroxyls (quercetin, myricetin) were more hydrophilic and prevented the fibril formation.

Among the studied substances, an exception was taxifolin, which accelerated the formation of fibrils in spite of the increased hydrophilicity of this compound. However, molecular modeling revealed that all investigated accelerators of the fibril formation, including taxifolin, were distinguished by the increased lipophilicity exactly in the B-ring.

This suggests a critical role of the B-ring lipophilicity in the ability of the studied flavonoids to accelerate the formation of collagen fibrils.
фенольных веществ, в том числе их отдельных форм, которые относятся к биологически активным соединениям. Показано различное действие диоксида углерода на экстракционные процессы при выработке красных столовых виноматериалов.

Общеизвестно, что красные вина среди всех типов вин характеризуются повышенным содержанием фенольных, в том числе красящих, веществ. По многочисленным проведенным исследованиям фенольный комплекс не только активно участвует в формировании качества винопродукции, а также относится к биологически активным соединениям и обладает широким спектром функциональной направленности [1-3], что обуславливает повышенный интерес к красным винам и определяет высокую значимость в рационе питания человека. Для повышения биологической активности красных вин используют различные технологических приемы, обеспечивающие оптимальную экстракцию суммы фенольных соединений, а также их различных форм. В последние годы определенное внимание в производстве красных вин уделяется методу углекислотной мацерации, который по ряду исследований позволяет сохранить сортовые особенности винограда в готовой винопродукции.

Таблица 1. Массовая концентрация фенольных веществ в виноматериалах

<table>
<thead>
<tr>
<th>Показатели</th>
<th>Технология производства</th>
<th>классическая</th>
<th>углекислотная мацерация мезги</th>
<th>углекислотная мацерация винограда</th>
</tr>
</thead>
<tbody>
<tr>
<td>сумма</td>
<td>1350*</td>
<td>1525</td>
<td>1320</td>
<td></td>
</tr>
<tr>
<td>красящих веществ</td>
<td>260</td>
<td>305</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>мономерных форм</td>
<td>755</td>
<td>890</td>
<td>690</td>
<td></td>
</tr>
<tr>
<td>полимерных форм</td>
<td>590</td>
<td>640</td>
<td>630</td>
<td></td>
</tr>
<tr>
<td>Примечание: ** - в числите – среднее значение показателя, в знаменателе – диапазон варьирования.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
В институте «Магарач» проведены исследования в данном направлении [4, 5]. Изучено влияние технологического приема углекислотной мацерации как мезги, так и винограда на накопление фенольного комплекса в целом, а также отдельных компонентов, например, кверцетина, (+)-D-катехина, (-)-эпикатехина и др., обуславливающих биологическую ценность красных столовых виноматериалов. В качестве контроля использовали виноматериалы, выработанные по классической технологии производства красных столовых вин.

В опытных образцах виноматериалов идентифицированы фенольные вещества, в том числе их различные формы (табл. 1).

Массовая концентрация компонентов фенольного комплекса

<table>
<thead>
<tr>
<th>Массовая концентрация, мг/дм³</th>
<th>Технология производства</th>
<th>углекислотная мацерация мезги</th>
<th>углекислотная мацерация винограда</th>
</tr>
</thead>
<tbody>
<tr>
<td>Массовая концентрация</td>
<td>классическая</td>
<td>углекислотная мацерация мезги</td>
<td>углекислотная мацерация винограда</td>
</tr>
<tr>
<td>Кверцетин-3-O-гликозид</td>
<td>61,7 *</td>
<td>69,9</td>
<td>31,6</td>
</tr>
<tr>
<td></td>
<td>44,7-80,9</td>
<td>52,7-88,9</td>
<td>18,6-50,5</td>
</tr>
<tr>
<td>Кверцетин</td>
<td>23,8</td>
<td>27,8</td>
<td>12,9</td>
</tr>
<tr>
<td></td>
<td>19,1-31,7</td>
<td>21,0-43,7</td>
<td>7,9-26,5</td>
</tr>
<tr>
<td>(+)-D-Катехин</td>
<td>29,9</td>
<td>41,8</td>
<td>38,9</td>
</tr>
<tr>
<td></td>
<td>12,3-50,9</td>
<td>16,3-72,6</td>
<td>15,1-67,9</td>
</tr>
<tr>
<td>(-)-Эпикатехин</td>
<td>17,5</td>
<td>23,6</td>
<td>21,3</td>
</tr>
<tr>
<td></td>
<td>8,6-32,4</td>
<td>11,8-43,4</td>
<td>10,1-41,6</td>
</tr>
<tr>
<td>Кафтаровая кислота</td>
<td>55,7</td>
<td>90,1</td>
<td>87,8</td>
</tr>
<tr>
<td></td>
<td>21,0-81,9</td>
<td>41,8-140,4</td>
<td>38,7-141,3</td>
</tr>
<tr>
<td>Каутаровая кислота</td>
<td>17,6</td>
<td>28,9</td>
<td>25,6</td>
</tr>
<tr>
<td></td>
<td>7,2-27,8</td>
<td>12,6-43,4</td>
<td>10,9-40,9</td>
</tr>
<tr>
<td>Галловая кислота</td>
<td>37,8</td>
<td>49,9</td>
<td>45,5</td>
</tr>
<tr>
<td></td>
<td>11,2-98,7</td>
<td>15,8-135,1</td>
<td>13,9-126,4</td>
</tr>
<tr>
<td>Сиреневая кислота</td>
<td>6,9</td>
<td>8,17</td>
<td>6,0</td>
</tr>
<tr>
<td></td>
<td>4,5-9,5</td>
<td>5,2-12,3</td>
<td>3,9-8,6</td>
</tr>
</tbody>
</table>

Установлено, что в виноматериалах, выработанных с применением способа углекислотной мацерации мезги, по сравнению с контрольной технологией, повышается массовая концентрация суммы фенольных веществ в среднем до 19 %, в т.ч. красящих веществ - до 28 %. Избыточное давление диоксида углерода положительно воздействует на проницаемость
клеточной мембраны раздробленной ягоды винограда, способствуя лучшей диффузии компонентов кожиц. При этом в виноматериалах, выработанных с применением способа углекислотной мацерации целых гроций винограда, отмечается снижение массовой концентрации суммы фенольных веществ до 8 %, а красящих - в среднем в 2 раза в сравнении с контрольной технологией, что связано с влиянием целостности кожиц виноградной ягоды, препятствующей оптимальному переходу фенольных веществ.

В результате сравнительных исследований технологий установлено различное накопление флавоноидных и нефлавоноидных форм фенольных веществ (табл. 2).

Рис. 1. Изменение содержания (в процентном выражении) отдельных компонентов фенольного комплекса виноматериалов, выработанных методом углекислотной мацерации, в сравнении с классической технологией

Процентное изменение содержания компонентов мономерной фракции фенольных веществ при использовании углекислотной мацерации винограда и мезги по отношению к классической технологии представлено на рис.1. При использовании технологии углекислотной мацерации как мезги, так и винограда в сравнении с классической технологии отмечается увеличение накопления флаван-3-олов ((+)-D-катехин, (-)-эпикатехин), оксикоричных (кафтаровая и каутаровая) и оксисибензойной (галловая) кислот. На экстрагирование флавонов (кверцетин-3-O-гликозид и кверцетин) и оксисибензойной (сиреневая) кислот влияние данных способов отличается: при углекислотной мацерации мезги отмечается повышение данного показателя, а при углекислотной мацерации винограда –
снижение. Данная закономерность обусловлена тем, что изучаемые компоненты находятся непосредственно в кожице виноградной ягоды и при дроблении винограда обеспечивается более эффективная экстракция и обогащение кверцетином и кверцетин-3-о-гликозидом мезги.

Таким образом, установлено существенное влияние технологий производства на экстракцию фенольного комплекса виноматериалов. Способ углекислотной мацерации позволяет повысить биологическую ценность красных столовых вин за счет повышенного экстрагирования flavan-3-олов ((+)-D-катехин, (-)-эпикатехин), оксикоричных (кафтаровая и каутаровая) и оксибензойной кислот.

Список литературы
4. Шмигельская Н.А. Совершенствование технологии красных столовых вин из интродуцированных клонов винограда на основе их технологической оценки: дисс ... канд. техн. наук: спец. 05.18.01 - Технология обработки, хранения и переработки злаковых, бобовых культур, крупяных продуктов, плодово-ягодной продукции и виноградарства / Н.А. Шмигельская. – Ялта, 2014. – 141 с.

INFLUENCE OF TECHNOLOGY OF MANUFACTURE OF RED WINE MATERIALS ON EXTRACTION OF BIOLOGICALLY ACTIVE COMPOUNDS
Yalaneskii A.Ya., Shmigelskaia N.A., Makarov A.S.
Federal State Budget Scientific Institution «All-Russian National Research Institute of Viticulture and Winemaking «Magarach» of
The results of studies of the influence of processing technologies on the accumulation of the amount of phenolic substances, including their separate forms, which relate to biologically active compounds are presented. Various effects of carbon dioxide on extraction processes are shown in the development of red table wine materials.

СИЛЬНЫЕ ПРИРОДНЫЕ ПОЛИФЕНОЛЬНЫЕ АНТИОКСИДАНТЫ, ИХ ПИЩЕВЫЕ ИСТОЧНИКИ И ВЛИЯНИЕ ИХ НА ЗДОРОВЬЕ ЧЕЛОВЕКА

Яшин Я.И., Веденин А.Н., Яшин А.Я.
Компания «Интерлаб», Москва, Россия, yashin@interlab.ru

Аннотация. Многочисленные эпидемиологические исследования показали, что потребление пищевых продуктов, содержащих природные антиоксиданты, благотворно влияет на здоровье человека, защищая от опасных болезней и преждевременного старения. Из природных антиоксидантов выделяются следующие: эпигаллокатехин галлат, кверцетин, куркумин, ресвератрол, гидрокситирозол, антоцианины, проантоцианидини и изофлавоны по своей антиоксидантной активности и полезным воздействиям на здоровье человека. С использованием этих антиоксидантов в чистом виде либо в сочетании с другими проводятся предклинические, клинические и терапевтические исследования с положительными результатами.

Природные антиоксиданты используются для подавления окислительного стресса. Одно из актуальных направлений в современной медицине — это подбор сильных природных антиоксидантов и их сочетание для нейтрализации действия свободных радикалов, т.е. разработка эффективной антиоксидантной терапии.

В таблице приведены структурные формулы сильных полифенольных природных антиоксидантов и их пищевые источники. Эти антиоксиданты выбраны потому, что они обладают сильной антиоксидантной активностью и положительным воздействием на здоровье человека на основании многочисленных исследований.
<table>
<thead>
<tr>
<th>Название антиоксидантов</th>
<th>Структурные формулы</th>
<th>Пищевые источники</th>
</tr>
</thead>
<tbody>
<tr>
<td>Эпигаллокатехин галлат и другие катехины</td>
<td></td>
<td>Зеленый чай, чай оолонг (улун): катехин и эпикатехин в винограде, вине, какао и горьком шоколаде</td>
</tr>
<tr>
<td>Кверцетин</td>
<td></td>
<td>Лук, яблоки, клюква, перец, сельдерей</td>
</tr>
<tr>
<td>Куркумин</td>
<td></td>
<td>Куркума</td>
</tr>
<tr>
<td>Ресвератрол</td>
<td></td>
<td>Горец гребенчатый, красный виноград, красное вино</td>
</tr>
<tr>
<td>Гидрокситирозол</td>
<td></td>
<td>Оливки, листья оливы, оливковое масло</td>
</tr>
<tr>
<td>Антоцианины</td>
<td></td>
<td>Цветные ягоды, фрукты и некоторые овощи</td>
</tr>
<tr>
<td>Проантоцианидины</td>
<td></td>
<td>Клюква, виноград, какао</td>
</tr>
</tbody>
</table>
Название антиоксидантов | Структурные формулы | Пищевые источники
---|---|---
Изофлавоны | [![Изофлавон](image)] | Соя и продукты из сои, красный клевер

Пищевые источники сильных природных антиоксидантов и их влияние на здоровье человека.

Эпигаллокатехин галлат (ЭГКГ) и другие катехины. Больше всего катехинов содержится в зеленом чае (от 15 до 20% от сухого веса). Кроме ЭГКГ в зеленом чае присутствуют: катехин, эпикатехин, галлокатехин, галлокатехин галлат. Другие источники катехинов – виноград, красное вино, какао и горький шоколад. В красном сухом вине содержится катехин (191 мг/л) и эпикатехин (82 мг/л). В какао и темном шоколаде содержатся также только катехин и эпикатехин, они составляют 40% от содержания всех полифенолов в какао. В последние десятилетия польза от потребления зеленого чая и ЭГКГ целенаправленно изучалась в сотнях эпидемиологических исследованиях. Результаты этих исследований обобщены в книге о чае [1]. Основные полезные свойства чая: предотвращение сердечно-сосудистых заболеваний, уменьшение риска инсульта и инфаркта, оказывает противоонкологическое, антидиабетическое и противовоспалительное действие.

Кверцетин. Кверцетин – один из самых распространенных флавоноидов в растительном мире, он содержится в разных количествах во многих фруктах, ягодах и овощах. В обзоре [2] приведены общие сведения по профилактике и терапии болезней кверцетином - подавляет окислительный стресс, защищая молекулы ДНК, обладает противовоспалительным действием, против онкологических болезней, защищает от болезней Альцгеймера. Кроме того, кверцетин повышает иммунитет, против старения, полноты, диабета и сердечно-сосудистых заболеваний.

Куркумин. Куркумин содержится в куркуме. Установлено, что куркумин обладает антивоспалительным, антиканцерогенным и антиоксидантным действием. Обзор биологических действий куркумина приведен в работе [3]. Потребление куркумина помогает при сердечно-сосудистых заболеваниях, обладает
силенным противоонкологическим действием, эффективен против болезней Альцгеймера и Паркинсона.

Ресвератрол. Ресвератрол содержится в винограде и красном вине, в некоторых ягодах, в корнях растения Polygonum. Сердечно – сосудистые заболевания уменьшаются у людей, регулярно потребляющих красное вино [4]. Ресвератрол активно тормозит рост Helicobacter pylori в желудке, против старения человека, обладает нейропротекторным эффектом.

Гидрокситирозол. Гидрокситирозол присутствует в оливках и оливковом масле, а также в других растительных маслах. Оливковое масло – один из наиболее важных компонентов средиземноморской диеты. Население, придерживающееся средиземноморской диеты, в 2 раза меньше болеют сердечно – сосудистыми и онкологическими заболеваниями. Гидрокситирозол показывает разнообразную фармакологическую активность: антиоксидантную, антиканцерогенную, противовоспалительную и нейропротекторную [5]. Исключительно благотворное действие оказывает гидрокситирозол на сердечно – сосудистую систему.

Антоцианины. Антоцианины относятся к флавоноидам. Они имеют разные сахарные (углеводные) заместители. В растениях идентифицировано 635 антоцианинов. Антоцианидины - агликоны без сахарных заместителей. Всего известно 19 антоцианидинов, из них 6 распространены больше всего: цианидин, пеонидин, делфинидин, пеларгонидин, малвидин, петунидин. Пищевые источники антоцианинов, в основном, ягоды и фрукты: клубника, черника, клюква, ежевика, красный виноград, яблоки, груши. Потребление пищевых продуктов, содержащих антоцианины, благотворно влияет на здоровье человека [6]: антоцианины уменьшают риск возникновения сердечно-сосудистых, онкологических заболеваний; обладают противодиабетическим действием; снижают давление крови. Потребление антоцианинов благотворно влияет на микробиоту кишечника человека, а состояние микробиоты непосредственно связано с общим здоровьем человека.

Проантоцианидины - олигомеры и полимеры флаван-3-олов (катехинов), содержатся в некоторых ягодах, фруктах, зернах, напитках, какао, специях. Влияние проантоцианидинов на здоровье человека описано в ряде статей и обзоров [7]. Они снижают риск определенных болезней: сердечно-сосудистых; онкологических; против инфекций мочевого тракта; улучшает...
микробиоту кишечника; оказывает противодиабетическое действие.

Изофлавоны. Изофлавоны содержатся в сое и ее продуктах, красном клевере и других растениях. Больше всего изофлавонов потребляется в азиатских странах с продуктами сои. В связи с этим в азиатских странах заболеваний сердца, а также заболеваний рака молочной железы у женщин и рак простаты у мужчин встречаются значительно реже, чем в западных странах [8].

Приведенные в докладе сведения показывают, что сильные природные антиоксиданты могут быть использованы для профилактики многих болезней. Эти сведения будут полезны для врачей-терапевтов, диетологов, специалистов лечебного, функционального, спортивного питания и всем людям, следящим за своим здоровьем.

Список литературы
Numerous epidemiological researches have shown that consumption of the foodstuff containing natural antioxidants well influences health of the person, protecting from dangerous diseases and aging. From natural antioxidants the following is allocated: epigallocatechin gallate, quercetin, curcumin, resveratrol, anthocyanins, proanthocyanins and isoflavons on the antioxidant activity and useful impacts on health of the person. With use of these antioxidants in pure form or in combination with others preclinical, clinical and therapeutic trials with positive results are conducted.
ОГЛАВЛЕНИЕ

GROWING DUCKWEED TO RECOVER NUTRIENT FROM WASTEWATER IS ACCOMPANIED BY MODIFICATION OF POLYPHENOLS CONTENT

Mapelli S., Segato S. ... 4

ИЗУЧЕНИЕ БИОЛОГИЧЕСКОЙ АКТИВНОСТИ ПРОИЗВОДНЫХ ФЕНОЗАНА НА МОДЕЛЯХ КЛЕТОК ЖИВОТНОГО ПРОИСХОЖДЕНИЯ

Алексеева О.М., Голощапов А.Н., Ким Ю.А. 9

S-MODIFIKATSIA RYADA PRIROYDNYKH I SINTETICHESKIH FENOLOTNYKH SOEDINENIY, ANTIOKSIDANTNAIA AKTIVNOST

Багавиева Т.К., Емельянова И.А., Вологдина Е.В., Просенко А.Е. ... 14

АНТИРАДИКАЛЬНАЯ АКТИВНОСТЬ ФЛАВОНОИДОВ В РЕАКЦИЯХ С ГЕТЕРОРАДИКАЛАМИ

Белая Н.И., Белый А.В.. 18

СПЕКТРОФОТОМЕТРИЧЕСКИЕ МЕТОДЫ ОЦЕНКИ ПОДГРУПП ФЕНОЛЬНЫХ СОЕДИНЕНИЙ В СЛОЖНОЙ МАТРИЦЕ. ВОЗМОЖНОСТИ И ОГРАНИЧЕНИЯ

Белобородов В.Л., Стручков П.А., Савватеев А.М., Воскобойникова И.В., Колхир В.К... 22

СРАВНИТЕЛЬНЫЙ АНАЛИЗ МЕТОДОВ ВЫДЕЛЕНИЯ ВТОРИЧНЫХ ФЕНОЛЬНЫХ МЕТАБОЛИТОВ ИЗ СЛОЕВИЩ ЛИШАЙНИКОВ

Бровко О.С., Паламарчук И.А., Бойцова Т.А., Ивахнов А.Д., Боголицын К.Г., Вальчук Н.А., Слобода А.А. 26

ИЗВЛЕЧЕНИЕ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ РАСТЕНИЙ-РЕГЕНЕРАНТОВ POTENTILLA LONGIFOLIA WILDL. В СУБКРИТИЧЕСКИХ УСЛОВИЯХ

Вдовина Н.С., Тихомирова Л.И., Базарнова Н.Г., Сысоева А.В... 31

ТРИАДА 3,6-ДИ-ТРЕТ-БУТИЛПИРОКАТЕХИН – О-СЕМИХИНОН – О-ХИНОН – УНИВЕРСАЛЬНЫЙ АНТИОКСИДАНТ

Вольева В.Б., Комиссарова Н.Л., Малкова А.В., Горбунов Д.Б., Овсянникова М.Н... 37
<table>
<thead>
<tr>
<th>Статья</th>
<th>Авторы</th>
</tr>
</thead>
<tbody>
<tr>
<td>ИЗУЧЕНИЕ СОДЕРЖАНИЯ МОНОМЕРНЫХ АНТОЦИАНОВ В ВИНАХ РН-ДИФФЕRENЦИАЛЬНЫМ МЕТОДОМ</td>
<td>Гниломедова Н.В., Аникина Н.С., Червяк С.Н.</td>
</tr>
<tr>
<td>РАСЧЕТ ПРОЧНОСТИ О-Н-СВЯЗИ В АЛКИЛСЕЛЕНО- И АЛКИЛТЕЛЛУРОЗАМЕЩЕННЫХ ФЕНОЛАХ</td>
<td>Денисов Т.Г., Денисов Е.Т.</td>
</tr>
<tr>
<td>ТРЕХКОМПОНЕНТНЫЙ СИНТЕЗ ПИРАНО[2,3-F]ХРОМЕНОВ</td>
<td>Дищенко И.В., Доценко В.В.</td>
</tr>
<tr>
<td>СИНТЕЗ АНАЛОГОВ АЛКАЛОИДОВ, СОДЕРЖАЩИХ ИЗОКСАЗОЛЬНЫЕ И ИЗОТИАЗОЛЬНЫЕ ФРАГМЕНТЫ</td>
<td>Дикиусар Е.А., Пктвечич С.К., Клецков А.В., Кадуцкий А.П., Козлов Н.Г., Поткин В.И.</td>
</tr>
<tr>
<td>ФИЗИКО-ХИМИЧЕСКИЕ И СОРБЦИОННЫЕ СВОЙСТВА ГИДРОКСИСТИЛЬБЕНОВ</td>
<td>Дмитриенкова А.Г., Полунина И.А., Полунин К.Е., Ларин А.В.</td>
</tr>
<tr>
<td>ИНДУЦИРУЮЩАЯ АКТИВНОСТЬ ПОЛИМЕРНЫХ СИСТЕМ НА ОСНОВЕ ХИТОЗАНА И БЕНЗОЙНЫХ КИСЛОТ</td>
<td>Домнина Н.С., Трифонова Г.В., Попова Э.В., Коваленко Н.А.</td>
</tr>
<tr>
<td>ГИДРОФОБНО-ГИДРОФИЛЬНЫЕ СВОЙСТВА ГИБРИДОВ ПРОСТРАНСТВЕННО-ЗАТРУДНЕННЫХ ФЕНОЛОВ С ОЛИГОМЕРНЫМИ ПОЛИЭТИЛЕНГЛИКОЛАМИ</td>
<td>Домнина Н.С., Вольева В.Б., Комиссарова Н.Л., Малкова А.В., Горбунов Д.Б., Овсянникова М.Н.</td>
</tr>
<tr>
<td>ФЕНОЛЬНЫЕ КУМАРИНОВЫЕ БИФУНКЦИОНАЛЬНЫЕ РЕАГЕНТЫ НА ТОКСИЧНЫЕ АНИОНЫ И КАТИОНЫ ТЯЖЕЛЫХ МЕТАЛЛОВ</td>
<td>Дубоносов А.Д., Николаева О.Г., Тихомирова К.С., Стариков А.А., Теропольский В.А.</td>
</tr>
<tr>
<td>ИЗУЧЕНИЕ СПОСОБНОСТИ АКТИНОБАКТЕРИЙ УТИЛИЗИРОВАТЬ ЮГЛОН</td>
<td>Емельянова Е.В., Соляникова И.П.</td>
</tr>
<tr>
<td>АНТИОКСИДАНТНАЯ И БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ АЛКИЛТИОМЕТИЛЬНЫХ ПРОИЗВОДНЫХ ГИДРОХИНОНА</td>
<td>Емельянова И.А., Багавиева Т.К., Просенко А.Е.</td>
</tr>
<tr>
<td>АНТИСТРЕССОВЫЕ СВОЙСТВА N-АЦЕТИЛЦИСТЕИНАТ 2-ЭТИЛ-6-МЕТИЛ-3-ГИДРОКСИПИРИДИНА</td>
<td></td>
</tr>
</tbody>
</table>
Жигачева И.В., Генерозова И.П., Бинюков В.И., Миль Е.М. ... 76
СОВМЕСТНАЯ СОРБЦИЯ ФЕНОЛЬНЫХ КИСЛОТ МОДИФИЦИРОВАННЫМ КАОЛИНИТОМ В СТАТИЧЕСКИХ И ДИНАМИЧЕСКИХ УСЛОВИЯХ
Заварзина А.Г.", Ермолин М.С.", Демин В.В., Федотов П.С. ... 81
РАДИКАЛ-УЛАВЛИВАЮЩАЯ АКТИВНОСТЬ ФЛАВОНОИДОВ: КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ И ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ
Ильясов И.Р., Кадочников В.В.", Белобородов В.Л., Порозов Ю.Б. .. 83
ОПРЕДЕЛЕНИЕ АНТИОКСИДАНТНЫХ СВОЙСТВ ПРЕПАРАТОВ В МОДЕЛЬНОЙ СИСТЕМЕ НА ОСНОВЕ КАРОТИНОИДОВ ПАПРИКИ
Киселёва В.И., Мишарина Т.А.", Калинченко М.А.. 86
ПЕРСПЕКТИВНЫЕ БИОЛОГИЧЕСКИ АКТИВНЫЕ КОНЪЮГАТЫ МЕТАЛЛОЦЕНОВ С АЗАГЕТЕРОЦИКЛИЧЕСКИМИ ПРОИЗВОДНЫМИ ПРИРОДНЫХ АЛЬДЕГИДОФЕНОЛОВ
Колесник И.А., Клецков А.В., Петкевич С.К., Дикусар Е.А., Поткин В.И. ... 90
ПРИРОДНЫЕ АЦИЛФЛОРОГЛЮЦИНОЛЫ
Литвиненко В.И., Попова Н.В., Георгиевский В.П., Кузанян А.С. .. 94
РОЛЬ TYR-ФРАГМЕНТА В МЕХАНИЗМЕ ФЕРМЕНТАТИВНОГО КАТАЛИЗА Ni(Fe)-ARD ДИОКСИГЕНАЗАМИ
Матиенко Л.И., Бинюков В.И., Мосолова Л.А., Миль Е.М. 101
СВОБОДНО-РАДИКАЛЬНЫЕ РЕАКЦИИ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ НА ФОНЕ БОЛЬШИХ КОНЦЕНТРАЦИЙ ЭНДОГЕННЫХ И ДРУГИХ АНТИОКСИДАНТОВ
Мехедова О.В., Фенин А.А. ... 106
РЕАКЦИОННАЯ СПОСОБНОСТЬ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ В ВОДНО-ОРГАНИЧЕСКИХ РАСТВОРАХ
Мовчан Е.Н., Кобозева В.А., Стребков А.А., Фенин А.А. 108
ОКСИМИНОАЛКИЛИРОВАНИЕ ФЕНОЛОВ И ДРУГИХ НО-КИСЛОТ. НОВЫЙ ПОДХОД К СИНТЕЗУ \(\alpha\)-ОКСИОКСИМОВ И

579
ИХ ПРИМЕНЕНИЕ В НАПРАВЛЕННОМ СИНТЕЗЕ
Наумович Я.А., Сухоруков А.Ю., ИоFFE С.Л.................. 110
РЕАКЦИОННАЯ СПОСОБНОСТЬ ОКСИКОРИЧНЫХ КИСЛОТ
И РОДСТВЕННЫХ СОЕДИНЕНИЙ В РЕАКЦИЯХ С УГЛЕРОД-
ЦЕНТРИРОВАННЫМИ РАДИКАЛАМИ
Николаева В.В., Федорова Л.В., Тарасова Н.В., Фенин
А.А., Магомедбеков Э.П.. 112
БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ НЕКОТОРЫХ
ПРОСТРАНСТВЕННО-ЗАТРУДНЕННЫХ ФЕНОЛОВ С
КИСЛОРОД-, АЗОТ- И ФОСФОРСОДЕРЖАЩИМИ
ФУНКЦИОНАЛЬНЫМИ ГРУППАМИ
Писцова А.Л., Шамсутдинова Л.П., Исмагилов Р.К.,
Газизов М.Б., Шулаева М.П.. 115
МОНОФУНКЦИОНАЛЬНЫЕ ПИРОКАТЕХИН-ТИОЭФИРЫ:
РЕДОКС-ПРЕВРАЩЕНИЯ И АНТИОКСИДАНТНЫЕ
СВОЙСТВА
Питикова О.В., Смолянинов И.В., Берберова Н.Т........... 120
ВЛИЯНИЕ СТРУКТУРЫ ФЕНОЛЬНЫХ АНТИОКСИДАНТОВ
НА АГРЕГАЦИЮ ФОСФОЛИПИДОВ В НЕПОЛЯРНЫХ
РАСТВОРИТЕЛЯХ
Повх А.Ю., Маракулина К.М., Плащина И.Г., Шишкина
Л.Н.. 124
FE⁺-ХЕЛАТИРУЮЩАЯ АКТИВНОСТЬ
ФОСФОРИЛЗАМЕЩЕННЫХ ПРОСТРАНСТВЕННО-
ЗАТРУДНЁННЫХ ФЕНОЛОВ
Половинкина М.А., Осипова В.П., Берберова Н.Т.,
Милаева Е.Р.. 129
СИНТЕЗ НОВЫХ ГЕТЕРОЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ НА
ОСНОВЕ ТЕРПЕНОФЕНОЛОВ
Попова С.А., Чукичева И.Ю.. 133
К ВОПРОСУ О МЕХАНИЗМЕ ФОРМИРОВАНИЯ
НАНОЧАСТИЦ МЕТАЛЛОВ В ОБРАТНЫХ МИЦЕЛЛАХ В
ПРИСУТСТВИИ КВЕРЦЕТИНА И КИСЛОРОДА
Ревина А.А., Суворова О.В.. 135
ИНГИБИРОВАНИЕ ОКИСЛЕНИЯ ЛИПОСОМ
ФОСФАТИДИЛФОЛИНА ФЕНОЛЬНЫМИ СОЕДИНЕНИЯМИ
ГВОЗДИЧНОГО МАСЛА
Сажина Н.Н., Пальмина Н.П.. 141
ВЛИЯНИЕ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ НА СВОБОДНО-РАДИКАЛЬНЫЕ РЕАКЦИИ АДЕНОЗИНА
Стрединина Г.А., Николаева В.В., Разуваева О.И., Фенин А.А. ... 146

СПЕКТРОФОТОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ СВЯЗЫВАНИЯ ДВУХАТОМНЫХ ФЕНОЛОВ В-ЦИКЛОДЕКСТРИНОМ
Сутигвин А.А., Фабер А.А... 148

ФЕНОЛЬНЫЕ СОЕДИНЕНИЯ ТРУТОВЫХ ГРИБОВ
Сысоева М.А., Хабибрахманова В.Р., Бурмасова М.А., Носов А.И., Галеева Г.И. ... 152

ЭКСТРАКЦИЯ ПОЛИФЕНОЛЬНЫХ СОЕДИНЕНИЙ РАСТЕНИЙ-РЕГЕНЕРАНТОВ POTENTILLA CHRISANTHATA TREV.
Теберекова Т.И., Тихомирова Л.И., Базарнова Н.Г., Сысоева А.В., Кушнир Е.Ю... 156

ФУНКЦИОНАЛЬНЫЕ ПОЛИМЕРНЫЕ СИСТЕМЫ С ТЕТРАФЕНИЛПОРФИРИНАМИ
Тертышная Ю.В., Лобанов А.В., Попов А.А......................... 161

АНТИОКСИДАНТНАЯ АКТИВНОСТЬ ПОЛИФЕНОЛОВ ПРИ ОКИСЛЕНИИ МЕТИЛЛИНОЛЕАТА В МИЦЕЛЛАХ
Тихонов И.В., Бородин Л.И., Осипов Е.М., Рябкова В.А... 165

ДЕЙСТВИЕ ФЕНОЗАНА К В МАЛЫХ ДОЗАХ НА БИОХИМИЧЕСКИЕ СВОЙСТВА ФЕРМЕНТОВ ГЛИКОЛИЗА И МИКРОВЯЗКОСТЬ МЕМБРАН КЛЕТОК ГОЛОВНОГО МОЗГА ЗДОРОВЫХ МЫШЕЙ
Трещенкова Ю.А., Герасимов Н.Ю., Голощапов А.Н 169

СИНЕРГИЧЕСКИЙ ЭФФЕКТ БИНАРНЫХ КОМПОЗИЦИЙ КВЕРЦЕТИН–МОНОСАХАРИД В РЕАКЦИЯХ СО СВОБОДНЫМИ РАДИКАЛАМИ
Удалов Я.С., Белая Н.И., Белый А.В., Тихонова Г.А., Андриенко Г.А... 174

ИССЛЕДОВАНИЕ АНТИРАДИКАЛЬНОЙ АКТИВНОСТИ ЭКСТРАКТОВ ЛАБАЗНИКА
Холоимова Н.А., Антропова И.Г... 178

ФЕНОЛЬНЫЕ СОЕДИНЕНИЯ КСИЛОТРОФНЫХ БАЗИДИОМИЦЕТОВ В УСЛОВИЯХ КСЕНОБИОТИЧЕСКОГО ВОЗДЕЙСТВИЯ
Цивилева О.М., Панкратов А.Н., Юрасов Н.А., Любунь Е.В. 180
НОВЫЕ ПРИЗВОДНЫЕ 4,6-ДИ-ТРЕТ.-БУТИПРЕЗОРЦИНА, СИНТЕЗ, ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА
Чигорина Т.М., Егоров Д.И., Чигорина Е.А. 185
НОВЫЕ ПЕРСПЕКТИВЫ ПОЛУСИНТЕТИЧЕСКИХ ТЕРПЕНОФЕНОЛОВ
Чукичева И.Ю., Буравлёв Е.В., Дворникова И.А.,
Федорова И.В., Щукина О.В., Кучин А.В. 190
СИНТЕЗ И СВОЙСТВА АНАЛОГОВ ПРИРОДНЫХ ФЕНОЛОВ
Чукичева И.Ю., Федорова И.В., Королева А.А.,
Низовцев Н.А., Чупрова Е.А., Шевченко О.Г., Кучин А.В. 192
ВЛИЯНИЕ ПОЛЯРНОСТИ СРЕДЫ НА СПЕКТРАЛЬНЫЕ ХАРАКТЕРИСТИКИ ИЗОБОРНИЛФЕНОЛОВ
Швыдкий В.О., Повх А.Ю., Федорова И.В., Чукичева И.Ю., Кучин А.В., Шишкина Л.Н. 196
КОМПЛЕКСООБРАЗОВАНИЕ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ С ПРИРОДНЫМИ ФОСФОЛИПИДАМИ
Шишкина Л.Н., Мазалецкая Л.И., Луканина Ю.К.,
Шелудченко Н.И. ... 201
НОВЫЕ МОЛЕКУЛЯРНЫЕ КОМПЛЕКСЫ САЛИЦИЛОВОЙ КИСЛОТЫ
Яковишин Л.А., Гришковец В.И., Корж Е.Н. 206
DETERMINATION OF PHENOLIC COMPOUNDS OF VERBASCUM GLOMERATUM BOISS. EXTRACT
Aydin C., Rakhimzhanova A., Kilincarslan O., Mammadov R... 210
DETERMINATION OF ANTI-OXIDANT CAPACITY AND TOTAL FLAVONOID AMOUNT OF ACETONIC AND ETHANOLIC EXTRACT OF ANDRICUS QUERCUSTOZAE
Mammadov R., Katilmış Y., Azmaz M., Kilinçarslan Ö. 211
СРАВНИТЕЛЬНАЯ ОЦЕНКА КОЛИЧЕСТВЕННОГО СОДЕРЖАНИЯ НЕКОТОРЫХ БАВ В ДВУХ ВИДАХ СЫРЬЯ КИПРЕЯ УЗКОЛИСТНОГО
Асадуллина Д.Д., Кудашкина Н.В., Хафизов С.Р.,
Ахмадуллина Г.Х. ... 213
СОДЕРЖАНИЕ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ В ПЛОДАХ НЕКОТОРЫХ СУБТРОПИЧЕСКИХ КУЛЬТУР (ХУРМА
ВОСТОЧНАЯ, ФЕЙХОА)
Базба Э.Г., Белоус О.Г., Омаров М.Д., Омарова З.М. 216
О ФЕНОЛЬНЫХ СОЕДИНЕНИЯХ МИРТА ОБЫКНОВЕННОГО
MYRTUS COMMUNIS L.
Бакова Е.Ю., Палий А.Е., Бакова Н.Н...................... 222
ФЕНОЛЬНЫЕ СОЕДИНЕНИЯ ЯГОД ТРЕХ ВИДОВ
РАСТЕНИЙ РОДА VACCINIUM L.
Белова Е.А., Тритэк В.С., Шульга З.Т., Гуляев А.Е.,
Коваленко Л.В., Дренин А.А., Ботиров Э.Х.................. 227
ФЛАВОНОИДЫ РАСТЕНИЙ РОДА SCUTELLARIA:
СТРОЕНИЕ, СВОЙСТВА И БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ
Ботиров Э.Х., Каримов А.М; 232
ИСЛЕДОВАНИЕ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ МАРЬЯННИКА
СЕРЕБРИСТОПРИЦВЕТНИКОВОГО И ИХ
АНТИОКСИДАНТНАЯ АКТИВНОСТЬ
Бубенчиков Р.А., Апойцева А.С......................... 237
ИЗЧУНЕНИЕ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ ТРАВЫ
КОЛОКОЛЬЧИКА КРУГЛОЛИСТНОГО (CAMPA NULA
ROTUNDIFOLIA) МЕТОДОМ ВЭЖХ–МСД
Бубенчикова В.Н., Никитин Е.А., Кулик О.Н 241
ИСЛЕДОВАНИЕ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ ТРАВЫ
ГОРЛЮХИ ЯСТРЕБИНКОВОЙ
Бубенчикова В.Н., Степнова И.В......................... 246
СОДЕРЖАНИЕ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ В НЕКОТОРЫХ
ОБРАЗЦАХ ВИДОВ СЕМ.ЯСНОТКОВЫЕ ИЗ ПРИРОДНОЙ
ФЛОРЫ ДАГЕСТАНА
Вагабова Ф.А., Раджабов Г.К......................... 250
АНТИОКСИДАНТНАЯ АКТИВНОСТЬ РАСТЕНИЙ ИЗ
РАЗНЫХ ГЕОГРАФИЧЕСКИХ ЗОН
Варданян Л.Р., Варданян Р.Л., Денисова Т.Г 254
СРАВНИТЕЛЬНЫЙ КАЧЕСТВЕННЫЙ АНАЛИЗ ЛИСТЬЕВ
АЛОЭ ДРЕВОВИДНОГО (ALOE ARBORESCENS L.) И
ЛИСТЬЕВ АЛОЭ ВЕРА (ALOE VERA L.)
Глущенко С.Н., Шмыгарева А.А., Куркин В.А............. 255
АНТОЦИАНЫ НЕТРАДИЦИОННЫХ РАСТИТЕЛЬНЫХ
ИСТОЧНИКОВ
Дейнека В.И., Сидоров А.Н., Кульченко Я.Ю., Дейнека
Л.А., Тохтарь В.К., Дроголова Н.А...................... 259
ФЕНОЛЬНЫЕ СОЕДИНЕНИЯ АРКТИЧЕСКИХ БУРЫХ ВОДОРОСЛЕЙ .. 264
Дружинина А.С., Боголицын К.Г., Овчинников Д.В.,
Каплицин П.А., Паршина А.Э., Шульгина Е.В....................... 264
ФЕНОЛЬНЫЕ СОЕДИНЕНИЯ КОРНЕЙ PODOPHYLLUM PELTATUM L., ИНТРОДУЦИРОВАННОГО В РЕСПУБЛИКЕ БАШКОРТОСТАН
Жигунов О.Ю., Лебедев Я.П., Баширова Р.М..................... 269
ФЛАВОНОИДЫ НЕКОТОРЫХ ВИДОВ РАСТЕНИЙ РОДОВ
LYCHNIS И SILENE
Зибарева Л.Н., Филоненко Е.С., Храмова Е.П...................... 274
БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ ФЕНОЛЬНЫХ
СОЕДИНЕНИЙ САФЛОРА КРАСИЛЬНОГО
Иванова Р.А.. 278
ИССЛЕДОВАНИЕ ФЛАВОНОИДОВ КОРНЕЙ SCUTELLARIA INTERMEDIA POPOV
Каримов А.М., Попков А.С., Остроушко Ю.В., Туртаева
Р.И., Ботиров Э.Х... 283
ЭКЗОМЕТАБОЛИТЫ ЛИСТЬЕВ ПРЕДСТАВИТЕЛЕЙ РОДА
BEGONIA И ИХ АНТИМИКРОБНЫЕ СВОЙСТВА
Карпова Е.А., Красников А.А., Фершалова Т.Д................... 288
ФЕНОЛЬНЫЕ ВЕЩЕСТВА ТРАВЫ КОСМЕИ
ДВАЖДЫПЕРИСТОЙ (COSMOS BIPINNATUS)
Копылько Я.Ф... 293
ИССЛЕДОВАНИЕ СОСТАВА ФЕНОЛЬНЫХ ВЕЩЕСТВ
ТРАВЫ KNAUTIA ARVENSIS МЕТОДОМ ВЭЖХ
Копылько Я.Ф., Даргаева Т.Д.. 297
ФЕНОЛЬНЫЕ СОЕДИНЕНИЯ ЭКСТРАКТА АРОНИИ
ЧЕРНОПЛОДНОЙ И ЕГО АНТИОКСИДАНТНАЯ
АКТИВНОСТЬ
Косман В.М., Пожарицкая О.Н., Шиков А.Н., Дадали
Ю.В., Макаров В.Г... 301
СОСТАВ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ SIBIRAEA ALTAIENSIS (ROSACEAE)
Костикова В.А., Храмова Е.П., Сыева С.Я.......................... 306
ФЕНОЛЬНЫЕ СОЕДИНЕНИЯ МОЖЖЕВЕЛЬНИКА
ОБЫКНОВЕННОГО JUNIPER COMMUNIS L.: МЕТОДЫ
ВЫДЕЛЕНИЯ, СОСТАВ
Красикова А.А., Боголицын К.Г., Гусакова М.А., Ивахнов А.Д., Хвиюзов С.С. 311
ИДЕНТИФИКАЦИЯ И БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ ЛИСТЬЕВ ТОЛОКНЯНКИ ОБЫКНОВЕННОЙ [ARCTOSTAPHYLOS UVA-URSI (L.) SPRENG.]
Куркин В.А., Рязанова Т.К., Дубищев А.В., Зайцева Е.Н., Жестков А.В., Лямин А.В. 315
ИЗУЧЕНИЕ ХИМИЧЕСКОГО СОСТАВА МОНАРДЫ ДУДЧАТОЙ (MONARDA FISTULOSA L.), КУЛЬТИВИРИУЕМОЙ НА ТЕРРИТОРИИ САМАРСКОЙ ОБЛАСТИ
Лапина А.С., Куркин В.А., Авдеева Е.В., Рязанова Т.К., Варина Н.Р., Рыжов В.М. 320
ФЕНОЛЬНЫЕ СОЕДИНЕНИЯ ВЕРОНИКИ ЛЕКАРСТВЕННОЙ И ИХ БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ
Мащенко Н.Е., Боровская А.Д., Гурев А.С. 325
СОСТАВ, СОДЕРЖАНИЕ И БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ, ОПРЕДЕЛЯЮЩИХ ПОТЕНЦИАЛ ИСПОЛЬЗОВАНИЯ СЫРЬЯ ИНВАЗИОННЫХ РАСТЕНИЙ BIDENS FRONDOSUS L.
Молчан О.В., Скуратович Т.А., Джус М.А., Голенченко С.Г., Шабуна П.С., Фатыхова С.А. 330
ИССЛЕДОВАНИЯ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ ТРАВЫ БЕССМЕРТНИКА ПРИЦВЕТНИКОВОГО
Москаленко А.Н., Попова Н.В., Литвиненко В.И. 335
ФЕНОЛЬНЫЕ СОЕДИНЕНИЯ РАСТИТЕЛЬНЫХ ЧАЕВ. ИХ РОЛЬ В ОПРЕДЕЛЕНИИ АНТИОКСИДАНТНОЙ АКТИВНОСТИ
Олейниц Е.Ю., Дейнека В.И. 339
БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ РАСТЕНИЙ РОДА AGASTACHE J.CLAYTON EX GRONOV.
Поливанова О.Б., Чередниченко М.Ю. 343
СОСТАВ И СОДЕРЖАНИЕ ПРОАНТОЦИАНЕДИНОВ В КОРНЯХ И КОРНЕВИЩАХ ЛАПЧАТКИ БЕЛОЙ (POTENTILLA ALBA)
Поляков Н.А., Хазиева Ф.М., Мешков А.И., Коротких И.Н., Осипов В.И. 347
ИССЛЕДОВАНИЯ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ САФЛОРА КРАСИЛЬНОГО
Попова Н.В., Баращовец О.В., Литвиненко В.И. 354
ФЕНОЛЬНЫЕ СОЕДИНЕНИЯ ЛИШАЙНИКОВ РОДА CLADONIA И ИХ БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ
Прокопьев И.А., Порядина Л.Н., Филиппов Э.В., Филиппова Г.В. ... 359
ФЕНОЛЬНЫЕ СОЕДИНЕНИЯ И ГИДРОКСИКОРИЧНЫЕ КИСЛОТЫ ПРЕДСТАВИТЕЛЕЙ РОДА LAVANDULA L.
Работягов В.Д., Палий А.Е., Старцева О.В., Палий И.Н. 363
СРАВНИТЕЛЬНЫЙ КАЧЕСТВЕННЫЙ АНАЛИЗ КОРНЕВИЩ С КОРНЯМИ МАРЕНЫ КРАСИЛЬНОЙ (RUBIA TINCTORUM L.) И МАРЕНЫ СЕРДЦЕЛИСТНОЙ (RUBIA CORDIFOLIA L.)
Рыбалко М.В., Куркин В.А., Шмыгарева А.А. 367
ФЕНОЛЬНЫЕ СОЕДИНЕНИЯ БАРХАТЦЕВ ОТКЛОНЕННЫХ
Савельева А.Е., Белоусова Д.А., Стреликова Д.И., Андреева Ю.А., Рыжов В.М., Куркин В.А., Рузаева И.В. ... 372
ФЕНОЛЬНЫЕ СОЕДИНЕНИЯ И АНТИОКСИДАНТНАЯ АКТИВНОСТЬ ПЛОДОВ ДВУХ ВИДОВ Lycium
Секинаева М.А., Ляшенко С.С., Исламова Ф.И., Алиев А.М., Денисенко О.Н., Юнусова С.Г. 376
РАСТЕНИЯ РАЗЛИЧНЫХ ВИДОВ БУЗИНЫ КАК ЦЕННЫЙ ИСТОЧНИК АНТИОКСИДАНТОВ ФЕНОЛЬНОЙ ПРИРОДЫ
Скрыпник Л.Н., Курашова А.А., Федураев П.В. 379
СРАВНИТЕЛЬНЫЙ АНАЛИЗ СОДЕРЖАНИЯ ФЛАВОНОИДОВ В ПЛОДАХ НЕКОТОРЫХ ВИДОВ БОЯРЫШНИКА
Хасанова С.Р., Кудашкина Н.В., Еникеева К.И., Андресова П.А., Свирская М.В. .. 383
СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА АНТИОКСИДАНТНОЙ АКТИВНОСТИ И КОЛИЧЕСТВЕННОГО СОДЕРЖАНИЯ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ НЕКОТОРЫХ БОБОВЫХ И ЗЛАКОВЫХ КУЛЬТУР ГРУЗИИ
Чиквишвили И.Д., Гогия Н.Н., Чиквишвили Д.И., Есаиашвили М. ... 386
ФЕНОЛЬНЫЕ СОЕДИНЕНИЯ ЛИПОФИЛЬНОЙ ФРАКЦИИ ЭКСТРАКТА FILIPENDULA ULMARIA
Шилова И.В. ... 392
ИССЛЕДОВАНИЕ ФЕНОЛЬНОГО СОСТАВА НЕКОТОРЫХ
ВИДОВ СИНЕГОЛОВНИКА ПРОИЗРАСТАЮЩИХ НА КАВКАЗЕ
Щербакова Е.А., Коновалов Д.А. .. 394
NEW INSIGHTS OF POLYPHENOLS ENRICHED DIETARY SUPPLEMENT ON HUMAN OXIDATIVE STRESS OR REDOX SIGNALING
Nemzer B.V.; Fink B., König D. .. 400
ФЕНОЛЬНЫЕ СОЕДИНЕНИЯ КАК МАРКЕРЫ БОТАНИЧЕСКОГО ПРОЙСХОЖДЕНИЯ МЕДА
Абашидзе Н., Ванидзе М.Р., Джапаридзе И.В., Каландия А.Г. 402
РЕГЕНЕРАТОРНАЯ АКТИВНОСТЬ ФЛАВОНОИДОВ SAUSSUREA CONTROVERSA ПРИ ЭКСПЕРИМЕНТАЛЬНОМ ОСТЕОМИЕЛИТЕ
Авдеева Е.Ю., Решетов Я.Е., Белоусов М.В. 405
СУШКА ХУРМЫ (DIOSPYROS KAKI L.) И ПОСЛЕДУЮЩИЕ ИЗМЕНЕНИЯ ДУБИЛЬНЫХ ВЕЩЕСТВ
Ардзенадзе М.Д., Чиковани Д.М., Абуладзе Д.А. 408
ИЗУЧЕНИЕ ПРОТИВОВИРУСНОЙ АКТИВНОСТИ ДИГИДРОКВЕРЦЕТИНА - ПРИРОДНОГО БИОФЛАВОНОИДА ИЗ ДРЕВЕСИНЫ ЛИСТВЕННИЦЫ
Бабкин В.А., Остроухова Л.А., Зарубаев В.В. 414
ВЛИЯНИЕ РЕСВЕРАТРОЛА НА ФИЗИОЛОГИЧЕСКИЕ ПАРАМЕТРЫ И ЧУВСТВИТЕЛЬНОСТЬ К ЦИПРОФЛОКСАЦИНУ БАКТЕРИЙ ESCHERICHIA COLI
Безматерных К.В., Смирнова Г.В., Октябрьский О.Н. 419
ОЦЕНКА ВОЗДЕЙСТВИЯ ПРОИЗВОДСТВА ДИГИДРОКВЕРЦЕТИНА НА ОКРУЖАЮЩУЮ СРЕДУ
Вольф М.Д., Остроухова Л.А. .. 424
ИССЛЕДОВАНИЕ ВЛИЯНИЯ РАСТИТЕЛЬНЫХ ЭКСТРАКТОВ НА АНТИБАКТЕРИАЛИДНЫЕ СВОЙСТВА БИОПЛЕНОК
Гончарова Н.В., Сячинова Н.В., Дахалаева Г.Г. 426
АНАЛИЗ СОДЕРЖАНИЯ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ И АНТИОКСИДАНТНОЙ АКТИВНОСТИ ИГРИСТЫХ ВИН
Гришин Ю.В., Аристова Н.И., Зайцев Г.П. 430
ИЗМЕНЕНИЕ СОСТАВА ФЕНОЛЬНЫХ СОЕДИНЕНИЙ В ПРОЦЕССЕ БРОЖЕНИЯ ЯБЛОЧНОГО СОКА НА ДРЕВЕСНОЙ ЩЕПЕ
Гусакова Г.С., Чеснокова А.Н., Супрун Н.П., Коваль А.Н., Кузьмин А.В. ... 434
ПРИРОДНЫЕ ФЕНОЛЫ ВЫПОЛНЯЮТ РОЛЬ ГЕПАТОПРОТЕКТОРОВ В ЖИВОТНЫХ МОДЕЛЯХ ПЕЧЕНОЧНОЙ ПАТОЛОГИИ
Дерябина Ю.И., Исакова Е.П., Гесслер Н.Н., Мариничев А.А., Кляйн О.И. ... 439
АНТИМИКРОБНОЕ ДЕЙСТВИЕ ЭКСТРАКТОВ ANDROMEDA POLYFOLIA И ALCHEMILLA SUBCRENATA ОБУСЛОВЛЕННОЕ ФЕНОЛЬНОЙ КОМПОНЕНТОЙ
Живетьев М.А., Быбин В.А., Грассова И.А., Маркова Ю.А. .. 443
ФЛАВОНОИДЫ ПРОПОЛИСА МЕДОНОСНОЙ ПЧЕЛЫ НА ТЕРРИТОРИИ БАШКОРТОСТАНА – БАШКИРСКОГО ПРОПОЛИСА
Зайнуллин Р.А., Галаутдинов И.В., Садретдинова З.Р., Гареев В.Ф., Мамаева Г.Г., Одиноков В.Н. 448
ИЗУЧЕНИЕ ПРОТИВОМИКРОБНОЙ АКТИВНОСТИ ФЛАВОНОИДОВ ЛИСТЬЕВ МЯТЫ ПЕРЕЧНОЙ В ОТНОШЕНИИ ШТАММОВ МУКОВИСЦИДОЗА
Казакова М.А., Минько О.В., Миронова С.С., Рыжов В.М., Лямин А.В., Кондратенко О.В. ... 449
ЛЕЧЕБНОЕ ДЕЙСТВИЕ СЕМЯН ВИНОГРАДА КАК ИСТОЧНИКА ФЕНОЛЬНЫХ СОЕДИНЕНИЙ
Казахмедов Р.Э., Казахмедов Э.Р., Магомедова М.А. 453
ВЛИЯНИЕ ФОСФОРСОДЕРЖАЩЕГО ФЕНОЛЬНОГО АНТИОКСИДАНТА НА ИНТЕНСИВНОСТЬ ПЕРОКСИДНОГО ОКИСЛЕНИЯ ЛИПИДОВ СЕРМЫ БЕЛОРЫБИЦЫ ПРИ ГИПОТЕРМИЧЕСКОМ ХРАНЕНИИ
Коляда М.Н., Антонова Н.А., Берберова Н.Т. 457
АКТУАЛЬНЫЕ АСПЕКТЫ СТАНДАРТИЗАЦИИ ЛЕКАРСТВЕННОГО РАСТИТЕЛЬНОГО СЫРЬЯ И ЛЕКАРСТВЕННЫХ РАСТИТЕЛЬНЫХ ПРЕПАРАТОВ, СОДЕРЖАЩИХ ФЕНОЛЬНЫЕ СОЕДИНЕНИЯ
Куркин В.А. ... 461
ВЛИЯНИЕ ПОЛИФЕНОЛЬНОГО КОМПЛЕКСА ЭКСТРАКТА ИЗ МОРСКОЙ БУРОЙ ВОДОРОСЛИ SACCHARINA JAPONICA НА НАРУШЕНИЯ ФИЗИОЛОГО-

588
БИОХИМИЧЕСКИХ ХАРАКТЕРИСТИК ЭРИТРОЦИТОВ ПРИ ДИСЛИПИДЕМИИ
Кушнерова Н.Ф., Момот Т.В. ... 466
МИКРОБИОЛОГИЧЕСКАЯ АКТИВНОСТЬ ЭТИЛАЦЕТАТНЫХ ФРАКЦИЙ ДРЕВЕСИНЫ ЛИСТВЕННИЦЫ СИБИРСКОЙ
Левчук А.А., Беловежец Л.А., Онучина Н.А. 470
ДЕЙСТВИЕ ФЕНОЛЬНОГО ПРЕПАРАТА АНФЕН НА РАЗВИТИЕ КАРЦИНОСАРКОМЫ ЛЬЮИС
Миль Е.М., Ерохин В.Н., Бинюков В.И., Семёнов В.А., Албантов А.А. ... 473
ВЛИЯНИЕ АЛЬФА-ТОКОФЕРОЛА НА АКТИВНОСТЬ АЦЕТИЛХОЛИНЭСТЕРАЗЫ
Молочкина Е.М. ... 479
РАЗРАБОТКА СОСТАВА, ТЕХНОЛОГИИ И ОЦЕНКА КАЧЕСТВА ТАБЛЕТОК НА ОСНОВЕ ЛИГНАНСОДЕРЖАЩЕГО СЫРЬЯ - ЛИМОННИКА КИТАЙСКОГО СЕМЯН
Морозов Ю.А., Зилфикаров И.Н., Леонтьев А.В. 484
ПОЛИФЕНОЛЫ РАСТЕНИЯ LINOSYRIS VILLOSA И ИХ БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ
Назарова В.Д., Бектемисова А.У., Аханькова Е.В. 487
ФЕНОЛЬНЫЕ СОЕДИНЕНИЯ ЛИСТЬЕВ ГИНОСТЕММЫ ПЯТИЛИСТНОЙ
Низамова А.А., Галиахметова Э.Х., Кудашкина Н.В. 491
СОДЕРЖАНИЕ ЛИГНАНОВ - АНТИОКСИДАНТОВ В ПИЩЕВЫХ ПРОДУКТАХ
Нифантьев Н.Э., Яшин А.Я., Яшунский Д.В., Веденин А.Н., Немзер Б.В., Яшин Я.И. ... 494
ИССЛЕДОВАНИЯ ПО РАЗРАБОТКЕ МЕТОДИКИ СТАНДАРТИЗАЦИИ ТРАВЫ РАСТОРОПШИ ПЯТИНСТОЙ SLYBUM MARIANUM (L.) GAERTN.
Росихин Д.В., Куркин В.А., Правдивцева О.Е., Рязанова Т.К., Рыжов В.М., Авдеева Е.В., Шарипов И.М. 498
ПЕРСПЕКТИВЫ РАЗРАБОТКИ ОТЕЧЕСТВЕННЫХ ЛЕКАРСТВЕННЫХ ПРЕПАРАТОВ НА ОСНОВЕ КУРКУМИНОИДНОГО КОМПЛЕКСА КОРНЕВИЩ КУРКУМЫ ДЛИННОЙ
Рязанова Т.К., Куркин В.А., Авдеева Е.В., Гиварш Н.,
Сазонова О.В. ... 502
ФЕНОЛЬНЫЕ СОЕДИНЕНИЯ В ЭКСТРАКАХ ЧАЯ
И РАСТИТЕЛЬНЫХ ДОБАВОК. АНТАГОНИЗМ В ИХ СМЕСЯХ
Сажина Н.Н. ... 507
ФОРМИРОВАНИЕ БИОФИЛЬМОВ КИШЕЧНЫМИ
БАКТЕРИЯМИ В ПРИСУТСТВИЕ
ПОЛИФЕНОЛСОДЕРЖАЩИХ ЭКСТРАКТОВ
ЛЕКАРСТВЕННЫХ РАСТЕНИЙ
Самойлова З.Ю., Смирнова Г.В., Октябрьский О.Н. 512
ПОЛИФЕНОЛЫ ИЗ МОРСКОЙ БУРОЙ ВОДОРОСЛИ
SARGASSUM PALLIDUM КАК ГЕПАТОПРОТЕКТОРЫ ПРИ
ТОКСИЧЕСКОМ ПОРАЖЕНИИ ПЕЧЕНИ
Спрыгин В.Г. ... 515
ИДЕНТИФИКАЦИЯ ИЗОМЕРНЫХ СОЕДИНЕНИЙ В
СОСТАВЕ КОМПЛЕКСНОГО ФИТОПРЕПАРАТА
АНГИОНОРМ МЕТОДОМ ВЭЖХ-МС-МС
Стручков П.А., Мельников Е.С., Белобородов В.Л.,
Воскобойникова И.В., Колхир В.К. ... 520
ПЕРСПЕКТИВЫ ПРАКТИЧЕСКОГО ИСПОЛЬЗОВАНИЯ
КОМПЛЕКСНЫХ СОЕДИНЕНИЙ ДИГИДРОКВЕРЦЕТИНА С
БИОГЕННЫМИ ЭЛЕМЕНТАМИ
Трофимова Н.Н., Столовская Е.В., Бабкин В.А. 523
СОВРЕМЕННЫЕ ТЕНДЕНЦИИ СОЗДАНИЯ
ЛЕКАРСТВЕННЫХ СРЕДСТВ НА ОСНОВЕ ФЛАВОНОИДОВ
Тюкавкина Н.А., Селиванова И.А., Терехов Р.П. 526
ПОЛУЧЕНИЕ НАНО- И МИКРОСТРУКТУРИРОВАННЫХ
ФОРМ ДИГИДРОКВЕРЦЕТИНА
Тюкавкина Н.А., Терехов Р.П., Селиванова И.А. 532
АНТИОКСИДАНТНЫЙ ЭФФЕКТ ПОЛИФЕНОЛОВ ИЗ БУРОЙ
ВОДОРОСЛИ SARGASSUM PALLIDUM ПРИ СТРЕСС-
ВОЗДЕЙСТВИИ
Фоменко С.Е. ... 537
КОМПЛЕКСНЫЙ ПОДХОД ПО ИССЛЕДОВАНИЮ
ФЕНОЛЬНЫХ СОЕДИНЕНИЙ ЛЕКАРСТВЕННОГО СЫРЬЯ
Хабибрахманова В.Р., Коваленко С.А., Пермякова А.А.,
Сидорова К.О., Капитонова А.Ю., Карамова Н.С.,
Сысоева М.А. ... 541
ИССЛЕДОВАНИЕ БИОЛОГИЧЕСКОЙ АКТИВНОСТИ
ИГРИСТОГО ВИНА IN VITRO, IN VIVO
Черноусова И.В., Зайцев Г.П., Огай Ю.А., Фомочкина И.И., Шрамко Ю.И. ... 545
ОПРЕДЕЛЕНИЕ СУММАРНОГО СОДЕРЖАНИЯ АНТИОКСИДАНТОВ В СЕМЕНАХ ФРУКТОВ, ЯГОД, ОВОЩЕЙ АМПЕРОМЕТРИЧЕСКИМ МЕТОДОМ
Черноусова Н.И., Яшин Я.И. ... 550
ВЛИЯНИЕ КУРСОВОГО ВВЕДЕНИЯ ДИГИДРОКВЕРЦЕТИНА НА ВЯЗКОСТЬ КРОВИ, МИКРОЦИРКУЛЯЦИЮ И МИКРОВАСКУЛЯРИЗАЦИЮ В КОРЕ ГОЛОВНОГО МОЗГА КРЫС SHR В ПЕРИОДЫ ВОЗРАСТАНИЯ И СТАБИЛЬНО ВЫСОКОГО АРТЕРИАЛЬНОГО ДАВЛЕНИЯ
Шаманаев А.Ю., Алиев О.И., Сидехменова А.В., Анищенко А.М., Плотников М.Б. .. 555
ИММУНОСТИМУЛИРУЮЩЕЕ ДЕЙСТВИЕ ПОЛИФЛАВАНОВ РАСТЕНИЙ РОДА POLYGONUM L.
Шевченко А.С., Статникова Н.И., Корулькин Д.Ю., Музычкина Р.А. .. 559
ВЛИЯНИЕ ФЛАВОНОИДОВ НА ФОРМИРОВАНИЕ ФИБРИЛЛ КОЛЛАГЕНА
Ягольник Е.А., Ким Ю.А., Тараковский Ю.С., Гайдин С.Г., Музафаров Е.Н. ... 562
ВЛИЯНИЕ ТЕХНОЛОГИИ ПРОИЗВОДСТВА КРАСНЫХ ВИНОМАТЕРИАЛОВ НА НАКОПЛЕНИЕ БИОЛОГИЧЕСКИ АКТИВНЫХ СОЕДИНЕНИЙ
Яланецкий А.Я., Шмигельская Н.А., Макаров А.С. 566
СИЛЬНЫЕ ПРИРОДНЫЕ ПОЛИФЕНОЛЬНЫЕ АНТИОКСИДАНТЫ, ИХ ПИЩЕВЫЕ ИСТОЧНИКИ И ВЛИЯНИЕ ИХ НА ЗДОРОВЬЕ ЧЕЛОВЕКА
Яшин Я.И., Веденин А.Н., Яшин А.Я. ... 571
<table>
<thead>
<tr>
<th>АЛФАВИТНЫЙ УКАЗАТЕЛЬ АВТОРОВ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index of authors</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aydin C.</td>
<td>210</td>
</tr>
<tr>
<td>Azmaz M.</td>
<td>211</td>
</tr>
<tr>
<td>Fink B.</td>
<td>400</td>
</tr>
<tr>
<td>Katılımış Y.</td>
<td>211</td>
</tr>
<tr>
<td>Kilincarslan O.</td>
<td>210</td>
</tr>
<tr>
<td>Kilincarslan Ö.</td>
<td>211</td>
</tr>
<tr>
<td>König D.</td>
<td>400</td>
</tr>
<tr>
<td>Mammadov R.</td>
<td>210, 211</td>
</tr>
<tr>
<td>Mapelli S.</td>
<td>4</td>
</tr>
<tr>
<td>Nemzer B.V.</td>
<td>400</td>
</tr>
<tr>
<td>Rakhimzhanova A.</td>
<td>210</td>
</tr>
<tr>
<td>Segato S.</td>
<td>4</td>
</tr>
<tr>
<td>Абашидзе Н.</td>
<td>402</td>
</tr>
<tr>
<td>Абуладзе Д.</td>
<td>408</td>
</tr>
<tr>
<td>Авдеева Е.В.</td>
<td>320, 498, 502</td>
</tr>
<tr>
<td>Алиев А.М.</td>
<td>376</td>
</tr>
<tr>
<td>Аникина Н.С.</td>
<td>41</td>
</tr>
<tr>
<td>Андриенко Г.А.</td>
<td>174</td>
</tr>
<tr>
<td>Анисенков А.М.</td>
<td>555</td>
</tr>
<tr>
<td>Антропова И.Г.</td>
<td>178</td>
</tr>
<tr>
<td>Бакова Н.Н.</td>
<td>222</td>
</tr>
<tr>
<td>Барашовец О.В.</td>
<td>354</td>
</tr>
<tr>
<td>Баширова Р.М.</td>
<td>269</td>
</tr>
<tr>
<td>Безматерных К.В.</td>
<td>419</td>
</tr>
<tr>
<td>Бектемисова А.У.</td>
<td>487</td>
</tr>
<tr>
<td>Белая Н.И.</td>
<td>18, 174</td>
</tr>
<tr>
<td>Белобородов В.Л.</td>
<td>22, 83, 520</td>
</tr>
<tr>
<td>Белова Е.А.</td>
<td>227</td>
</tr>
<tr>
<td>Беловежец Л.А.</td>
<td>470</td>
</tr>
<tr>
<td>Белоус О.Г.</td>
<td>216</td>
</tr>
<tr>
<td>Белоусов М.В.</td>
<td>405</td>
</tr>
<tr>
<td>Белоусова Д.А.</td>
<td>372</td>
</tr>
<tr>
<td>Белый А.В.</td>
<td>18, 174</td>
</tr>
<tr>
<td>Берберова Н.Т.</td>
<td>120, 129, 457</td>
</tr>
<tr>
<td>Бинюков В.И.</td>
<td>76, 101, 473</td>
</tr>
<tr>
<td>Боголицын К.Г.</td>
<td>26, 264, 311</td>
</tr>
<tr>
<td>Бойцова Т.А.</td>
<td>26</td>
</tr>
<tr>
<td>Боровская А.Д.</td>
<td>325</td>
</tr>
<tr>
<td>Бородин Л.И.</td>
<td>165</td>
</tr>
<tr>
<td>Ботирев Э.Х.</td>
<td>227, 232, 283</td>
</tr>
<tr>
<td>Брень В.А.</td>
<td>62</td>
</tr>
<tr>
<td>Бровко О.С.</td>
<td>26</td>
</tr>
<tr>
<td>Бубенчиков Р.А.</td>
<td>237</td>
</tr>
<tr>
<td>Бубенчикова В.Н.</td>
<td>241, 246</td>
</tr>
<tr>
<td>Буравлёв Е.В.</td>
<td>190</td>
</tr>
<tr>
<td>Бурманова М.А.</td>
<td>152</td>
</tr>
<tr>
<td>Быбин В.А.</td>
<td>443</td>
</tr>
<tr>
<td>Вагабова Ф.А.</td>
<td>250</td>
</tr>
<tr>
<td>Вальчук Н.А.</td>
<td>26</td>
</tr>
<tr>
<td>Ванидзе М.Р.</td>
<td>402</td>
</tr>
<tr>
<td>Варданян Л.Р.</td>
<td>254</td>
</tr>
<tr>
<td>Варданян Р.Л.</td>
<td>254</td>
</tr>
<tr>
<td>Варина Н.Р.</td>
<td>320</td>
</tr>
<tr>
<td>Вдовина Н.С.</td>
<td>31</td>
</tr>
<tr>
<td>Веденин А.Н.</td>
<td>494, 571</td>
</tr>
<tr>
<td>Вольева В.Б.</td>
<td>37, 58</td>
</tr>
<tr>
<td>Вольф М.Д.</td>
<td>424</td>
</tr>
<tr>
<td>Фамилия</td>
<td>Имя</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----</td>
</tr>
<tr>
<td>Воскобойникова И.В.</td>
<td></td>
</tr>
<tr>
<td>Газизов М.Б.</td>
<td></td>
</tr>
<tr>
<td>Гайдин С.Г.</td>
<td></td>
</tr>
<tr>
<td>Галеева Г.И.</td>
<td></td>
</tr>
<tr>
<td>Галиахметова Э.Х.</td>
<td></td>
</tr>
<tr>
<td>Галяутдинов И.В.</td>
<td></td>
</tr>
<tr>
<td>Гареев В.Ф.</td>
<td></td>
</tr>
<tr>
<td>Генерозова И.П.</td>
<td></td>
</tr>
<tr>
<td>Георгиевский В.П.</td>
<td></td>
</tr>
<tr>
<td>Герасимов Н.Ю.</td>
<td></td>
</tr>
<tr>
<td>Гесслер Н.Н.</td>
<td></td>
</tr>
<tr>
<td>Глущенко С.Н.</td>
<td></td>
</tr>
<tr>
<td>Голенченко С.Г.</td>
<td></td>
</tr>
<tr>
<td>Голощапов А.Н.</td>
<td></td>
</tr>
<tr>
<td>Гончарова Н.В.</td>
<td></td>
</tr>
<tr>
<td>Горбунов Д.Б.</td>
<td></td>
</tr>
<tr>
<td>Гродов И.А.</td>
<td></td>
</tr>
<tr>
<td>Гришин Ю.В.</td>
<td></td>
</tr>
<tr>
<td>Гришковец В.И.</td>
<td></td>
</tr>
<tr>
<td>Гуляев А.Е.</td>
<td></td>
</tr>
<tr>
<td>Гурев А.С.</td>
<td></td>
</tr>
<tr>
<td>Гусакова Г.С.</td>
<td></td>
</tr>
<tr>
<td>Гусакова М.А.</td>
<td></td>
</tr>
<tr>
<td>Дадаля Ю.В.</td>
<td></td>
</tr>
<tr>
<td>Даргаева Т.Д.</td>
<td></td>
</tr>
<tr>
<td>Дахалаева Г.Г.</td>
<td></td>
</tr>
<tr>
<td>Дворникова И.А.</td>
<td></td>
</tr>
<tr>
<td>Дейнека В.И.</td>
<td></td>
</tr>
<tr>
<td>Дейнека Л.А.</td>
<td></td>
</tr>
<tr>
<td>Демин В.В.</td>
<td></td>
</tr>
<tr>
<td>Денисенко О.Н.</td>
<td></td>
</tr>
<tr>
<td>Денисов Е.Т.</td>
<td></td>
</tr>
<tr>
<td>Денисова Т.Г.</td>
<td></td>
</tr>
<tr>
<td>Дерябина Ю.И.</td>
<td></td>
</tr>
<tr>
<td>Джапаридзе И.В.</td>
<td></td>
</tr>
<tr>
<td>Джу М.А.</td>
<td></td>
</tr>
<tr>
<td>Диленко И.В.</td>
<td></td>
</tr>
<tr>
<td>Дикусар Е.А.</td>
<td></td>
</tr>
<tr>
<td>Дмитриенкова А.Г.</td>
<td></td>
</tr>
<tr>
<td>Домнина Н.С.</td>
<td></td>
</tr>
<tr>
<td>Доценко В.В.</td>
<td></td>
</tr>
<tr>
<td>Дренин А.А.</td>
<td></td>
</tr>
<tr>
<td>Дроголова Н.А.</td>
<td></td>
</tr>
<tr>
<td>Дружинина А.С.</td>
<td></td>
</tr>
<tr>
<td>Дубишев А.В.</td>
<td></td>
</tr>
<tr>
<td>Дубоносов А.Д.</td>
<td></td>
</tr>
<tr>
<td>Егоров Д.И.</td>
<td></td>
</tr>
<tr>
<td>Емельянова Е.В.</td>
<td></td>
</tr>
<tr>
<td>Емельянова И.А.</td>
<td></td>
</tr>
<tr>
<td>Еникеев К.И.</td>
<td></td>
</tr>
<tr>
<td>Ермолин М.С.</td>
<td></td>
</tr>
<tr>
<td>Ерохин В.Н.</td>
<td></td>
</tr>
<tr>
<td>Есаиашвили М.</td>
<td></td>
</tr>
<tr>
<td>Жестков А.В.</td>
<td></td>
</tr>
<tr>
<td>Живетьев М.А.</td>
<td></td>
</tr>
<tr>
<td>Жигачева И.В.</td>
<td></td>
</tr>
<tr>
<td>Жигунов О.Ю.</td>
<td></td>
</tr>
<tr>
<td>Заварзина А.Г.</td>
<td></td>
</tr>
<tr>
<td>Зайнуллин Р.А.</td>
<td></td>
</tr>
<tr>
<td>Зайцев Г.П.</td>
<td></td>
</tr>
<tr>
<td>Зайдев Е.Н.</td>
<td></td>
</tr>
<tr>
<td>Зарубаев В.В.</td>
<td></td>
</tr>
<tr>
<td>Зибарева Л.Н.</td>
<td></td>
</tr>
<tr>
<td>Иванова Р.А.</td>
<td></td>
</tr>
<tr>
<td>Ивахнов А.Д.</td>
<td></td>
</tr>
<tr>
<td>Ильясов И.Р.</td>
<td></td>
</tr>
<tr>
<td>Иоффе С.Л.</td>
<td></td>
</tr>
<tr>
<td>Исакова Е.П.</td>
<td></td>
</tr>
<tr>
<td>Исламова Ф.И.</td>
<td></td>
</tr>
<tr>
<td>Исмагилов Р.К.</td>
<td></td>
</tr>
<tr>
<td>Кадочников В.В.</td>
<td></td>
</tr>
<tr>
<td>Кадыцкий А.Л.</td>
<td></td>
</tr>
<tr>
<td>Казакова М.А.</td>
<td></td>
</tr>
<tr>
<td>Казахмедов Р.Э.</td>
<td></td>
</tr>
<tr>
<td>Казахмедов Э.Р.</td>
<td></td>
</tr>
<tr>
<td>Каландия А.Г.</td>
<td></td>
</tr>
<tr>
<td>Калинченко М.А.</td>
<td></td>
</tr>
</tbody>
</table>
Музычкина Р.А., 559
Назарова В.Д., 487
Наумович Я.А., 110
Немзер Б.В., 494
Низамова А.А., 491
Низовцев Н.А., 192
Никитин Е.А., 241
Николаева В.В., 112, 146
Николаева О.Г., 62
Нифантьев Н.Э., 494
Носов А.И., 152
Овсянникова М.Н., 37, 58
Овчинников Д.В., 264
Огай Ю.А., 545
Одинков В.Н., 448
Октябрьский О.Н., 419, 512
Олейниц Е.Ю., 339
Омаров М.Д., 216
Омарова З.М., 216
Онучина Н.А., 470
Осипов В.И., 347
Осипов Е.М., 165
Осипова В.П., 129
Остроухова Л.А., 414, 424
Остроушко Ю.В., 283
Паламарчук И.А., 26
Палий А.Е., 222, 363
Палий И.Н., 363
Пальмина Н.П., 141
Панкратов А.Н., 180
Паршина А.Э., 264
Пермякова А.А., 541
Петкевич С.К., 47, 90
Пицкова А.Л., 115
Питикова О.В., 120
Плащина И.Г., 124
Плотников М.Б., 555
Повх А.Ю., 124, 196
Пожарницкая О.Н., 301
Поливанова О.Б., 343
Половинкина М.А., 129
Полунин К.Е., 49
Полунина И.А., 49
Поляков Н.А., 347
Попков А.С., 283
Попов А.А., 161
Попова Н.В., 94, 335, 354
Попова С.А., 133
Попова Э.В., 54
Порозов Ю.Б., 83
Порядина Л.Н., 359
Поткин В.И., 47, 90
Правдивцева О.Е., 498
Прокопьев И.А., 359
Просенко А.Е., 14, 71
Работягов В.Д., 363
Раджабов Г.К., 250
Разуваева О.И., 146
Ревина А.А., 135
Решетов Я.Е., 405
Росихин Д.В., 498
Рузаева И.В., 372
Рыбаков М.В., 367
Рыжов В.М., 320, 372, 449, 498
Рьякова В.А., 165
Рязанова Т.К., 315, 320, 498, 502
Савватеев А.М., 22
Савельева А.Е., 372
Садретдинова З.Р., 448
Сажина Н.Н., 141, 507
Сазонова О.Б., 502
Самойлова З.Ю., 512
Свирская М.В., 383
Секинаева М.А., 376
Селиванова И.А., 526, 532
Семёнов В.А., 473
Сидекомова А.В., 555
Сидоров А.Н., 259
Сидорова К.О., 541
Скрыпник Л.Н., 379
Скуратович Т.А., 330
Слобода А.А., 26
Смирнова Г.В., 419, 512
Смолянинов И.В., 120
Соляникова И.П., 66
Спрыгин В.Г., 515
Старикова А.А., 62
Старцева О.В., 363
Статникова Н.И., 559
Степнова И.В., 246
Столповская Е.В., 523
Стребков А.А., 108
Стрединина Г.А., 146
Стреликова Д.И., 372
Струков П.А., 22, 520
Суворова О.В., 135
Супрун Н.П., 434
Сютягин А.А., 148
Сухоруков А.Ю., 110
Сыев С.Я., 306
Сысоева А.В., 31, 156
Сысоева М.А., 152, 541
Сячинова Н.В., 426
Тарасова Н.В., 112
Тараховский Ю.С., 562
Терехов Р.П., 526, 532
Тихонов И.В., 165
Тихонова Г.А., 174
Тохтарь В.К., 259
Труфан Г.А., 31, 156
Труфанов В.А., 227
Трифонова Г.В., 54
Трофимова Н.Н., 523
Туртаева Р.И., 283
Тюкавкина Н.А., 526, 532
Удалов Я.С., 174
Фабер А.А., 148
Фатыхова С.А., 330
Федорова И.В., 190, 192, 196
Федорова Л.В., 112
Федотов П.С., 81
Федураев П.В., 379
Фенин А.А., 106, 108, 112, 146
Фершалова Т.Д., 288
Филиппов Э.В., 359
Филиппова Г.В., 359
Филоненко Е.С., 274
Фоменко С.Е., 537
Фомочкина И.И., 545
Хабибрахманова В.Р., 152, 541
Хазиева Ф.М., 347
Хасанова С.Р., 383
Хафизов С.Р., 213
Хвилов С.С., 311
Холоимова Н.А., 178
Храмова Е.П., 274, 306
Чернолиха О.М., 180
Чирвикин С.Н., 41
Чередниченко М.Ю., 343
Черноусова С.В., 545
Черноусова Н.И., 550
Чеснокова А.Н., 434
Чигорина Е.А., 185
Чигорина Т.М., 185
Чиквишвили Д.И., 386
Чиквишвили И.Д., 386
Чиковани Д.М., 408
Чукевич И.Ю., 133, 190, 192, 196
Чупрова Е.А., 192
Шабуня П.С., 330
Шаманаев А.Ю., 555
Шамсутидина Л.П., 115
Шарипов И.М., 498
Швыдкий В.О., 196
Шевченко А.С., 559
Шевченко О.Г., 192
Шелудченко Н.И., 201
Шиков А.Н., 301
Шилова И.В., 392
Шишкина Л.Н., 124, 196, 201
Шмигельская Н.А., 566
Шмыгарева А.А., 255, 367
Шрамко Ю.И., 545
Шулаева М.П., 115
Шульгау З.Т., 227
Шульгина Е.В., 264
Щербакова Е.А., 394
Щукина О.В., 190
Юнусова С.Г., 376
Юрасов Н.А., 180
Ягольник Е.А., 562
Яковишин Л.А., 206
Яланецкий А.Я., 566
Яшин А.Я., 494, 571
Яшин Я.И., 494, 550, 571
Яшунский Д.В., 494
Научное издание

ФЕНОЛЬНЫЕ СОЕДИНЕНИЯ:
СВОЙСТВА, АКТИВНОСТЬ,
ИННОВАЦИИ

Сборник научных статей по материалам
X международного симпозиума
«Фенольные соединения: фундаментальные и
прикладные аспекты» (Москва, 14-19 мая 2018 года)

Издание подготовлено в авторской редакции
Оригинал-макет – П.В. Лапшин